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Preface

Many problems in decision making, monitoring, fault detection, and control
rely on the knowledge of state variables and time-varying parameters that are
not directly measured by sensors. In such situations, observers, or estimators,
can be employed that use the measured input and output signals along with
a dynamic model of the system in order to estimate the unknown states or
parameters. An essential requirement in designing an observer is to guarantee
the convergence of the estimates to the true values or at least to a small
neighborhood of the true values. For linear models, a wide array of estimation
techniques are available, such as the Kalman filter and its variants. However,
no general method exists for the design of estimators for nonlinear systems.
The design and tuning of a nonlinear observer is generally complicated and
involves large computational costs.

This book provides a range of methods and tools to design observers for
nonlinear systems represented by a special type of a dynamic nonlinear model
– the Takagi–Sugeno (TS) fuzzy model. The TS model is a convex combina-
tion of affine linear models. This structure facilitates stability analysis and
observer design by using effective algorithms based on Lyapunov functions
and linear matrix inequalities. TS models are known to be universal approx-
imators and, in addition, a broad class of nonlinear systems can be exactly
represented as a TS system.

In the fuzzy systems literature, observer design is typically considered as a
dual problem to control design, and as such it has not received much attention
yet. This books aims at filling this gap by addressing observer design for TS
systems in its own right, with a special attention to large-scale, decentralized
systems. To this end, three particular structures of large-scale TS models
are considered: cascaded systems, distributed systems, and systems affected
by unknown disturbances. The reader will find in-depth theoretical analysis
accompanied by illustrative examples and simulations of real-world systems.
Stability analysis of TS models is also addressed in detail.



VI Preface

The intended audience are graduate students and researchers both from
academia and industry. For newcomers to the field, the book provides a con-
cise introduction dynamic TS fuzzy models along with two methods to con-
struct TS models for a given nonlinear system.

While this monograph focusses mainly on the theory and methodology of
state and parameter estimation in nonlinear distributed dynamic systems, the
methods presented can readily be used in applications such as industrial pro-
cesses, traffic systems, environmental systems, energy and water distribution
networks, and so on.

Supplementary information relevant to this book is available at the
website:

http://www.dcsc.tudelft.nl/fuzzybook/
Comments, suggestions, or questions concerning the book or the website

are welcome. Interested readers are encouraged to get in touch with the au-
thors using the contact information on the website.

We thank Janusz Kacprzyk, the series editor, for giving us the opportunity
to publish our book with Springer, and the editorial and production team at
Springer, especially Thomas Ditzinger, for their valuable help. We gratefully
acknowledge the financial support of the BSIK-ICIS project Interactive Col-
laborative Information Systems (grant no. BSIK03024 of Senter, Ministry of
Economic Affairs of the Netherlands), as well as of the International Cam-
pus on Safety and Intermodality in Transportation, the Nord-Pas-de-Calais
Region, the European Community, the Regional Delegation for Research and
Technology, the French Ministry of Higher Education and Research.
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Thierry Marie Guerra

Robert Babuška
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Chapter 1
Introduction

1.1 Observer Design for TS Fuzzy Systems

In order to understand how a system works, one needs to have information on cer-
tain important quantities associated with the system. Many problems in decision
making, monitoring, and control require the knowledge of the variables, i.e., states
and parameters of the system involved. In practical situations, measuring all these
variables may not be possible due to technical or economical reasons. Therefore,
the estimation of states and parameters in dynamic systems is an important pre-
requisite for safe and economical operation. Hence, estimation is an integral part
in applications such as process monitoring, fault detection, and process optimiza-
tion. Moreover, any state feedback control design requires the knowledge of state
variables.

Observers in general use the input and output signals of a system, together
with a system’s model. They generate an estimate of the system’s state, which
may then be further employed, in control, monitoring, fault detection, etc. Ob-
servers were first proposed and developed by Luenberger in the sixties (Luenberger,
1966). Since the early developments, observers for linear and nonlinear systems
with both known and unknown inputs have been developed (Saif and Guan, 1992;
Ruiz Vargas and Hemerly, 2001; Bergsten et al., 2001; Welch and Bishop, 2002;
Huang and Dey, 2005; Hyun et al., 2006; Besançon, 2006; Priscoli et al., 2006).

In this book, dynamic systems are modeled in the state space framework, using
a state transition model, which describes the evolution of the states over time, and a
measurement model, which relates the measurement to the states. The mathematical
description of the system used is

ẋ(t) = f (x(t), u(t), θ(t))
y(t) = h(x(t), u(t), ζ(t))

(1.1)

where f is the state transition function, describing the evolution of the states over
time, h is the measurement function, relating the measurements to the states, x is

Zs. Lendek et al.: Stability and Observer Design Using TS Models, STUDFUZZ 262, pp. 1–4.
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2 1 Introduction

the vector of the state variables, u is the vector of the input or control variables, θ
and ζ are (unknown/uncertain) parameters, and y denotes the measurement vector.

Given the state space model (1.1), the problem of state estimation arises as soon
as the measured output does not coincide with the whole state, i.e., y �= x. Unlike
for linear systems, there is no systematic procedure to design a state observer for a
given nonlinear model. The problem becomes more difficult when some parameters
in the model are not exactly known.

In order to design observers, in this book we represent nonlinear systems by
Takagi-Sugeno (TS) fuzzy models of the form

ẋ(t) =
m∑

i=1

wi(z(t))(Aix(t) + Biu(t) + ai)

y(t) =
m∑

i=1

wi(z(t))(Cix(t) + ci)

(1.2)

wherem is the number of local models,Ai,Bi,Ci, are the matrices and ai and ci are
the biases of the ith local model, z(t) is the vector of the scheduling variables, which
may depend on the states, inputs, measurements, or other exogenous variables, and
wi(z)(t), i = 1, 2, . . . , m are normalized membership functions, i.e., wi(z(t)) ≥
0 and

∑m
i=1 wi(z(t)) = 1, ∀t ∈ R. Note that throughout the remainder of the book,

the explicit time-dependence of the variables is omitted.
Such a model presents several advantages. The TS model is a universal approx-

imator (Fantuzzi and Rovatti, 1996), and many nonlinear systems can be exactly
represented in a compact set of state variables as TS systems (Ohtake et al., 2001).
Moreover, (1.2) is the convex combination of local affine models, which facilitates
the stability analysis and controller and observer design for such systems. In ad-
dition, many already available stability and design conditions for TS system can
be formulated as linear matrix inequalities (Boyd et al., 1994; Scherer and Weiland,
2005; Tanaka and Wang, 1997; Tanaka et al., 1998), for which efficient algorithms
exist that test their feasibility.

This book presents stability analysis and observer design methods for nonlinear
systems, represented by TS fuzzy models. For a large-scale or time-varying sys-
tem, the analysis of the system and the design and tuning of an observer may be
complicated and involve large computational costs. Therefore, to decrease the com-
putational costs, before analyzing the system or designing an observer for it, we
consider the structure of the system. Three classes of TS fuzzy systems are inves-
tigated: systems in a cascaded form, distributed systems, and systems affected by
unknown disturbances.

Looking at the research concerning control and observer design for TS systems in
the last decades, one can see that while control design for TS systems has gained an
increased interest, observer design is generally considered the dual problem of con-
troller design, and is therefore assumed to be a side-issue. Even in output-feedback
control, where observers are frequently used, the design usually relies on the separa-
tion principle (Jiang, 2000; Uang and Chen, 2000; Jiang et al., 2001; Tseng, 2008;
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Guelton et al., 2009; Huang et al., 2009), which, since nonlinear systems are con-
cerned, is valid only in restricted cases and under strong assumptions on the model.
However, as argued in the beginning of this section, estimation of the unmeasured
variables in dynamic systems is an essential part in process monitoring, fault detec-
tion, process optimization, and control. This books therefore aims to address this
issue.

1.2 Outline

The book is organized into 7 chapters, as follows.
Chapter 2 is used to introduce the necessary notations and background. In partic-

ular, the dynamic Takagi-Sugeno fuzzy system that is used further on is introduced,
together with two methods that can be used to construct TS models based on a given
nonlinear system of the form (1.1). The first method presented, the sector nonlin-
earity approach, can be used to obtain an exact fuzzy representation of the non-
linear system considered, in a compact set of the state-space. By using the second
method, Taylor series expansion in several operating points, an approximate model
is obtained.

Chapter 3 reviews methods and algorithms that can be used to analyze the stabil-
ity of TS fuzzy systems. These methods are in general derived from analysis using
a Lyapunov function, and are therefore stated as sufficient conditions. These con-
ditions are formulated such that their feasibility can be verified by solving linear
matrix inequalities (LMIs).

Chapter 4 introduces observers and reviews methods for designing observers for
TS systems, and briefly describes observer-based control. Since the design methods
actually rely on determining the observer gains such that the resulting estimation
error dynamics are stable, the methods presented in this chapter can be seen as
extensions of the methods in Chapter 3.

Chapter 5 presents techniques for the stability analysis and observer design of
a special type of distributed systems, cascaded systems. An important class of dis-
tributed systems can be represented as a cascade of subsystems. For general nonlin-
ear systems, the stability of the individual subsystems does not imply the stability
of the cascaded system. In this chapter, results are presented for the cascade of TS
fuzzy models, as the stability analysis of a cascaded TS system may be performed
by analyzing the individual subsystems. The cascaded approach is also described
for observer design. A stable observer can be obtained by designing observers inde-
pendently for the subsystems. Moreover, we show that the cascaded design does not
lead to a loss of performance in the terms of the estimation error decay-rate.

Chapter 6 concerns general distributed systems. Many physical systems, such as
power systems, material processing systems, and communication and transportation
networks are composed of interconnected lower-dimensional subsystems. In many
cases, large-scale systems are not cascaded, but distributed, i.e., the influence among
the subsystems is not in one way only. In Chapter 6 we consider such systems, where
each subsystem is represented by a TS fuzzy model and we present results for the
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stability analysis and observer design of distributed TS systems. In addition, we also
consider systems whose structure is not fixed, and where subsystems may be added
to or removed from the system.

Finally, Chapter 7 considers TS systems that change over time or that are in-
fluenced by unknown inputs, for which adaptive observers can be designed. Such
observers simultaneously estimate the states and unknown inputs or parameters of a
system. The design of observers in the presence of unknown inputs is an important
problem, since in many cases not all inputs are known, and the unknown inputs may
represent effects of actuator or plant component failures. The observer is designed
based on the known part of the fuzzy model. These observers guarantee either the
asymptotic convergence to zero or the boundedness of the estimation error.



Chapter 2
Takagi-Sugeno Fuzzy Models

In this chapter we first introduce the continuous-time Takagi-Sugeno (TS) fuzzy
systems that are employed throughout the book. In the second part of the chapter, we
present methods to construct TS models that represent or approximate a nonlinear
dynamic system starting from a given model of this system.

2.1 TS Fuzzy Models

Traditionally, the class of linear, time-invariant systems has dominated the systems
and control field (Kailath, 1980; Franklin et al., 1990; °Aström and Wittenmark,
1990). Thanks to their linearity and time-invariance these systems are easy to an-
alyze and well-established methods and algorithms exist to design observers and
controllers for them. The disadvantage of such models is that they fail to describe
nonlinear systems globally. An accurate approximation of a nonlinear system can
only be expected in the vicinity of an equilibrium point.

In this book, we consider continuous-time dynamic TS fuzzy systems
(Takagi and Sugeno, 1985). These systems, as used in this book, are mathematical
models of a special form, with the property that they are able to exactly represent or
to approximate to an arbitrary degree of accuracy a large class of nonlinear systems
in a compact st of the state space.

