توضیحات
کنترل ارتعاش با محدود کردن سرعت گشتاور شفت با کنترلر MPC-PI با متلب
کنترل پیش بین (Model Predictive Control یا MPC) نوعی کنترل پیشرفته فرایند است که از دهه ۱۹۸۰ در صنایع فرایند، صنایع شیمیایی و پالایشگاههای نفت به کار میرود. در سالهای اخیر کنترل پیش بین در مدلهای بالانس سیستمهای قدرت نیز به کار رفته است. کنترل کنندههای پیش بین مبتنی بر مدلهای دینامیکی فرایند، عمدتاً مدلهای خطی تجربی، است که با شناسایی سیستم به دست آمدهاند. مهمترین مزیت MPC آن است که امکان بهینهسازی تایم اسلات جاری را با در نظر گرفتن تایم اسلاتهای آینده میدهد. این کار با بهینهسازی یک افق زمانی محدود اما اجرای آن تنها در تایم اسلات جاری انجام میگیرد. MPC توانایی پیش بینی رخدادهای آینده و اتخاذ اعمال کنترلی متناسب با آن را دارد. کنترل کنندههای PID و LQR توانایی پیش بینی را ندارند. MPC نوعی کنترل دیجیتال است.
مدلهای به کاررفته در MPC معمولاً مدلهایی برای نشان دادن رفتار یک سیستم دینامیکی پیچیده هستند. الگوریتم کنترل پیش بین پیچیدگی سیستم را افزایش میدهد و برای کنترل سیستمهای ساده که اغلب با کنترل کنندههای PID به خوبی کنترل میشوند لازم نیست. از مشخصههای دینامیکی رایجی که برای کنترل کنندههای PID مشکل هستند میتوان از تآخیرهای زمانی طولانی و دینامیکهای مرتبه بالا نام برد.
مدلهای MPC تغییرات متغیرهای وابسته را که نتیجه تغییرات متغیرهای نابسته هستند پیش بینی میکنند. در یک فرایند شیمیایی متغیرهای نابستهای که میتوان با کنترلر تغییر داد اغلب یا نقاط تنظیم (set point) کنترل کنندههای PID رگولاتوری (فشار، فلو، دما…) هستند یا عنصر کنترلی نهایی (ولو، دمپر…). متغیرهای نابستهای که نمیتوان با کنترل کننده تنظیم کرد به عنوان اغتشاش به کار میروند. متغیرهای وابسته در این فرایندها دیگر اندازه گیریهایی هستند که یا اهداف کنترلی را نشان میدهند یا محدودیتهای کنترلی.
MPC با استفاده از اندازه گیریهای فعلی از سیستم تحت کنترل، حالت دینامیکی فعلی فرایند، مدلهای MPC و اهداف و محدودیتهای متغیر فرایند، تغییرات آتی متغیرهای وابسته را محاسبه میکند. این تغییرات به گونهای محاسبه میشوند که متغیرهای وابسته نزدیک به هدف بمانند و محدودیتها روی متغیرهای نابسته و وابسته رعایت شود. معمولاً MPC تنها اولین تغییر در هر متغیر نابسته را برای اجرا میفرستد و محاسبه را برای تغییر بعدی تکرار میکند.
با وجود آنکه بسیاری از فرایندهای واقعی خطی نیستند اغلب میتوان آنها را در بازه کوچکی خطی در نظر گرفت. روشهای MPC خطی در بیشتر کاربردها با مکانیسم فیدبک به کار میروند که خطاهای پیش بینی ناشی از عدم تطبیق بین مدل و فرایند را جبران میکند. در کنترل کنندههای پیش بین که تنها از مدلهای خطی تشکیل میشوند اصل برهم نهی (جمع آثار) جبر خطی امکان میدهد اثر تغییرات متغیرهای نابسته چندگانه برای پیش بینی پاسخ متغیر وابسته با هم جمع شوند. با این کار مسئله کنترلی به یک سری محاسبات جبری ماتریسی مستقیم ساده میشود که سریع و مقاوم هستند.
هنگامی که مدلهای خطی به اندازه کافی برای نشان دادن غیرخطی بودن واقعی مدل دقیق نیستند از روشهای گوناگونی میتوان استفاده کرد. در برخی موارد میتوان از تغییر متغیرهای فرایند پیش و/یا پس از مدل خطی برای کاهش غیر خطی بودن استفاده کرد. فرایند را میتوان با MPC غیر خطی که مستقیماً از مدل غیر خطی استفاده میکند کنترل کرد. مدل غیر خطی میتواند به شکل یک برازش منحنی تجربی (مانند شبکههای عصبی مصنوعی) یا یک مدل دینامیکی دقیق بر مبنای توازن بنیادی جرم و انرژی باشد. مدل غیر خطی را می توا ن برای به دست آوردن فیلتر کالمن و یا استفاه از آن در MPC خطی، خطی سازی کرد.
فایل ها در نرم افزار متلب نسخه 2011b آماده شده اند و بهتر است برای اجرا از نسخه های نزدیک به آن استفاده کنید. برای اجرای فایل ها مطابق فیلم آموزشی موجود در پوشه Report اقدام نمایید.
برای طراحی کنترل کننده های EMPC پس از اقدامات اولیه مطابق فیلم آموزشی در محیط command window عبارت mpt_studio را تایپ کنید تا editor مربوطه باز شود. می توانید از فایل های آموزشی موجود در اینترنت برای آموزش کار با این editor استفاده کنید. توسط این editor برای سناریوهای مختلف شبیه سازی کنترل کننده EMPC مربوطه را طراحی کرده و در فایل هایی ذخیره کرده ایم.
کنترل ارتعاش با محدود کردن سرعت گشتاور شفت با کنترلر MPC-PI با متلب توسط کارشناسان گروه ۱.۲.۳ پروژه پیاده سازی گردیده و به تعداد محدودی قابل فروش می باشد.
- فایلهای پروژه به صورت کامل پس از خرید فایل بلافاصله در اختیار شما قرار خواهد گرفت.
دیدگاهها
هیچ دیدگاهی برای این محصول نوشته نشده است.