توضیحات
حل معادله دیفرانسیل به روش مونت کارلو با متلب
روش مونت-کارلو (به انگلیسی: Monte Carlo method) (یا تجربه مونت کارلو) یک الگوریتم محاسباتی است که از نمونهگیری تصادفی برای محاسبه نتایج استفاده میکند. روشهای مونت-کارلو معمولاً برای شبیهسازی سیستمهای فیزیکی، ریاضیاتی و اقتصادی استفاده میشوند.
از طرف دیگر روش مونت کارلو یک طبقه از الگوریتمهای محاسبه گر میباشند که برای محاسبه نتایج خود بر نمونه گیریهای تکرار شوندهٔ تصادفی اتکاء میکنند. روشهای مونته کارلو اغلب زمان انجام شبیهسازی یک سامانه ریاضیاتی یا فیزیکی استفاده میشوند. به دلیل اتکای آنها بر محاسبات تکراری و اعداد تصادفی یا تصادفی کاذب، روشهای مونته کارو اغلب به گونهای تنظیم میشوند که توسط رایانه اجرا شوند. گرایش به استفاده از روشهای مونته کارلو زمانی بیشتر میشود که محاسبه پاسخ دقیق با کمک الگوریتمهای قطعی ناممکن یا ناموجه باشد. روشهای شبیهسازی مونته کارلو مخصوصاً در مطالعه سیستمهایی که در آن تعداد زیادی متغیر با درجه آزادیهای دو به دو مرتبط وجود دارد مفید است، از جمله این سیستمها میتوان به سیالات، جامداتی که به شدت کوپل شدهاند، مواد بی نظم و ساختارهای سلولی (مدل سلولی پاتز – Potts- را ببیند) اشاره نمود. از آن گذشته، روشهای مونته کارلو برای شبیهسازی پدیدههایی که عدم قطعیت زیادی در ورودیهای آنها وجود دارد نیز مفید هستند، مثلاً محاسبه ریسک در تجارت. همچنین این روشها به طور گستردهای در ریاضیات مورد استفاده قرار میگیرند: یک نمونه استفاده سنتی کاربرد این روشها در برآورد انتگرالهای معین است، به خصوص انتگرالهای چند بعدی با محدودههای مرزی پیچیده. واژه مونته کارلو در دهه ۱۹۴۰(دهه ۱۳۱۰ شمسی) به وسیله فیزیکدانانی که روی پروژه ساخت یک سلاح اتمی در آزمایشگاه ملی لوس آلاموس آمریکا کار میکردند رایج شدهاست.
کاربرد
روشهای تصادفی برای محاسبه و آزمایش (که عموماً به عنوان شبیهسازی تصادفی شناخته میشوند) را بدون تردید میتوان تا اولین پیشگامان نظریه احتمال دنبال کرد (سوزن بافون، کار جزیی روی نمونهها توسط ویلیام گوست)، ولی به طور ویژه میتوان آن را در دوران قبل از محاسبات الکترونیکی دنبال کرد. تفاوت اساسی که معمولاً دربارهٔ روش شبیهسازی مونت کارلو بیان میشود این است که به طور اصولی نوع روش شبیهسازی را وارون میکند و نظر مسایل را با یافتن مدل مشابه احتمالی به خود جلب میکند. روشهای پیشین برای شبیهسازی و مدل سازی آماری عموماً عکس این کار را انجام میدادند: استفاده از شبیهسازی برای امتحان کردن مسایل مشخص قطعی.
به هر حال همانطور که میدانیم مثالهای دیدگاه «وارون» به صورت تاریخی نیز وجود دارند، آنها تا قبل از آمدن روش مونت کارلو به عنوان یک روش عمومی در نظر گرفته نمیشدند.
شاید معروفترین استفادهٔ اخیر از این روش توسط انریکو فرمی در سال۱۹۳۰ باشد، هنگامی که او از یک روش تصادفی برای دستیابی به خواص نوترون تازه کشف شده، استفاده کرد. همچنین روشهای مونت کارلو مرکزیت شبیهسازی مورد نیاز در پروژهٔ منهتن را داشتند اگرچه که در آن زمان در استفاده از ابزارهای محاسباتی در محدودیت جدی قرار داشتند؛ بنابراین مونت کارلو در زمانی مورد مطالعه و بررسی توسط دانشمندان قرار گرفت که کامپیوترهای الکترونیکی برای اولین بار پا به عرصه گذاشتند. (از سال ۱۹۴۵ تا امروز)
در ۱۹۵۰ در لوس آلاموس برای تحقیقات جدیدی که دربارهٔ بمبهای هیدروژنی آغاز شده بود مورد استفاده قرار گرفت و در رشتههای فیزیک و شیمی فیزیک و تحقیق در عملیات مشهور شد.
شرکت رند(Rand) و نیروی هوایی ایالات متحده دو سازمان مرتبط برای جمعآوری و ارسال اطلاعات دربارهٔ روشهای مونت کارلو در طول این زمان بودهاست، و کاربردهای گستردهٔ این روش را یافتهاند.
استفاده از روش مونت کارلو نیاز به استفادهٔ مقادیر زیادی اعداد تصادفی دارد و این استفاده باعث کنار رفتن و عدم گسترش زایندههای اعداد شبه تصادفی بود. روش مونت کارلو را میتوان برای بسیاری از محاسبات مهندسی، مخصوصاً در بخش برق و تخمینهای آن استفاده نمود.
معادله و روش حل آن در این پروژه به شرح زیر است
معادله Colloid thruster :
مسیر ذرات در داخل میدان الکتریکی 0≤?≤? توسط مجموعه ای از معادلات حاکم زیر بیان میشود:
که در آن:
مقادیر اولیه مکان ذرات بصورت زیر است:
معادله دوم:
معادله نوسانگر Oscilator هارمونک ساده:
با تغییر متغیر v=dx/dt جفت روابط زیر خواهیم داشت،
و بنابراین روابط تکرار مطابق مثال قبلی بدست می آیند
نکات قابل ذکر:
- حل معادله دیفرانسیل به روش مونت کارلو با متلب توسط کارشناسان گروه ۱.۲.۳ پروژه پیاده سازی گردیده و به تعداد محدودی قابل فروش می باشد.
- فایلهای پروژه به صورت کامل پس از خرید فایل بلافاصله در اختیار شما قرار خواهد گرفت.
دیدگاهها
هیچ دیدگاهی برای این محصول نوشته نشده است.