The TS fuzzy model, originally proposed by Takagi and Sugeno (1985), consists
of an if-then rule base. The rule antecedents partition a subset of the model variables
into fuzzy sets. The consequent of each rule is a simple functional expression. The
ith rule is described as

Model rule i:
If z1 is Zi

1 and ... and zp is Zi
p then y = Fi(z)

where the vector z has p components, zj , j = 1, 2, . . . , p, and stands for the vector
of antecedent variables; these variables are also called scheduling variables, as their
values determine the degree to which rules are active. The sets Zi

j , j = 1, 2, . . . , p,
i = 1, 2, . . . , m, wherem is the number of rules, are the antecedent fuzzy sets. The

Zs. Lendek et al.: Stability and Observer Design Using TS Models, STUDFUZZ 262, pp. 5–24.
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6 2 Takagi-Sugeno Fuzzy Models

value of a scheduling variable zj belongs to a fuzzy set Zi
j with a truth value given

by the membership function ωij : R → [0, 1]. The truth value for an entire rule is
determined based on the individual premise variables, using a conjunction operator
(Kruse et al., 1994) such as the minimum

ϕi(z) = min
j

{ωij(zj)}

or the algebraic product

ϕi(z) =
p∏

j=1

ωij(zj) (2.1)

The obtained truth value is normalized

wi(z) =
ϕi(z)∑m

j=1 ϕj(z)
(2.2)

assuming that
∑m

j=1 ϕj(z) �= 0, i.e., that for any allowed combination of the
scheduling variables at least one rule has a truth value greater than zero. In what
follows, the expressionwi(z) is referred to as the normalized membership function.

The output of a rule i is the value given by the consequent vector function Fi, and
usually depends on the scheduling variables; y is the output of the model, computed
as the weighted combination of the output of the rules. Using wi(z), the output of
the model is expressed as a function of z as

y =
m∑

i=1

wi(z)Fi(z) (2.3)

In general, the consequents of the rules (the functions Fi) may also depend on ex-
ogenous variables, i.e., on variables that do not appear in the scheduling vector. In
such a case, the output of the fuzzy model is given as

y =
m∑

i=1

wi(z)Fi(z, θ)

where θ denotes the vector of exogenous variables and pθ denotes the number of
these variables. This model is a fuzzy model, since each rule can be rewritten as

Model rule i:
If z1 is Zi

1 and . . . and zp is Zi
p and

and θ1 is Zi
θ,1 and . . . and θpθ

is Zi
θ,pθ

then y = Fi(z, θ)

where the antecedent fuzzy sets Zi
θ,j , j = 1, 2, . . . , pθ , i = 1, 2, . . . , m are deter-

mined such that they cover the whole space where the variables θj are defined, i.e.,
the membership functions ωθ,ij(θj) = 1, j = 1, 2, . . . , pθ , i = 1, 2, . . . , m.
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Example 2.1. Consider the function y(x, a) = abs(x) + ax2, with x ∈ R, and
a ∈ [−1, 1]. This function can be expressed as the two-rule fuzzy model

Model rule 1:
If x is Z1

1 and a is A1 then y = −x + ax2

Model rule 2:
If x is Z2

1 and a is A2 then y = x + ax2

where A1 = A2 = A = [−1, 1], Z1
1 denotes the set of negative real numbers and

Z2
1 denotes the set of non-negative real numbers. In the description above, we have

two scheduling variables, x and a. However, we also have A1 = A2, and the truth
value of a is A is always 1. To simplify the rules, the above model is written as

Model rule 1:
If x is Z1

1 then y = −x + ax2

Model rule 2:
If x is Z2

1 then y = x + ax2

i.e., only x is explicitly given as a scheduling variable, although the consequent
functions also depend on a. �

2.2 Dynamic TS Fuzzy Models

In this book we consider TS models that represent nonlinear dynamic systems.
Therefore let a dynamic system be given as

ẋ = f(x, u, θ)
y = h(x, ζ)

(2.4)

where f and h are smooth nonlinear functions, with f representing the state model
and with h representing the measurement model, x ∈ R

nx is the state vector, u ∈
R

nu is the input vector, y ∈ R
ny is the measurement vector, and θ and ζ represent

vectors of constant parameters or other exogenous variables that act on the system.
A TS fuzzy system that represents or approximates the nonlinear system (2.4) is
expressed as a set of m fuzzy rules of the following form

Model rule i:
If z1 is Zi

1 and ... and zp is Zi
p then

ẋ = f̂ i(x, u, θ)

y = ĥi(x, ζ)

where zj , j = 1, 2, . . . , p, represent the scheduling variables, and f̂ i and ĥi are the
consequent functions of the ith rule. The scheduling variables are usually chosen as
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a subset of the state, input, output, or other exogenous variables in the system, or
they are functions of the states, inputs, outputs, or exogenous variables.

The membership functions ωij(zj) are chosen such that their truth values are in
[0, 1], and for any allowed value of z at least one of the rules is active. Then, the
truth values of the rules are computed using (2.1), and normalized.

Using (2.3), the rules are combined into

ẋ =
∑m

i=1 ϕi(z)f̂ i(x, u, θ)∑m
i=1 ϕi(z)

=
m∑

i=1

wi(z)f̂ i(x, u, θ)

y =
∑m

i=1 ϕi(z)ĥi(x, ζ)∑m
i=1 ϕi(z)

=
m∑

i=1

wi(z)ĥi(x, ζ)

The consequent functions f̂ i and ĥi are usually less complex than the original non-
linear functions f and h, and are in general chosen as constant, linear, or affine
functions. Since these consequents are typically valid only locally, i.e., where the
value of the corresponding normalized membership function is nonzero, in the se-
quel they will also be referred to as “local models”.

In this book, we use TS fuzzy systems with linear or affine local models. There-
fore, the rules have the following form1

Model rule i:
If z1 is Zi

1 and ... and zp is Zi
p then

ẋ = Aix + Biu

y = Cix

for linear models, and

Model rule i:
If z1 is Zi

1 and ... and zp is Zi
p then

ẋ = Aix + Biu + ai

y = Cix + ci

for affine models. In the expressions above,Ai,Bi,Ci are the matrices and ai, ci are
the biases of the ith local model. The final outputs of the TS system are computed
as
1 Note that ẋ and y in the consequent parts are interpreted as linguistic variables, and the
output of each rule is given only by the expressions Aix + Biu and Cix. The notation

ẋ = Aix + Biu

y = Cix

for the consequent part is common in the literature, and is therefore also used in this book.
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ẋ =
m∑

i=1

wi(z)(Aix + Biu)

y =
m∑

i=1

wi(z)Cix

(2.5)

for models with linear consequents and

ẋ =
m∑

i=1

wi(z)(Aix + Biu + ai)

y =
m∑

i=1

wi(z)(Cix + ci)

(2.6)

for models with affine consequents. In the sequel, we only use the notation (2.5)
for linear and (2.6) for affine TS models, respectively, with the understanding that
the membership functions wi(z), i = 1, 2, . . . , m are normalized, i.e., wi(z) ≥ 0
and

∑m
i=1 wi(z) = 1. Thanks to the normalized membership functions, the linear

(affine) dynamic TS model is in fact a convex combination of local linear (affine)
models. This property facilitates the stability analysis of the fuzzy system (see
Chapter 3).

Example 2.2. Consider the nonlinear dynamic system

ẋ1 = −x1 + x1x2 y = x1

ẋ2 = x1 − 3x2

(2.7)

with x1, x2 ∈ [−1, 1]. This system can be exactly represented (using the sector
nonlinearity approach, see Section 2.3.1) by the following TS fuzzy system with
linear consequents

Model rule 1:
If z1 is around −1 then

ẋ =
(−2 0

1 −3

)
x

y = x1

Model rule 2:
If z1 is around 1 then

ẋ =
(

0 0
1 −3

)
x

y = x1

In the model above, the scheduling variable z1 is chosen as x2, the fuzzy sets are
Z1

1 = ‘around−1’, Z2
1 = ‘around 1’, and the corresponding membership functions

are ω11 = (1 − z1)/2 and ω21 = (1 + z1)/2, respectively. It can be easily seen that
with these membership functions, we have
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1 − x2

2

(−2 0
1 −3

)(
x1

x2

)
+

1 + x2

2

(
0 0
1 −3

)(
x1

x2

)
=
(−x1 + x1x2

x1 − 3x2

)

1 − x2

2
x1 +

1 + x2

2
x1 = x1 = y

i.e., the fuzzy model is an exact representation of the nonlinear system (2.7) in the
compact set S = {x1, x2 ∈ [−1, 1]}.

Consider now the nonlinear system

ẋ1 = −x1 + x1x2 + 1 y = x1

ẋ2 = x1 − 2x2 − 1

with x1, x2 ∈ [−1, 1]. This system can be approximated by a TS system with linear
consequents, or can be exactly represented, similarly to (2.7), by the following TS
fuzzy system with affine consequents

Model rule 1:
If z1 is around −1 then

ẋ =
(−2 0

1 −3

)
x +

(
1
−1

)

y = x1

Model rule 2:
If z1 is around 1 then

ẋ =
(

0 0
1 −3

)
x +

(
1
−1

)

y = x1

where the scheduling variable is z1 = x2, and the antecedent fuzzy sets and the
corresponding membership functions are defined as Z1

1 = ‘around−1’, Z2
1 =

‘around 1’, and ω11 = (1 − z1)/2, ω21 = (1 + z1)/2, respectively. �
The variables of TS fuzzy models are usually defined on a compact set. On
such a compact set, models of the form (2.5) and (2.6) have been proven to be
able to approximate any nonlinear function to an arbitrary degree of accuracy
(Wang and Mendel, 1992; Kosko, 1994; Ying, 1994; Fantuzzi and Rovatti, 1996).

For stability analysis, in general, TS fuzzy models with linear consequents are
used. Exploiting the fact that in the case of linear consequents, all the local models
have the same equilibrium point, zero, Lyapunov stability analysis can naturally be
employed. The stability analysis of affine TS models is in general more involved.
Results for the stability analysis of both linear and affine TS models are presented
in Chapter 3.

For observer design, in this book, we employ affine TS models, since a TS model
with affine consequents can represent a larger class of nonlinear systems than those
with linear consequents.
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Regarding the form of the TS fuzzy models, two differences between the models
used for observer and controller design have to be mentioned. The first difference is
that affine local models are rarely used for controller design. This is because, using
most current control design methods, the affine terms have to be compensated for in
each rule, that is possible only in special cases. However, for observer design, affine
local models do not present a problem.

The second difference is that while in fuzzy control design it is assumed that the
membership functions do not depend on the control input, so as to avoid having
to solve implicit equations, in observer design this does not represent a problem.
For observer design, the input is considered as a known (measured) variable, and
therefore the membership functions may depend on it.

2.3 Constructing TS Models

Two main approaches can be used to obtain TS fuzzy models: 1) identifying the
model using measured or simulated data and 2) analytic construction of a TS model
that exactly represents or approximates a given nonlinear dynamic system.

Of the two classes above, identification has so far only been applied to the
construction of discrete-time TS models. Since in this book we consider continuous-
time TS systems, methods for the identification of TS systems are not pre-
sented, but the interested reader is referred to (Driankov et al., 1993; Abonyi et al.,
2002; Babuška et al., 2002; Johansen and Babuška, 2003; Kukolj and Levi, 2004;
Kaymak and van den Berg, 2004; Angelov and Filev, 2004a).

Several methods exist that construct a fuzzy representation or an approxima-
tion of a given nonlinear system. Among these, the sector nonlinearity approach
(Ohtake et al., 2001) can be employed to obtain a TS model that is an exact fuzzy
representation of a given nonlinear system. Using the method described in Chap-
ter 14 of (Tanaka and Wang, 2001) a TS fuzzy model can be constructed such that
both the nonlinear system and its derivative are approximated. Other methods that
approximate a given nonlinear system are dynamic linearization (Johansen et al.,
2000), which is in fact a Taylor series expansion in several operating points, or the
method developed by Kiriakidis (2007).

