توضیحات
تمرین درس شناسایی آماری الگو با متلب
شناسایی آماری الگو شاخهای از مبحث یادگیری ماشینی است. میتوان گفت شناسایی آماری الگو، دریافت دادههای خام و تصمیم گیری بر اساس دستهبندی دادهها است. بیشتر تحقیقات در زمینه شناسایی آماری الگو در رابطه با «یادگیری نظارت شده» یا «یادگیری بدون نظارت» است. روشهای شناسایی آماری الگو، الگوهای مورد نظر را از یک مجموعه دادهها با استفاده از دانش قبلی در مورد الگوها یا اطلاعات آماریدادهها، جداسازی میکند. الگوهایی که با این روش دستهبندی میشوند، گروههایی از اندازهگیریها یا مشاهدات هستند که نقاط معینی را در یک فضای چند بعدی تشکیل میدهند. این ویژگی اختلاف عمده تشخیص الگو با تطبیق الگو است، که در آنجا الگوها با استفاده از موارد کاملاً دقیق و معین و بر اساس یک الگوی مشخص، تشخیص داده میشوند. شناسایی آماری الگو و تطبیق الگو از بخشهای اصلی مبحث پردازش تصویر به خصوص در زمینه بینایی ماشین هستند.
انواع شناسایی آماری الگو
نیاز به سیستمهای اطلاعاتی بهبود یافته بیشتر از قبل مورد توجه قرار گرفته است چرا که اطلاعات عنصری اساسی در تصمیم سازی است و جهان در حال افزایش دادن مقدار اطلاعات در فرمهای مختلف با درجههایی از پیچیدگی است. یکی از مسائل اصلی در طراحی سیستمهای اطلاعاتی مدرن، شناسایی آماری الگو به طور اتوماتیک است. تشخیص به عنوان یک صفت اصلی انسان بودن است. یک الگو، توصیفی از یک شیء است. یک انسان دارای یک سیستم اطلاعاتی سطح بالاست که یک دلیل آن داشتن قابلیت شناسایی آماری الگوی پیشرفته است. بر طبق طبیعت الگوهای مورد تشخیص، عملیات تشخیص در دو گونهٔ اصلی تقسیم میشوند.
- تشخیص آیتمهای واقعی
این ممکن است به عنوان تشخیص سنسوری معرفی شود که شناسایی آماری الگوهای سمعی و بصری را دربر میگیرد.
- شناسایی آماری الگوهای زمانی و فضایی
این فرایند تشخیص، شناسایی و دستهبندی الگوهای فضایی و الگوهای زمانی را در بر میگیرد. مثالهایی از الگوهای فضایی کارکترها، اثر انگشتها، اشیاء فیزیکی و تصاویر هستند. الگوهای زمانی شامل فرمهای موجی گفتار، سریهای زمانی و … هستند.
مسائل اساسی در طراحی سیستم تشخیص الگو
به طور کلی طراحی یک سیستم شناسایی آماری الگو چندین مسئلهٔ اصلی را در بر میگیرد: ۱)طریقه نمایش دادهها ۲)استخراج ویژگی ۳)تعیین رویه تصمیم بهینه
- طریقه نمایش دادهها
اول از همه، ما بایستی در مورد نمایش دادههای ورودی تصمیم بگیریم.
- استخراج ویژگی
دومین مسئله در شناسایی آماری الگو، استخراج ویژگیها یا صفات خاصی از دادهٔ ورودی دریافته شده و کاهش ابعاد بردارهای الگوست. این مورد اغلب به عنوان مسئلهٔ پیش پردازش و استخراج ویژگی معرفی میشود. عناصر ویژگیهای (اینتراست) برای همهٔ کلاسهای الگو مشترک هستند میتوانند حذف شوند. اگر یک مجموعهٔ کامل از ویژگیهای تشخیص برای هر کلاس از دادههای اندازهگیری شده تعیین شود. تشخیص و دستهبندی الگوها، دشواری کمتری را در برخواهد داشت. تشخیص اتوماتیک ممکن است به یک فرایند تطبیق ساده یا یک جدول جستجو کاهش یابد. به هر حال در بسیاری از مسائل شناسایی آماری الگو، در عمل ، تعیین یک مجموعه کامل از ویژگیهای تشخیص اگر غیرممکن نباشد دشوار است.
- تعیین رویه تصمیم بهینه
مسئلهٔ سوم در طراحی سیستم شناسایی آماری الگو تعیین رویههای تصمیم بهینه است که در فرایند شناسایی و دستهبندی مورد نیاز واقع میشود. پس از آنکه دادههای مشاهده شده از الگوها جمعآوری شد و در فرم نقاط الگو یا بردارهای اندازهگیری در فضای الگو بیان شد، ما ماشینی را میخواهیم تا تصمیم بگیرد که این داده به کدام کلاس الگو تعلق دارد.
نکات قابل ذکر:
این پروژه شامل حل یک تمرین درس شناسایی آماری الگو با متلب است.
- تمرین درس شناسایی آماری الگو با متلب توسط کارشناسان گروه ۱.۲.۳ پروژه پیاده سازی گردیده و به تعداد محدودی قابل فروش می باشد.
- فایلهای پروژه به صورت کامل پس از خرید فایل بلافاصله در اختیار شما قرار خواهد گرفت.
دیدگاهها
هیچ دیدگاهی برای این محصول نوشته نشده است.