In this section, two of the above methods are presented in detail: 1) the sector
nonlinearity approach and 2) linearization.

2.3.1 The Sector Nonlinearity Approach

The sector nonlinearity approach has first been described by Ohtake et al. (2001).
This approach is one of the most frequently used approaches for constructing TS
models for fuzzy control design, as it can obtain an exact fuzzy representation of a
given nonlinear system in a compact set of the state space.

The method has originally been developed for nonlinear systems of the form

ẋ = fm(x, u)x + gm(x, u)u
y = hm(x, u)x

(2.8)
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In the expression above, fm, gm, and hm are smooth nonlinear matrix functions,
x ∈ R

nx is the state vector, u ∈ R
nu is the input vector, and y ∈ R

ny the measure-
ment vector. The elements of the matrix functions fm, gm, and hm, are assumed to
be bounded. Furthermore, in general, all variables are assumed to be defined on a
compact set.

However, since in this book we consider also affine TS models, the sector non-
linearity approach is presented for more general nonlinear systems of the form

ẋ = fm(x, u)x + gm(x, u)u + a(x, u)
y = hm(x, u)x + c(x, u)

(2.9)

with the same assumptions on fm, gm, and hm, and the variables as for (2.8), and,
furthermore, with a and c smooth nonlinear vector functions, with all their ele-
ments bounded. Note that (2.9) is more general than (2.8), which is commonly used
to obtain TS fuzzy models with linear consequents. In fact, any nonlinear dynamic
system can be written in the form (2.9). However, since most methods for stabil-
ity analysis of TS models concern models with linear consequents, to facilitate the
analysis and the design, whenever possible, a representation of the form (2.8), i.e.,
without the affine terms is preferred.

With the assumptions above, the terms of the matrix functions fm, gm, and hm,
and of the vector functions a and c are either constants or bounded.

The scheduling variables are chosen as zj(·) ∈ [nlj , nlj ], j = 1, 2, . . . , p, where
zj denote the non-constant terms in fm, gm, hm, a, and c, and nlj and nlj are the
minimum and maximum2, respectively, of zj . Then, for each zj , two weighting
functions can be constructed as

ηj
0(·) =

nlj − zj(·)
nlj − nlj

ηj
1(·) = 1 − ηj

0(·) j = 1, 2, . . . , p

These two weighting functions are normalized, i.e., ηj
0(·) ≥ 0, ηj

1(·) ≥ 0, and
ηj
0 +ηj

1 = 1, for any value of zj . Moreover, zj can be expressed as zj = nljη
j
0(zj)+

nljη
j
1(zj), i.e., the weighted sum of the two extrema.

The fuzzy sets corresponding to both weighting functions are defined on
[nlj , nlj ], i.e., the domain where zj takes its values. These fuzzy sets are denoted in
the sequel by Z̄j

0 and Z̄j
1 .

The rules of the TS system are constructed such that all the terms zj , j =
1, 2, . . . , p, are taken into account, i.e., the rules have the form

Model rule i:
If z1 is Zi

1 and ... and zp is Zi
p then

ẋ = Aix + Biu + ai

y = Cix + ci

2 A differentiable function defined on a compact set attains its minimum and maximum.
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where Zi
j , i = 1, 2, . . . , m, j = 1, 2, . . . , p, can be either Z̄j

0 or Z̄
j
1 . Consequently,

the TS system consists of m = 2p rules.
The membership function of rule i is computed as the product of the weighting

functions that correspond to the fuzzy sets in the rule, i.e.,

wi(z) =
p∏

j=1

ωij(zj) (2.10)

where ωij(zj) is either ηj
0(zj) or ηj

1(zj), depending on which weighting function is
used in the rule. Thanks to the construction of the weighting functions, the resulting
membership functions are normal, i.e., wi(z) ≥ 0 and

∑m
i=1 wi(z) = 1.

The matricesAi,Bi, Ci, and the vectors ai and ci are constructed by substituting
the elements corresponding to the weighting functions used in rule i, i.e., nlj for
ηj
0, and nlj for ηj

1, respectively, into the matrix and vector functions fm, gm, hm, a,
and c.

Then, using the membership functions given by (2.10), the nonlinear system (2.9)
is exactly represented by the TS fuzzy model given by

ẋ =
m∑

i=1

wi(z)(Aix + Biu + ai)

y =
m∑

i=1

wi(z)(Cix + ci)

(2.11)

Note that (2.9) is not unique and therefore the TS representation of the nonlinear
system obtained by the sector nonlinearity approach is not unique.

To illustrate how the sector nonlinearity approach can be employed to construct
an exact TS representation of a given nonlinear dynamic system, consider the fol-
lowing example.

Example 2.3. Consider the nonlinear dynamic system with two states, x1 and x2,
one input u, and one measurement y given as

ẋ1 =x1x2 − 3x3
1 + 2x2 + ex1u

ẋ2 =x1 + x1x
2
2 + u

y =2x2
1 + x2

(2.12)

with the variables defined on the compact set C = {x, y, u|u, y ∈ R, |xi| ≤ 1, i =
1, 2}. This system can be rewritten in the form (2.9), as

ẋ =
(

x2 − 3x2
1 2

1 x1x2

)
x +

(
ex1

1

)
u

y =
(
2x1 1

)
x

(2.13)

with a = 0, and c = 0.
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The scheduling variables, i.e., the non-constant elements in the matrix functions

fm =
(

x2 − 3x2
1 2

1 x1x2

)
, gm =

(
ex1

1

)
, and hm =

(
2x1 1

)
are z1 = x2 − 3x2

1,

z2 = x1x2, z3 = ex1 , and z4 = 2x1. For each of these four terms the two weighting
functions and the corresponding matrix elements are computed as follows:

1. z1 = x2 − 3x2
1 ∈ [−4, 1]. The first weighting function is

η1
0 =

1 − (x2 − 3x4
1)

1 − (−4)
=

1 − x2 + 3x2
1

5

and nl1 = −4. The second weighting function is

η1
1 = 1 − η1

0(x1, x2) =
4 + x2 − 3x2

1

5

and nl1 = 1. Then, the scheduling variable z1 is represented as the weighted sum

z1 = −4η1
0(z1) + 1η1

1(z1)

2. z2 = x1x2 ∈ [−1, 1]. The first weighting function is

η2
0 =

1 − x1x2

1 − (−1)
=

1 − x1x2

2

and nl2 = −1. The second weighting function is

η2
1 = 1 − η2

0(x1, x2) =
1 + x1x2

2

and nl2 = 1. The scheduling variable z2 is represented as

z2 = −1η2
0(z2) + 1η2

1(z2)

3. z3 = ex1 ∈ [e−1, e]. The first weighting function is

η3
0 =

e − ex1

e − e−1

and nl3 = e−1. The second weighting function is

η3
1 = 1 − η3

0(x1) =
ex1 − e−1

e − e−1

and nl3 = e. The scheduling variable z3 is represented as

z3 = e−1η3
0(z3) + eη3

1(z3)
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4. z4 = 2x1 ∈ [−2, 2]. The first weighting function is

η4
0 =

1 − x1

2

and nl4 = −2. The second weighting function is

η4
1 = 1 − η4

0(x1) =
1 + x1

2

and nl4 = 2. The scheduling variable z4 is represented as

z4 = −2η4
0(z4) + 2η4

1(z4)

For each weighting function, denote the corresponding fuzzy set by Z̄j
i , j =

1, . . . , 4, i = 0, 1. For instance, the fuzzy set corresponding to η1
0 is denoted by

Z̄1
0 , etc. With these fuzzy sets, the following TS fuzzy model having 24 = 16 rules

can be written:

Model rule 1:
If z1 is Z̄1

0 and z2 is Z̄2
0 and z3 is Z̄3

0 and z4 is Z̄4
0 then

ẋ = A1x + B1u

y = C1x

with
A1 =

(
nl1 2
1 nl2

)
=
(−4 2

1 −1

)

B1 =
(
nl3
1

)
=
(

e−1

1

)

C1 =
(
nl4 1

)
=
(−2 1

)

and the membership function of the rule computed as w1(z) = η1
0η2

0η
3
0η

4
0 .

Model rule 2:
If z1 is Z̄1

0 and z2 is Z̄2
0 and z3 is Z̄3

0 and z4 is Z̄4
1 then

ẋ = A2x + B2u

y = C2x

with
A2 =

(
nl1 2
1 nl2

)
=
(−4 2

1 −1

)

B2 =
(
nl3
1

)
=
(

e−1

1

)

C2 =
(
nl4 1

)
=
(
2 1

)

and the membership function of the rule computed as w2(z) = η1
0η2

0η
3
0η

4
1 .
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Model rule 3:
If z1 is Z̄1

0 and z2 is Z̄2
0 and z3 is Z̄3

1 and z4 is Z̄4
0 then

ẋ = A3x + B3u

y = C3x

with
A3 =

(
nl1 2
1 nl2

)
=
(−4 2

1 −1

)

B3 =
(
nl3
1

)
=
(

e
1

)

C3 =
(
nl4 1

)
=
(−2 1

)

and the membership function of the rule computed as w3(z) = η1
0η2

0η
3
1η

4
0 .

Model rule 4:
If z1 is Z̄1

0 and z2 is Z̄2
0 and z3 is Z̄3

1 and z4 is Z̄4
1 then

ẋ = A4x + B4u

y = C4x

with
A4 =

(
nl1 2
1 nl2

)
=
(−4 2

1 −1

)

B4 =
(
nl3
1

)
=
(

e
1

)

C4 =
(
nl4 1

)
=
(
2 1

)

and the membership function of the rule computed as w4(z) = η1
0η2

0η
3
1η

4
1 .

The remaining rules are defined in a similar manner, corresponding to all 16
combinations.

As already stated, the TS model obtained by the sector nonlinearity approach is
in general not a unique fuzzy representation of the nonlinear system. For instance,
the nonlinear system (2.12) can be written instead of (2.13) as

ẋ =
(−3x2

1 2 + x1

1 + x2
2 0

)
x +

(
ex1

1

)
u

y =
(
2x1 1

)
x

in which case a TS model with different 16 rules can be constructed. �

Note that if the assumption that the terms in fm, gm, hm, a, and c are bounded, is
used, it is no longer necessary for the variables to be defined on a compact set to use
the sector nonlinearity approach. However, in such a case, instead of the minimum
and maximum, the infimum and supremum of the non-constant terms in the matrix
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and vector functions have to be used. This case is illustrated using the following
example.

Example 2.4. Consider the nonlinear system

ẋ =
1

1 + e−x
x (2.14)

with x ∈ [0, ∞]. As can be seen, f(x) = 1
1+e−x is bounded, but the variable x is

not defined on a compact set.
The scheduling variable z1 is defined as z1 = 1

1+e−x ∈
[

1
2 , 1

)
, and the member-

ship functions as

η1
0 = 2

(
1 − 1

1 + e−x

)
=

2e−x

1 + e−x

η1
1 = 1 − η1

0 =
1 − e−x

1 + e−x

It can easily be seen that 1
2η1

0x+1η1
1x = 1

1+e−x x, i.e., the fuzzy model is equivalent
to the nonlinear system (2.14). �

The main advantage of the sector nonlinearity approach is that the obtained TS
model is an exact representation of the nonlinear system based on which the TS
model has been constructed. However, the approach has two important shortcom-
ings. A first shortcoming is that the obtained consequent linear or affine models are
not guaranteed to be stable or observable (detectable), even if the nonlinear system
is. Most methods to investigate stability of TS systems require that the linear local
models are stable (see Chapter 3). Likewise, the methods for observer design require
that the local models are observable or detectable (see Chapter 4). Depending on the
nonlinear system considered, instability or unobservability of the local models may
be avoided by choosing another representation of the nonlinear system. Otherwise,
methods that obtain an approximate fuzzy model, whose local models have the same
properties as the nonlinear system, such as the one presented in the next section, can
be used.

The second shortcoming is that the number of rules, i.e., the number of local
models in the TS model obtained is exponential in the number of nonlinearities. In
practical applications, a large number of local models may lead to design problems
that are intractable due to either the computational costs or due to the limitations
of current algorithms. Therefore, unless instability or unobservability of the local
models is an issue, a fuzzy representation with a minimum number of rules should
be chosen.

2.3.2 Linearization

One method to obtain a TS fuzzy approximation of a given nonlinear model is lo-
cal linearization (Johansen et al., 2000). This linearization is in fact a Taylor series
expansion in different representative points, which may or may not be equilibria.
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Consider the dynamic nonlinear system

ẋ =f (x, u)
y =h(x)

(2.15)

where x ∈ R
nx is the vector of state variables, y ∈ R

ny is the vector of mea-
surements, u ∈ R

nu is the input vector, and f and h are smooth nonlinear vector
functions.

The goal is to obtain an approximation of the nonlinear system (2.15) as a set of
m rules of the form

Model rule i:
If z1 is Zi

1 and ... and zp is Zi
p then

ẋ =Aix + Biu + ai

y =Cix + ci

or, equivalently, a TS model of the form

ẋ =
m∑

i=1

wi(z)(Aix + Biu + ai)

y =
m∑

i=1

wi(z)(Cix + ci)

(2.16)

where Ai, Bi, ai, Ci, and ci are the matrices and biases of the local linear models,
z is the scheduling vector that determines which of the rules are active at a certain
moment, and wi(z), i = 1, 2, . . . , m are the normalized membership functions.

First, one has to decide which variables describe the nonlinearities, i.e., which
variables should be the scheduling variables. This means deciding on z as a selection
of inputs, states, and measurements.

Second, a sufficient number m of linearization points z0,i, i = 1, 2, . . . , m
have to be chosen, together with a partition of the space where the variables are
defined, and the corresponding membership functions ωij(zj), i = 1, 2, . . . , m.
By increasing the number of well-chosen approximation points, the approximation
accuracy of the fuzzy model increases. However, by increasing the number of the
linearization points, the computational costs of the controller or observer design also
increase.

Finally, the consequent matrices are obtained as

Ai =
∂f

∂x

∣∣∣∣
z0,i,0

Bi =
∂f

∂u

∣∣∣∣
z0,i,0

Ci =
∂h

∂x

∣∣∣∣
z0,i,0

where |z0,i,0 denotes the evaluation of the expression on the left in the value corre-
sponding to z0,i for those state and input variables that are scheduling variables and
0 for those states and inputs that are not in z.
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Since generally the linearization is not done in equilibria, affine terms must also
be added

ai = f (x, u)|z0,i,0 − (Aix)|z0,i,0 − (Biu)|z0,i,0

ci = h(x)|z0,i,0 − (Cix)|z0,i,0

To obtain the TS system of the form (2.16), the membership functions of each rule
are computed using (2.1) and normalized using (2.2). With the normalized member-
ship functions, the TS fuzzy model is expressed as (2.16). The method is illustrated
on the following example.

Example 2.5. Consider the nonlinear system (2.12) from Example 2.3, repeated here
for convenience

ẋ =
(

x1x2 − 3x3
1 + 2x2 + ex1u

x1 + x1x
2
2 + u

)

y =2x2
1 + x2

with the variables defined on C = {x, y, u |u, y ∈ R, |xi| ≤ 1, i = 1, 2}.
Since the state transition function f =

(
x1x2 − 3x3

1 + 2x2 + ex1u
x1 + x1x

2
2 + u

)
is affine in

the input u and nonlinear in the state variables x1 and x2, the scheduling vector is
chosen as z = (x1, x2)T .

For this example, we choose the linearization points as {(x1, x2) |x1, x2 ∈
{−1, 0, 1}}. A common choice of membership functions is normalized triangular
or trapezoidal membership functions that attain their maximum in the linearization
points, for each scheduling variable. These functions are easily represented, and for
each variable at most two are activated.

In this example, the membership functions chosen are shown in Figure 2.1. Here
we denote the corresponding fuzzy sets as around 0, around −1, and around 1.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

z
1

η(
z 1)

around −1 around 0 around 1

Fig. 2.1 Membership functions for the scheduling variable z1.
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These membership functions for z1 are defined as

ω11(z1) =

{
−z1, if z1 ≤ 0
0, otherwise

ω21(z1) = 1 − |z1|

ω31(z1) =

{
z1, if z1 ≥ 0
0, otherwise

Similar functions are defined as membership functions for z2

ω12(z2) =

{
−z2, if z2 ≤ 0
0, otherwise

ω22(z2) = 1 − |z2|

ω32(z2) =

{
z2, if z2 ≥ 0
0, otherwise

The partial derivatives of the state equation with respect to the scheduling vector are

∂f

∂x
=
(

x2 − 9x2
1 + ex1u x1 + 2

1 + x2
2 2x1x2

)
∂f

∂u
=
(

ex1

1

)
∂h

∂x
=
(
4x1 1

)

These matrices are evaluated in the selected linearization points to obtain the ma-
trices of the local models. The affine terms are obtained from the evaluation in the
linearization points of the expressions

f(x, u) − ∂f

∂x
x − ∂f

∂u
u =

(
6x3

1 − x1x2 − x1e
x1u

−2x1x
2
2

)

h(x) − ∂h

∂x
x = −2x2

1

Then, the approximate TS fuzzy model is given by the following 3 × 3 = 9 rules:

Model rule 1:
If z1 is around −1 and z2 is around −1 then

ẋ = A1x + B1u + a1

y = C1x + c1
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with
A1 =

(
x2 − 9x2

1 + ex1u x1 + 2
1 + x2

2 2x1x2

) ∣∣∣
(z0,1,0)

=
(−10 1

2 2

)

B1 =
(

ex1

1

) ∣∣∣
(z0,1,0)

=
(

e−1

1

)

a1 =
(

6x3
1 − x1x2 − x1e

x1u
−2x1x

2
2

)∣∣∣
(z0,1,0)

=
(−7

2

)

C1 =
(
4x1 1

) ∣∣∣
(z0,1,0)

=
(−4 1

)

c1 = −2x2
1

∣∣∣
(z0,1,0)

= −2

where z0,1 = (−1, −1), and the membership function of the rule is computed as
w1(z) = ω11ω12.

Model rule 2:
If z1 is around −1 and z2 is around 0 then

ẋ = A2x + B2u + a2

y = C2x + c2

with
A2 =

(
x2 − 9x2

1 + ex1u x1 + 2
1 + x2

2 2x1x2

) ∣∣∣
(z0,2,0)

=
(−9 1

1 0

)

B2 =
(

ex1

1

)∣∣∣
(z0,2,0)

=
(

e−1

1

)

a2 =
(

6x3
1 − x1x2 − x1e

x1u
−2x1x

2
2

) ∣∣∣
(z0,2,0)

=
(−6

0

)

C2 =
(
4x1 1

) ∣∣∣
(z0,2,0)

=
(−4 1

)

c2 = −2x2
1

∣∣∣
(z0,2,0)

= −2

where z0,2 = (−1, 0), and the membership function of the rule is computed as
w2(z) = ω11ω22.

Model rule 3:
If z1 is around −1 and z2 is around 1 then

ẋ = A3x + B3u + a3

y = C3x + c3
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with
A3 =

(
x2 − 9x2

1 + ex1u x1 + 2
1 + x2

2 2x1x2

) ∣∣∣
(z0,3,0)

=
(−8 1

2 −2

)

B3 =
(

ex1

1

) ∣∣∣
(z0,3,0)

=
(

e−1

1

)

a3 =
(

6x3
1 − x1x2 − x1e

x1u
−2x1x

2
2

) ∣∣∣
(z0,3,0)

=
(−5

2

)

C3 =
(
4x1 1

) ∣∣∣
(z0,3,0)

=
(−4 1

)

c3 = −2x2
1

∣∣∣
(z0,3,0)

= −2

where z0,3 = (−1, 1), and the membership function of the rule is computed as
w3(z) = ω11ω32.

Model rule 4:
If z1 is around 0 and z2 is around −1 then

ẋ = A4x + B4u + a4

y = C4x + c4

with
A4 =

(
x2 − 9x2

1 + ex1u x1 + 2
1 + x2

2 2x1x2

) ∣∣∣
(z0,4,0)

=
(−1 2

2 0

)

B4 =
(

ex1

1

)∣∣∣
(z0,4,0)

=
(

1
1

)

a4 =
(

6x3
1 − x1x2 − x1e

x1u
−2x1x

2
2

) ∣∣∣
(z0,4,0)

=
(

0
0

)

C4 =
(
4x1 1

) ∣∣∣
(z0,4,0)

(
0 1

)

c4 = −2x2
1

∣∣∣
(z0,4,0)

= 0

where z0,4 = (0, −1) and the membership function of the rule is computed as
w4(z) = ω21ω12.

The remaining rules are constructed in a similar manner.
Note that since the individual membership functions for z1 and z2, respectively,

are normal, the obtained, combined membership functions wi are also normal. �

Using this method, a good approximation can be obtained for nonlinear functions
that are analytic in the neighborhood of the chosen linearization points, i.e., func-
tions for which the Taylor series expansion converges to the value of the function.
For analytic functions, if the membership functions are chosen such that their value
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is 1 in the corresponding linearization point, the values of both the nonlinear system
and its derivative are equal to that of the fuzzy model and its derivative in the lin-
earization points. To see this, consider an analytic vector function f(x), def ined on
a compact set Cx, and a set of points x0,i, i = 1, 2, . . . , m, in Cx. Then, for any
point x in the neighborhood of one of the points x0,i, one can use the Taylor series
expansion

f (x) 	 f(x0,i) +
∂f

∂x

∣∣∣
x0,i

(x − x0,i)

i.e.,
f(x) 	 ∂f

∂x

∣∣∣
x0,i

x + f(x0,i) − ∂f

∂x

∣∣∣
x0,i

x0,i

f(x) 	 Aix + ai

where Ai = ∂f
∂x

∣∣∣
x0,i

, and ai = f(x0,i) − ∂f
∂x

∣∣∣
x0,i

xi.

Now, consider normalized membership functions wi(x), i = 1, 2, . . . , m, such
that wi(x0,i) = 1, wi(x0,j) = 0, ∀i �= j. Then, f(x) can be written as

f (x) =
m∑

i=1

wi(x)f (x)

	
m∑

i=1

wi(x)
(∂f

∂x

∣∣∣
x0,i

x + f(x0,i) − ∂f

∂x

∣∣∣
x0,i

x0,i

)

	
m∑

i=1

wi(x)(Aix + ai)

that is, the nonlinear function f can be approximated by the fuzzy model.
The advantage of constructing TS models using linearization is that although

the fuzzy system is only an approximation of the original nonlinear system, the
consequents retain important properties of the nonlinear system in the linearization
points. For instance, if the nonlinear system is locally observable in a neighbor-
hood of the linearization point, then the corresponding local model is observable
or detectable. A disadvantage of the method is that there are no general guide-
lines on how to chose the linearization points, or how many linearization points
should be chosen. Depending on the nonlinearity, a large number of points may
be necessary for an accurate approximation, which implies large computational
costs.

Since the linearization in general will not be performed in the equilibrium points,
with this method, affineTS models will be obtained. This means that stability analy-
sis and controller design become harder to perform. However, as alreadymentioned,
affine models do not present a problem in observer design.
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2.4 Summary

This chapter has introduced Takagi-Sugeno (TS) fuzzy models that are used in the
sequel. Dynamic TS fuzzy models have been presented, and two methods to con-
struct dynamic TS models given a nonlinear dynamic system have been discussed.
The first method, the sector nonlinearity approach can be used to construct exact
fuzzy representations of the nonlinear system. Using the second method, lineariza-
tion, a TS model that approximates the nonlinear system is obtained. This method
has the advantage that the local properties of the nonlinear system are retained in
the TS model.



Chapter 3
Stability Analysis of TS Fuzzy Systems

3.1 Introduction

The purpose of this chapter is to review various results concerning the stability anal-
ysis and control design of Takagi-Sugeno (TS) models. To analyze the stability and
to design observers and controllers for TS systems, in general Linear Matrix In-
equality (LMI) constraints are used. Therefore, the first part of the chapter presents
a brief overview of LMIs and their useful properties. Moreover, many problems
encountered can be turned in a multiple-sum co-positivity problem. This is a well-
known problem and some results are given for a double-sum co-positivity problem
with several possible relaxations.

Generally speaking, Lyapunov’s direct method is used to derive stability and sta-
bilization results of TS models. In the literature, for sake of simplicity and in the
view of writing the problems in an LMI form, mainly a quadratic Lyapunov func-
tion is considered, thus reducing the notion of stability to the notion of quadratic
stability. Nevertheless, we also present results that leave the quadratic framework.

Among the numerous possible choices of results (state feedback, output feed-
back, with uncertainties, H2, H∞ performance, delays, etc.) we present works to
give the main ideas to the reader of the different possibilities that TS models offer.
In particular for state feedback, results for performance through H∞ attenuation,
and robust control of TS models with uncertainties are given as well as the Input-
to-State Stability (ISS) property for exogenous signals. The results presented are
illustrated on several examples.

3.2 Preliminaries

3.2.1 Notation

Let F = FT ∈ R
n×n be a symmetric matrix. In the sequel, F > 0 (resp. F <

0) stands for positive (resp. negative)-definiteness, i.e., every eigenvalue of F is
strictly positive (resp. negative). The notation F ≥ 0 (resp. F ≤ 0) stands for

Zs. Lendek et al.: Stability and Observer Design Using TS Models, STUDFUZZ 262, pp. 25–48.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010
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semi-positive (resp. negative), i.e., the eigenvalues can be positive (resp. negative)
or zero. Moreover, whenever an expression is written as F > 0, it is assumed that
the expression is symmetric, i.e., F = FT > 0, even if the explicit notation is
omitted.

With A, B ∈ R
n×n being two symmetric matrices A > B is equivalent to

A − B > 0.
A star (∗) in a matrix indicates a transposed quantity in the symmetric position.

For instance,
(

P (∗)
A P̃

)
< 0 is equivalent to

(
P AT

A P̃

)
< 0.

The notation co stands for the convex hull, i.e., the convex envelope of some
vertices: C = co {a1, . . . , an}.

3.2.2 Linear Matrix Inequalities

In the sequel, stability and design conditions are presented mainly in the form of
LMIs. This section is therefore a very brief introduction to the LMI framework.
More details can be found in (Boyd et al., 1994; Scherer and Weiland, 2005).

Overview

In a broad sense an LMI is a set of expressions whose variables are linearly-related
matrices. A formal definition of an LMI is (Boyd et al., 1994)

F (x) = F0 +
m∑

i=1

xiFi > 0 (3.1)

where x ∈ R
m is the vector of decision variables and Fi = FT

i ∈ R
n×n, i =

0, . . . , m, are given constant symmetric matrices. As any matrix variable can be
decomposed into a base of symmetric matrices, the definition (3.1) involving scalars
is easily extended to matrices.

The set of solutions of the LMI (3.1), or the so-called feasibility set, denoted
by S = {x|x ∈ R

m, F (x) > 0} is a convex subset of R
m. Finding a solution

to (3.1) is a convex optimization problem avoiding local minima and guaranteeing
finite feasibility tests. When no solution exists, the problem is said to be infeasi-
ble. The following well-known convex or quasi-convex optimization problems are
relevant for the analysis and the synthesis of control systems (Boyd et al., 1994;
Scherer and Weiland, 2005).

1. Finding a solution x ∈ R
m to the LMI system (3.1) or determining that there is

no solution is called the feasibility problem (FP). This problem is equivalent to
minimizing the convex function f : x → λmin (F (x)), where λmin denotes the
smallest eigenvalue, and then deciding whether the solution is positive (strictly
feasible solution), zero (feasible solution), or negative (unfeasible case).
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2. Minimizing a linear combination of the decision variables bT x subject to (3.1)
is called the eigenvalue problem (EVP), also known as an LMI optimization
problem.

3. Minimizing the eigenvalues of a pair of matrices that depend affinely on a vari-
able, subject to a set of LMI constraints or determining that the problem is infea-
sible, i.e., solving the problem: minimize λ subject to

λB(x) − A(x) > 0
B(x) > 0
C(x) > 0

whereA(x),B(x) andC(x) are symmetric and affine with respect to x, is called
a generalized eigenvalue problem (GEVP).

Numerous solvers handle these various optimization problems, such as LMILAB,
SeDuMi, SDPT3, VSDP, or LMIRank. In this book, unless otherwise stated, to solve
LMI problems, the SeDuMi solver within the Yalmip toolbox (Löfberg, 2004) is
used.

Properties

LMI constraints do not appear “naturally” in control problems. Thanks to the avail-
able optimization solutions, one of the goals when encountering control problems is
to recast them as LMI expressions. This is done by making use of the properties of
LMIs. Some of these properties are enumerated below.

Property 3.1. (Congruence) Given a matrix P = P T and a full column rank matrix
Q it holds that

P > 0 ⇒ QPQT > 0

Property 3.2. (Schur complement) Consider a matrix M = MT =
(

M11 M12

MT
12 M22

)
,

with M11 and M22 being square matrices. Then

M < 0 ⇔
{

M11 < 0
M22 − MT

12M
−1
11 M12 < 0 ⇔

{
M22 < 0
M11 − M12M

−1
22 MT

12 < 0

Property 3.3. (S-procedure) Consider matrices Fi = FT
i ∈ R

n×n, x ∈ R
n, such

that xT Fix ≥ 0, i = 1, . . . , p, and the quadratic inequality condition

xT F0x > 0 (3.2)

x �= 0. A sufficient condition for (3.2) to hold is: there exist τi ≥ 0, i = 1, . . . , p,
such that F0 −

∑p
i=1 τiFi > 0.
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Property 3.4. (Completion of squares) Given two matrices X and Y of proper size
and Q = QT > 0, the following inequality holds

XT Y + Y T X ≤ XT QX + Y T Q−1Y

Several of these properties can be useful to recast an expression into LMI con-
straints; the following example is given as illustration.

Example 3.1. Consider the following problem with P (x) and S(x) affine functions
of x ∈ R

n findx such that

P (x) > 0

trace
(
S(x)T P−1(x)S(x)

)
< 1

A first step is to replace the condition trace
(
S(x)T P−1(x)S(x)

)
< 1 using an

auxiliary variable Q with

trace (Q) < 1

S(x)T P−1(x)S(x) < Q

Then, using Property 3.2 (Schur complement) gives:
Find x andQ such that

trace (Q) < 1
(

Q S(x)T

S(x) P (x)

)
> 0

Note that P (x) > 0 can be omitted as the second condition above holds only if
P (x) is positive definite. �

Relaxations

Many control and estimation problems can be summarized as a double sum nega-
tivity problem

m∑

i=1

m∑

j=1

wi(z)wj(z)Γij(x) < 0, (3.3)

with the symmetric matrices Γij(x) being affinely dependent on the unknown vari-
ables x ∈ R

nx and the functions wi(z) being nonlinear functions that observe the
convex sum property, i.e.,

∑m
i=1 wi(z) = 1 and wi (z) ≥ 0. The goal is to find

the least conservative conditions on Γij such that (3.3) holds, using only the con-
vex sum property for the nonlinear functionswi(z). The trivial LMI solution of the
problem (3.3) is: Γij(x) < 0, i, j = 1, . . . , m. These conditions can be relaxed by
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considering that with wi(z) ≥ 0 and wi(z)wj(z) = wj(z)wi(z), a basic sufficient
solution is (Wang et al., 1996)

Γii < 0
Γij + Γji < 0

(3.4)

for i = 1, 2, . . . , m, j = i + 1, i + 2, . . . , m.
The variable x ∈ R

nx is omitted in (3.4) for convenience. A refinement of the
conditions (3.4) that does not require auxiliary variables has been proposed and it is
recalled below.

Lemma 3.1. (Tuan et al., 2001) Equation (3.3) is satisfied provided that the follow-
ing conditions hold

Γii < 0
2

m − 1
Γii + Γij + Γji < 0

(3.5)

for i = 1, 2, . . . , m, j = 1, 2, . . . , m, i �= j.

Adding auxiliary variables, such as in Example 3.1, can also be useful in order to
reduce the conservatism of the conditions. Among all the possible relaxations, the
next one can be viewed as a good compromise between the number of additional
slack variables and the quality of the solutions.

Lemma 3.2. (Liu and Zhang, 2003) Condition (3.3) is satisfied provided that the
following conditions hold: there exist matrices Qii > 0, i = 1, 2, . . . , m, and
Qij = QT

ji, i = 1, 2, . . . , m, j = i + 1, i + 2, . . . , m such that

Γii + Qii < 0
Γij + Γji + Qij + Qji < 0
⎛

⎜⎜⎜⎝

Q11 Q12 . . . Q1m

Q21 Q22 . . . Q2m

...
. . .

...
Qm1 Qm2 . . . Qmm

⎞

⎟⎟⎟⎠ > 0

(3.6)

for i = 1, 2, . . . , m, j = i + 1, i + 2, . . . , m.

Note that the conditions of Lemmas 3.1 and 3.2 are only sufficient. Nevertheless,
some relaxations exist that also become necessary when the number of terms in the
summations tends to infinity; Sala and Ariño (2007) proposed conditions that are
based on Polya’s theorems, whereas Kruszewski et al. (2009) proposed conditions
that are based on triangulation. Other works use more properties of the nonlinear
functions wi(z), i = 1, 2, . . . , m, such as bounds (Sala and Ariño, 2007) or mem-
bership function dependent approaches (Bernal et al., 2009). The main drawback of
these results is that the complexity of the LMI problems increases, and they quickly
become intractable for the actual LMI solvers.
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The following two sections present stability analysis and stabilization of Takagi-
Sugeno models using LMI constraints. The TS model used is

ẋ =
m∑

i=1

wi(z) (Aix + Biu)

y =
m∑

i=1

wi(z)Cix

(3.7)

3.3 Stability Analysis of TS Systems

This section reviews methods for the stability analysis of TS fuzzy systems.

3.3.1 Quadratic Stability

The stability of TS models is investigated using the direct Lyapunov method. The
Lyapunov function1 commonly used is the quadratic one,

V (x) = xT Px (3.8)

with P = PT > 0.
When using this Lyapunov function, we speak of “quadratic stability”. Note that

when a system is quadratically stable it implies that it is stable. However, the re-
verse is not necessarily true. Therefore, conditions obtained using the Lyapunov
function (3.8) are only sufficient, i.e., if the LMI conditions fail, nothing can be
directly said about stability or instability of the TS model.

The unforced (u = 0) TS model (3.7) is quadratically stable if the Lyapunov
function (3.8) decreases and tends to zero when t → ∞ for all trajectories x(t). The
derivative of (3.8) along the trajectories of the unforced model (3.7) is

V̇ =

(
m∑

i=1

wi(z)Aix

)T

Px + xT P

(
m∑

i=1

wi(z)Aix

)

=
m∑

i=1

wi(z)xT
(
AT

i P + PAi

)
x

(3.9)

Remembering that wi(z) ≥ 0, i = 1, 2, . . . , m the following theorem is straight-
forwardly obtained.

Theorem 3.1. (Wang et al., 1996) The unforced model ẋ =
∑m

i=1 wi(z)Aix is
globally asymptotically stable if there exist a matrix P = PT such that the fol-
lowing LMI problem is feasible
1 In the sequel, whenever it is evident, the explicit dependence of the Lyapunov function and
its derivative on the state variables is omitted.
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H(PAi) < 0 (3.10)

for i = 1, 2, . . . , m, where the symbol H denotes the symmetric part, that is
H(X) = X + XT .

Remark: Notice that the result is strictly equivalent to stability of linear parameter
varying (LPV) models, i.e., ẋ = A (δ)x, A (δ) ∈ co {A1, . . . , Am}, x ∈ R

nx .

Theorem 3.1 expresses that it is not enough to have all the vertices globally asymp-
totically stable (GAS) to ensure the stability of the TS model. The reason for this is
that the domain of Hurwitz matrices – matrices whose every eigenvalue has strictly
negative real part – is non-convex. To illustrate this, consider the following example.

Example 3.2. Consider the matrices A1 =
(−1 4

0 −1

)
, A2 =

(−1 0
4 −1

)
. These

matrices are Hurwitz, as they have all eigenvalues at −1. Consider now the convex

combination:A = 0.5×A1 +0.5×A2 =
(−1 2

2 −1

)
, whose eigenvalues are 1 and

−3, thus being non-Hurwitz. �

A test of existence of a common matrix P = PT is described by Johansson et al.
(1999) and recalled in what follows.

Property 3.5. If there exist positive definitematricesRi=RT
i > 0, i = 1, 2, . . . , m,

such that
m∑

i=1

(
AT

i Ri + RiAi

)
> 0 (3.11)

then there is no matrix P = PT > 0 such that conditions (3.10) hold.

Example 3.3. For example with the two matricesA1 andA2 defined in Example 3.2,

a result of the LMI problem (3.11) isR1 =
(

9 4
4 2

)
,R2 =

(
2 4
4 9

)
, and

∑2
i=1(A

T
i Ri+

RiAi) =
(

10 0
0 10

)
> 0. Therefore, there is no matrix P = PT > 0 such that

conditions (3.10) hold. �

3.3.2 D-Stability

Quadratic stability also ensures an exponential decay rate. Effectively, consider (3.9).
If V̇ < 0 then there always exists an ε > 0 such that

m∑

i=1

wi(z)
(
AT

i P + PAi

)
+ εP < 0 (3.12)

Thus for all t ∈ R and wi(z) ≥ 0, i = 1, 2, . . . , m,
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V̇ + εV = xT

[
m∑

i=1

wi(z)
(
AT

i P + PAi

)
+ εP

]
x < 0 (3.13)

and integrating (3.13) over [t0, t] yields that V (x) has an exponential decay

V (x(t)) ≤ V (x (t0)) e−ε(t−t0)

Since for a positive definite matrix P it holds that λmin (P ) ‖x‖2 ≤ xT Px ≤
λmax (P ) ‖x‖2, we have

λmin (P ) ‖x‖2 ≤ V (x(t)) ≤ V (x (t0)) e−ε(t−t0) ≤ λmax (P ) ‖x0‖2 e−ε(t−t0)

which means that ‖x(t)‖ has an exponential decay

‖x(t)‖2 ≤ λmax (P )
λmin (P )

‖x0‖2
e−ε(t−t0)

Thus, lim
t→∞x(t) = 0 with exponential decay rate ε/2 irrespective of the initial con-

dition x0 (t0) for all wi(z) ≥ 0, i = 1, 2, . . . , m.
A way to introduce some performance together with quadratic stability is there-

fore to ensure a certain exponential decay rate, i.e., ask forα > 0 such that ‖x(t)‖ ≤
M ‖x0‖ eα(t−t0). In this way, stability can be influenced by defining a region D in
the complex plane such that D(s) < α. More generally, LMI regions can be defined
(Gahinet et al., 1995).

Definition 3.1. A subset D of the complex plane is called an LMI region if there
exists a symmetric matrix X ∈ R

m×m and a matrix Y ∈ R
m×m such that

D = {z|z ∈ C, fD(z) < 0}

where
fD(z) = X + zY + z̄Y T

is called the characteristic function of the LMI region.

One can easily see that, because of the form of the function fD(z), LMI regions
are convex and symmetric with respect to the real axis. Useful LMI regions include
a vertical strip [dl, du] and a conic sector centered in the origin with inner angle θ
(Figure 3.1). If all the eigenvalues of a matrix A are located in a region D, then the
matrix A is called D-stable.

A theorem to ensure D-stability of a matrix A is given by Chilali and Gahinet
(1996):

Theorem 3.2. The matrix A is D-stable if and only if there exists P = PT > 0 so
that

X ⊗ P + Y ⊗ AP + Y T ⊗ (AP )T < 0

where ⊗ is the Kronecker product (Kailath et al., 2000).
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Fig. 3.1 LMI regions.

In the context of stability, using LMI regions to ensure the specificD-stability of the
system effectively means adding constraints to the LMI problems, more specifically

(Xj,kP + Yj,kPAi + Yk,jA
T
i P ) < 0

j, k = 1, 2, . . . , m

Here, Xj,k and Yj,k denote the (j, k)th element of the corresponding matrices.

Remark: Note that the upper limit of the vertical strip, du, corresponds to the decay
rate.

3.3.3 Leaving the Quadratic Stability Framework

As previously mentioned, the conditions presented in the previous section are only
sufficient conditions. Sources of conservatism are:

1. using only the knowledge of the convex sum property for wi(z);
2. the conditions that are used to ensure the negativeness of the double sum;
3. reducing the stability issue to quadratic stability.

To illustrate this latter case, consider the very simple example inspired by
Johansson and Rantzer (1998).

Example 3.4. Consider the model

ẋ =
{

A1x, if x1 < 0
A2x, if x1 ≥ 0 (3.14)
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with A1 =
(−5 −4
−1 −2

)
, A2 =

(−2 −4
20 −2

)
. Quadratic stability reduces to findP > 0

such that
AT

1 P + PA1 < 0

AT
2 P + PA2 < 0

It is easy to show that withR1 =
(

9.3 −7.5
−7.5 7.2

)
andR2 =

(
6.5 2.7
2.7 1.4

)
,
∑2

i=1(A
T
i Ri+

RiAi) =
(

4 −0.7
−0.7 4

)
> 0, which proves, according to Property 3.5,

equation (3.11), that no such P exists. Therefore quadratic stability fails to demon-
strate the stability of (3.14).

Now consider the piecewise Lyapunov function:

V (x) =

{
xT Px, if x1 < 0
xT Px + ηx2

1, if x1 ≥ 0
(3.15)

With C =
(
1 0

)
, it is straightforward to show that the LMI problem for stability is

findP = P T > 0 and η such that

P + ηCT C > 0
H(PA1) < 0

H((P + ηCT C)A2) < 0

where H(X) = X + XT . With P =
(

1 0
0 3

)
and η = 9 a solution is obtained.

Effectively,

H(PA1) =
(−10 −7
−7 −12

)

H((P + ηCT C)A2) =
(−40 20

20 −12

)

with both matrices being negative definite. Thus, the system (3.14) is asymptotically
stable. �

Whereas quadratic stability cannot be proven for this simple example, it shows that
introducing some “knowledge” in the Lyapunov function can eliminate some draw-
backs. Therefore, pursuing this idea, several ideas can be used. In a sense, a TS
model induces a state space partition according to the scheduling variables. The
main ideas rely on introducing this partition into the Lyapunov function. This can
be done in two ways.

The first way relies on using piecewise quadratic Lyapunov functions
(Johansson and Rantzer, 1998; Johansson et al., 1999; Feng, 2003, 2006). The state
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space is partitioned according to the activation of the linear models, allowing the
Lyapunov function to change from one region to another, for instance

V (x, z) = xT P (z)x P (z) = Pi > 0 if z ∈ Si

where Si are given sets such that
⋃

i Si covers the state space. For example, “natu-
ral” regions for TS models are: Si = {z|wi(z) ≥ wj(z), j = 1, 2, . . . , m, j �=
i}, i = 1, 2, . . . , m.

The above partition is natural for those TS models that do not have all their lin-
ear models activated at once. Unfortunately, this assumption does not hold for TS
models built by using the sector nonlinearity approach.

The second way is to use the Lyapunov function (Blanco et al., 2001;
Tanaka et al., 2003)

V (x, z) = xT
m∑

i=1

wi(z)Pix (3.16)

with Pi > 0, i = 1, 2, . . . , m, thus introducing the nonlinear functionswi(z). Nev-
ertheless, the results concerning this approach face the following problem. Taking
the derivative of (3.16) gives

V̇ (x, z) =
m∑

i=1

m∑

j=1

wi(z)wj (z)xT (AT
j Pi + PiAj)x +

m∑

i=1

dwi(z)
dt

xT Pix

Therefore it involves the derivative of the nonlinear functions wi(z) and

dwi(z)
dt

=
∂wi(z)

∂z
ż(t) =

∂wi(z)
∂z

q(ẋ)

where ż = q (ẋ) represents the linear or nonlinear mapping between the scheduling
and the state vector. Although the quantities ∂wi(z)

∂z can easily be derived and thus
bounded, q (ẋ) is a priori unknown. Some works (Tanaka et al., 2003; Mozelli et al.,
2009) propose to use some bounds as

∣∣∣ dwi(z)
dt

∣∣∣ < φi. Nevertheless, the main draw-
back is they need to verify a posteriori that the future trajectory does not escape
from the boundaries.

Nowadays, two results seem of real interest that use the Lyapunov function (3.16)
or a slightly different one:

V (x, z) = xT

(
m∑

i=1

wi(z)Pi

)−1

x (3.17)

with Pi > 0, i = 1, 2, . . . , m. The first one reduces to a restrictive class of TS
models, invoking path independency (Rhee and Won, 2006). The second reduces
the problem of global stability to a problem of local stability (Bernal and Guerra,
2010).
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Remark: Surprisingly, for the discrete case, very interesting results
(Guerra and Vermeiren, 2004; Kruszewski et al., 2008) can be found for Lya-
punov functions in the form of (3.16) or (3.17) that seem not to have their
counterpart for continuous-time models.

3.4 State Feedback Stabilization

To stabilize a TS system using state feedback, several control laws can be used,
among which the linear feedback u = −Lx. A more general solution is a Paral-
lel Distributed Compensation (PDC) scheme (Wang et al., 1996). The PDC is com-
posed of linear state feedbacks blended together using the nonlinear functionswi (·)
of the model

u = −
m∑

i=1

wi(z)Lix (3.18)

Therefore, introducing (3.18) in the TS model (3.7) gives the closed loop

ẋ =
m∑

i=1

wi(z)

⎛

⎝Ai − Bi

m∑

j=1

wj(z)Lj

⎞

⎠x

=
m∑

i=1

wi(z)

⎛

⎜⎜⎜⎜⎝

m∑

j=1

wj(z)

︸ ︷︷ ︸
=1

Ai − Bi

m∑

j=1

wj(z)Lj

⎞

⎟⎟⎟⎟⎠
x

and finally, the closed loop is composed of m2 linear models

ẋ =
m∑

i=1

m∑

j=1

wi(z)wj(z) (Ai − BiLj)x (3.19)

Going on with quadratic stability (3.8) gives for the derivative of the Lyapunov
function along the trajectories of (3.19)

V̇ =
m∑

i=1

m∑

j=1

wi(z)wj (z)xT
(
(Ai − BiLj)

T P + P (Ai − BiLj)
)

x

Therefore V̇ < 0 is ensured if the double sum negativity problem (3.3) is satisfied,
which in this case can be written as

m∑

i=1

m∑

j=1

wi(z)wj(z)
(
AT

i P + PAi − PBiLj − LT
j BT

i P
)

< 0 (3.20)
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Note also that due to the quantity PBiLj , this expression is not an LMI. To ex-
press it with LMI conditions, the following change of variables can be performed:
X = P−1, Mi = LiX , i = 1, 2, . . . , m and with the property of congruence with
full rank matrix X (3.20) is equivalent to

m∑

i=1

m∑

j=1

wi(z)wj(z)
(
XAT

i + AiX − BiMj − MT
j BT

i

)
< 0

The result is summarized in the following theorem.

Theorem 3.3. The continuous TS model (3.7) with the PDC control law (3.18) is
GAS if there exist matrices X > 0, and Mi, i = 1, 2, . . . , m, such that with
Γij

Δ= XAT
i + AiX −MT

j BT
i −BiMj conditions (3.5) or (3.6) hold. Moreover, if

the conditions are satisfied the PDC gains are: Li = MiX
−1, i = 1, 2, . . . , m.

Remark: With conditions (3.4), this result can be found in (Tanaka et al., 1998),
with (3.5) it corresponds to (Tuan et al., 2001), and with (3.6) to (Liu and Zhang,
2005).
The application of Theorem 3.3 is illustrated on the following example.

Example 3.5. Consider the continuous TS model (3.7) composed of 2 linear models,

with matrices A1 =
(−1 −10

0 1

)
, A2 =

(−1 −10
0 −1

)
, B1 =

(
2
1

)
, B2 =

(
2
2

)
,

C1 =
(−1 0

)
andC2 =

(−1 1
)
. Note thatA1 has an unstable pole located at 1. For

simulation purpose the membership functions are chosen as w1 = 1
1+(x1+x2)2

and
w2 = 1 − w1.

Using Theorem 3.3 with conditions (3.5) gives the solution2: P =(
2.60 −0.37
−0.37 117.33

)
,
(

L1

L2

)
=

(−0.43 7.08
−0.38 7.15

)
. Figure 3.2(a) presents a result3 with

initial conditions x(0) =
(
1 −2

)T . Notice that without additional constraints the
performance is rather poor, especially for the state variable x1. In a second round a
decay rate α = 4 is added to the constraints. The maximum possible decay rate is

α < 11. The result is now P =
(

11.16 −35.03
−35.03 125.85

)
,
(

L1

L2

)
=

(−12.62 46.04
−3.49 13.23

)

and the results are presented in Figure 3.2(b). Obviously, better performance is
obtained. �

The classical nonlinear TS model (3.7) represents the simplest case of TS repre-
sentation. More general forms can be found: uncertain systems (parametric and/or
stochastic) (Xu et al., 2007; Tanaka and Wang, 2001) with or withoutH2,H∞ spec-
ifications (Tanaka and Wang, 2001; Liu and Zhang, 2003; Delmotte et al., 2007;
Wu, 2007), delayed systems (Yoneyama, 2007; Liu et al., 2010), systems with
bounded external disturbances (Tanaka and Wang, 2001; Zhou and Feng, 2006),
2 Throughout the chapter, all variables are rounded to two decimal places.
3 For numerical integration, the ode45Matlab function is used throughout the chapter.
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(a) Stabilization without constraints.
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(b) Stabilization with decay rate α = 4.

Fig. 3.2 Simulation results for Example 3.5.

systems in a descriptor form (Taniguchi et al., 2001; Xu et al., 2007; Guelton et al.,
2008a,b), periodic systems (Kruszewski and Guerra, 2007), and switching systems
(Dong and Yang, 2009; Wang and Qu, 2007; Choi and Park, 2004). For overviews,
the reader can refer to (Tanaka and Wang, 2001; Feng, 2006; Sala et al., 2005). For
example, consider an uncertain TS model with external disturbances

ẋ =
m∑

i=1

wi(z) ((Ai + ΔAi) x + (Bi + ΔBi)u + Bdid)

y =
m∑

i=1

wi(z) ((Ci + ΔCi)x + Ddid)

(3.21)

where d(t) ∈ R
nd is the disturbance input and Ai, Bi, Ci, Bdi, and Ddi, i =

1, 2, . . . , m, are matrices with appropriate dimensions. The parameter uncertainties
are usually written as (Tanaka and Wang, 2001): ΔAi = HaΔa(t)Eai, ΔBi =
HbΔb(t)Ebi, ΔCi = HcΔc(t)Eci where the matrices Ha, Hb, Hc, Eai, Ebi, and
Eci are constants, and Δa(t), Δb(t), Δc(t) satisfy the conditions

ΔaT (t)Δa(t) ≤ I ΔbT (t)Δb(t) ≤ I ΔcT (t)Δc(t) ≤ I (3.22)

Therefore, according to what parts of the model (3.22) are considered and what the
desired goals are (robustness, performances, etc.) numerous results exist. Among
them, in order to show the main principles of proofs for these results we consider
two particular examples: a first one for H∞ attenuation of input signals, the second
one for robust stabilization conditions according to uncertainties.

3.4.1 H∞ Attenuation

As previously said, performance-related criteria can be added by using extra LMI
constraints. In a more general way, it is possible to cope with H2 or H∞ criteria. In
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this latter case consider model (3.21) without uncertainties,Ddi = 0 and with initial
conditions x (0) = 0, i.e.,

ẋ =
m∑

i=1

wi(z)(Aix + Biu + Bdid)

y =
m∑

i=1

wi(z)Cix

(3.23)

The goal is to find the best L2 → L2 gain, i.e., to minimize the worst case

sup
d(t) �=0

‖y(t)‖2

‖d(t)‖2

≤ γ (3.24)

Theorem 3.4. The continuous TS model (3.23) with the PDC control law (3.18) is
GAS and the attenuation of the disturbance d is at least γ, if there exist matrices
X > 0, andMi, i = 1, 2, . . . , m, such that with

Γij
Δ=

⎛

⎝
XAT

i + AiX − MT
j BT

i − BiMj Bdi XCT
i

BT
di −γ2I 0

CiX 0 −I

⎞

⎠

conditions (3.5) or (3.6) hold. Moreover, if the conditions are satisfied, then the PDC
gains are Li = MiX

−1, i = 1, 2, . . . , m.

Proof: Consider a quadratic Lyapunov function V such that

V̇ + yT y − γ2dT d ≤ 0

Thus, integrating this expression leads to V (x (∞)) − V (x (0)) ≤∫∞
0

(
γ2dT d − yT y

)
dt. Since the TS is assumed to be GAS, x (∞) = 0

and with initial conditions such that x (0) = 0, we obtain

0 <

∫ ∞

0

(
γ2dT d − yT y

)
dt

which is equivalent to
∫ ∞

0

yT ydt < γ2

∫ ∞

0

dT ddt ⇔ ‖y‖2 < γ ‖d‖2
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and γ satisfies (3.24). Now, the stability conditions are obtained as

V̇ + yT y − γ2dT d =

2xT
m∑

i=1

m∑

j=1

wi(z)wj(z) (P ((Ai − BiLj)x + Bdid))

+ xT
m∑

i=1

m∑

j=1

wi(z)wj(z)CT
i Cjx − γ2dT d

=
(

x
d

)T (∑m
i=1

∑m
j=1 wi(z)wj(z)

(
Y + CT

i Cj

)
(∗)∑m

i wi(z)BT
diP −γ2I

)(
x
d

)

with Y = H(P (Ai − BiLj)), whereH(X) = X + XT . Using the Schur comple-
ment, V̇ + yT y − γ2dT d < 0 is equivalent to

⎛

⎝

∑m
i=1

∑m
j=1 wi(z)wj(z)H (P (Ai − BiLj)) (∗) (∗)∑m

i wi(z)BT
diP −γ2I 0∑m

i wi(z)Ci 0 −I

⎞

⎠ < 0

Using the property of congruence with full rank matrix

⎛

⎝
X 0 0
0 I 0
0 0 I

⎞

⎠ gives with X =

P−1 and Mi = LiX , i = 1, 2, . . . , m,

m∑

i=1

m∑

j=1

wi(z)wj(z)

⎛

⎝
XAT

i + AiX − MT
j BT

i − BiMj (∗) (∗)
BT

di −γ2I 0
CiX 0 −I

⎞

⎠ < 0

thereby recovering the expressions Γij of the theorem and concluding the proof. �
Remark: Several results based on this approach exist (Liu and Zhang, 2005;
Delmotte et al., 2007). For example, replacing y =

∑m
i=1 wi (z) Cix of (3.23) with

y =
m∑

i=1

wi(z) (Cix + Ddid)

leads to a similar result by replacing Γij with:

Γij
Δ=

⎛

⎝
XAT

i + AiX − MT
j BT

i − BiMj Bdi XCT
i

BT
di −γ2I DT

di

CiX Ddi −I

⎞

⎠

The design of a controller with disturbance attenuation is illustrated by using the
following example.

Example 3.6. Consider the TS fuzzy system of the form (3.23), with two lo-

cal models and the matrices given as in Example 3.5, i.e., A1 =
(−1 −10

0 1

)
,
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(a) Stabilization with attenuation.
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(b) Stabilization without attenuation.

Fig. 3.3 Simulation results for Example 3.6.
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(b) Disturbance signal d.

Fig. 3.4 Control and disturbance signals for Example 3.6.

A2 =
(−1 −10

0 −1

)
, B1 =

(
2
1

)
, B2 =

(
2
2

)
, C1 =

(−1 0
)
, C2 =

(−1 1
)
,

Bd1 =
(

0
0.1

)
and Bd2 =

(−0.1
0.1

)
, and membership functions w1 = 1

1+(x1+x2)2

and w2 = 1 − w1.
The highest H∞ attenuation, i.e., the smallest γ, is γmin = 0.0342. For example,

with a fixed γ = 0.05 the results are presented in Figure 3.3(a), while Figures 3.4(a)
and 3.4(b) present the control signal and the generated disturbance signal d (band-
limited white noise with power 0.1 and sample time 1). For the sake of compari-
son, Figure 3.3(b) presents the results without consideringH∞ attenuation, with the
same gains as those computed in Example 3.5 without the decay rate. �

3.4.2 Robust Control

Several results concerning robust control can be found in the literature. In order to
show the main principle we will consider the very basic norm-bounded uncertain
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TS model (Tanaka and Wang, 2001), (3.21) without external signals, i.e., Bdi = 0
and Ddi = 0:

ẋ =
m∑

i=1

wi(z) ((Ai + ΔAi)x + (Bi + ΔBi)u)

y =
m∑

i=1

wi(z) (Ci + ΔCi)x

(3.25)

and the uncertainties described as in (3.22). The goal is to derive stability conditions
for the closed-loop system for every variation of the uncertainties in their domain of
variation. Considering again the PDC law (3.18) the state feedback closed-loop is

ẋ =
m∑

i=1

m∑

j=1

wi(z)wj(z) (Ai − BiLj + ΔAi − ΔBiLj)x

Theorem 3.5. The continuous TS model (3.25) with the PDC control law (3.18) is
robustly GAS, i.e., is GAS whenever the uncertainties satisfy the boundary condi-
tions (3.22), if there exist matrices X > 0, and Mi, i = 1, 2, . . . , m, and scalars
τa > 0 and τb > 0, such that with

Γij
Δ=

⎛

⎝
H(AiX − BiMj) + τaHaHT

a + τbHbH
T
b XET

ai −MT
j ET

bi

EaiX −τaI 0
−EbiMj 0 −τbI

⎞

⎠

the conditions (3.5) or (3.6) hold. Moreover, if the conditions are satisfied, then the
PDC gains are Li = MiX

−1, i = 1, 2, . . . , m.

Proof: Using the quadratic Lyapunov function (3.8) gives directly

V̇ = 2xT
m∑

i=1

m∑

j=1

wi(z)wj(z)P (Ai − BiLj + ΔAi − ΔBiLj)x

Therefore V̇ < 0 if and only if

m∑

i=1

m∑

j=1

wi(z)wj(z)H(PAi − PBiLj + PΔAi − PΔBiLj) < 0

Using the property of congruence with full a rank matrix X = P−1 and using the
change of variablesMj = LjX , j = 1, 2, . . . , m, gives:

m∑

i=1

m∑

j=1

wi(z)wj(z)H(AiX − BiMj + ΔAiX − ΔBiMj) < 0 (3.26)
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Consider

Θj =

(
m∑

i=1

wi(z)ΔAi

)
X + X

(
m∑

i=1

wi(z)ΔAi

)T

+

(
m∑

i=1

wi(z)ΔBi

)
Mj + MT

j

(
m∑

i=1

wi(z)ΔBi

)T

with the uncertainties described as

Θj =
(
Ha Hb

)(Δa 0
0 Δb

) m∑

i=1

wi(z)
(

EaiX
−EbiMj

)

+
m∑

i=1

wi(z)
(
XET

ai −MT
j ET

bi

)(ΔT
a 0

0 ΔT
b

)(
HT

a

HT
b

)

Using Property 3.4 (completion of squares) with Q =
(

τaI 0
0 τbI

)
gives the bound

m∑

j=1

wj(z)Θj ≤ (
Ha Hb

)(Δa 0
0 Δb

)(
τaI 0
0 τbI

)(
ΔT

a 0
0 ΔT

b

)(
HT

a

HT
b

)

+

⎛

⎝
m∑

i=1

m∑

j=1

wi(z)wj(z)
(
XET

ai −MT
j ET

bi

)
⎞

⎠

·
(

τ−1
a I 0
0 τ−1

b I

)⎛

⎝
m∑

i=1

m∑

j=1

wi(z)wj(z)
(

EaiX
−EbiMj

)⎞

⎠

Together with conditions (3.22), we have

m∑

j=1

wj(z)Θj ≤ (
Ha Hb

)(τaI 0
0 τbI

)(
HT

a

HT
b

)

+

⎛

⎝
m∑

i=1

m∑

j=1

wi(z)wj(z)
(
XET

ai −MT
j ET

bi

)
⎞

⎠

·
(

τ−1
a I 0
0 τ−1

b I

)⎛

⎝
m∑

i=1

m∑

j=1

wi(z)wj(z)
(

EaiX
−EbiMj

)⎞

⎠



44 3 Stability Analysis of TS Fuzzy Systems

and (3.26) is satisfied if

m∑

i=1

m∑

j=1

wi(z)wj(z)H(AiX − BiMj) +
(
Ha Hb

)(τaI 0
0 τbI

)(
HT

a

HT
b

)

+

⎛

⎝
m∑

i=1

m∑

j=1

wi(z)wj(z)
(
XET

ai −MT
j ET

bi

)
⎞

⎠

·
(

τ−1
a I 0
0 τ−1

b I

)⎛

⎝
m∑

i=1

m∑

j=1

wi(z)wj(z)
(

EaiX
−EbiMj

)⎞

⎠ < 0

Using the Schur complement, we obtain

m∑

i=1

m∑

j=1

wi(z)wj(z)

·
⎛

⎝
H(AiX − BiMj) + τaHaHT

a + τbHbH
T
b XET

ai −MT
j ET

bi

EaiX −τaI 0
−EbiMj 0 −τbI

⎞

⎠ < 0

(3.27)

which completes the proof. �
Remark: The conservativeness of the result above can be reduced by using addi-

tional slack variables such asQ =
∑m

i=1

∑m
j=1 wi (z)wj(z)

(
τaijI 0

0 τbijI

)
, which

introduces extra degrees of freedom in (3.27).

Example 3.7. Consider the TS fuzzy system of the form (3.25), with two local mod-

els and the matrices given as A1 =
(−1 −10

0 1

)
, A2 =

(−1 −10
0 −1

)
, B1 =

(
2
1

)
,

B2 =
(

2
2

)
, C1 =

(−1 0
)
, C2 =

(−1 1
)
, and the uncertainty matricesHa =

(
0
1

)
,

Hb = 1, Ea1 =
(
0 0.5

)
, Ea2 =

(−0.5 0.5
)
and Eb1 = Eb2 =

(
0 0.5

)T , and
membership functions w1 = 1

1+(x1+x2)2
and w2 = 1 − w1.

Using Theorem 3.5, the solution obtained is P =
(

0.017 −0.14
−0.14 1.67

)
,
(

L1

L2

)
=

(−10.28 112.4
−8.23 91.97

)
.

Consider also the uncertainty signals Δa(t) and Δb(t), with Δa(t) = Δb(t), as
a band-limited white noise of power 0.1with sample time 1s, given in Figure 3.5(a).
The simulation results are presented in Figure 3.5(b). The initial states were (0 0)T .
In order to the simulation to exhibit a good behavior (i.e., not all signals to converge
to zero), the control law includes an external constant signal. In fact, we replace the
PDC law (3.18) with u = Hyc −

∑m
i=1 wi(z)Lix, where H = 10, yc = −1. Such

input signals are discussed in Section 3.6. �
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Fig. 3.5 Simulation results for Example 3.7.

3.5 Output Feedback Stabilization

The state vector is rarely entirely measured and extra work is needed to go from
state feedback to output feedback. Two ways are possible: 1) by adding an observer
or 2) by considering a static or a dynamic output feedback directly. The former will
be described in Chapter 4, the latter is briefly outlined in what follows.

A static output feedback can be written as (Kau et al., 2007; Lo and Lin, 2003)

u = −
m∑

i=1

wi(z)Liy (3.28)

with Li ∈ R
nu×ny , i = 1, 2, . . . , m the control gains. Introducing (3.28) into the

simplest model (3.7) leads to the closed-loop:

ẋ =
m∑

i=1

m∑

j=1

m∑

k=1

wi(z)wj(z)wk(z)(Ai − BiLjCk)x

Therefore, a triple sum occurs. Several authors relax the problem considering a com-
mon output matrix (Lo and Lin, 2003), i.e. Ci = C, i = 1, 2, . . . , m.

A dynamic output feedback controller can be written as (Ding, 2009)

ẋc =
m∑

i=1

m∑

j=1

wi(z)wj(z)Acijxc +
m∑

i=1

wi(z)Bciy

u =
m∑

i=1

wi(z)Ccixc + Dcy

(3.29)

with xc ∈ R
nc , Acij , Bci, Cci, i, j = 1, 2, . . . , m, and Dc matrices of appropriate

dimension to be designed.
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Then, for example substituting (3.29) in the general model (3.21) without uncer-
tainties leads to the closed-loop

(
ẋ
ẋc

)
=

m∑

i=1

m∑

j=1

wi(z)wj(z)

·
((

Ai + BiDcCj BiCcj
BcjCi Acij

)(
x
xc

)
+
(

BiDcDdj + Bdi

BcjDdi

)
d

)

Note that the matrices are affine in the variablesAcij , Bci, Cci, Dc and that the con-
trol law is written in a way that the closed-loop has only m2 models, thus avoiding
a triple sum. Several other possibilities exist (Guelton et al., 2009).

The main problem encountered when using these approaches is that an equiva-
lent LMI formulation is very hard, if not impossible to derive, except for restricted
classes of TS models (without uncertainties and delays). Some results using a de-
scriptor redundancy approach exist (Guelton et al., 2009) but they are generally over
conservative. Moreover, the scheduling vector z is assumed to be measurable, oth-
erwise the problem would be harder.

3.6 Input-to-State Stability

Generally speaking, Lyapunov stability gives a result regarding the response to ini-
tial conditions. Of course, when dealing with exogenous inputs, input-to-state stabil-
ity (ISS) should be considered (Sontag and Wang, 1995). Fortunately, when dealing
with TS models, the vector field

∑m
i=1 wi(z)Bi is bounded and the ISS property

holds for systems that are GAS in the sense of Lyapunov. We recall the ISS prop-
erty, which also requires the following definition.

Definition 3.2. A continuous function α : R
+ → R

+ belongs to classK if and only
if it is strictly increasing and α(0) = 0. If, in addition, α(s) → ∞ when s → ∞
then α is said to be of class K∞. �

Property 3.6. (Input-to-state stability) (Sontag, 1995) Consider a nonlinear model
ẋ = f(x) + gm(x)u, and a Lyapunov function candidate V , i.e., V : R

nx → R
+,

V (0) = 0, and V (x) > 0, ∀x �= 0). If there exist two K∞ functions, α (·) and θ (·)
such that V̇ (x) ≤ θ (‖u‖)−α (‖x‖) for all x ∈ R

nx and u ∈ R
nu , then the model

is input-to-state stable.

Consider again the uncertain model (3.25) and a control law including an exogenous
input yc

u =
m∑

i=1

wi(z) (Hiyc − Lix) (3.30)

and assume that there exists a quadratic Lyapunov function V showing that the
model without the exogenous input is GAS, i.e., for yc = 0 we have

V̇ < 0 ⇔ ∃λ > 0, V̇ < −λ ‖x‖2



3.6 Input-to-State Stability 47

Then for yc(t) �= 0 we have

V̇ (x) ≤ −λ ‖x‖2 + 2xT
m∑

i=1

m∑

j=1

wi(z)wj(z)P (Bi + ΔBi)Hjyc

≤ −λ ‖x‖2 + 2

∥∥∥∥∥∥

m∑

i=1

m∑

j=1

wi(z)wj(z)P (Bi + ΔBi)Hj

∥∥∥∥∥∥
‖yc‖ ‖x‖

= −λ ‖x‖2 + 2δ ‖yc‖ ‖x‖
(3.31)

The constant δ is bounded by the definition of TS models, and therefore (3.31) can
be written as

V̇ (x) ≤ −λ

2
‖x‖2 −

(√
λ

2
‖x‖ − δ

√
2
λ
‖yc‖

)2

+
2δ2

λ
‖yc‖2

≤ −λ

2
‖x‖2 +

2δ2

λ
‖yc‖2

Finally, with α (‖x‖) = λ
2 ‖x‖2 and θ (‖yc‖) = 2δ2

λ ‖yc‖2, the model has the ISS
property.

Remark: The result above implies that finding a solution using a standard LMI
problem for TS models will guarantee the ISS stability.

At last, the necessity of adding integrators for steady-state purposes can lead to a
more general scheme, such as the one presented in Figure 3.6. Consider the general
TS model (3.21). The integral part corresponds to

ẋI = yc −
m∑

i=1

wi(z) ((Ci + ΔCi)x + Ddid)

Introducing the extended vector x̄ =
(

x
xI

)
together with control law

u = −
m∑

i=1

wi(z)L̄ix̄ = −
m∑

i=1

wi(z)
(
Fi Li

)(x
xI

)

it is straightforward to write the extended state representation as

˙̄x =
m∑

i=1

wi(z)
(
(Āi + ΔĀi)x̄ + (B̄i + ΔB̄i)u + B̄did

)
+ Byyc

y =
m∑

i=1

wi(z)
(
(C̄i + ΔC̄i)x̄ + D̄did

)
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Fig. 3.6 PDC control with an integrator.

with matrices Āi =
(

Ai 0
−Ci 0

)
, ΔĀi =

(
ΔAi 0
−ΔCi 0

)
, B̄i =

(
Bi

0

)
, ΔB̄i =

(
ΔBi

0

)
, B̄di =

(
Bdi

Ddi

)
, B =

(
0
I

)
, C̄i =

(
Ci 0

)
, and ΔC̄i =

(
ΔCi 0

)
.

Therefore, all the previous robustness and performance results apply to this
extended representation, including the ISS stability according to the exogenous
output yc.

3.7 Summary

The aim of this chapter was to show the interest of using Takagi-Sugeno fuzzy mod-
els for control. In order to make it short and easily readable, this chapter focused on
the stability analysis and state feedback control for particular classes of TS mod-
els. Nevertheless, the proofs given along the chapter for H∞ performance or robust
control are generic ones and most of the time they can be easily extended to a more
general class of TS models (mixing uncertainties and exogenous signals, introduc-
ing delays on the state, the inputs, etc.).

Additional properties such as D-stability, and input-to-state stability were also
presented. Natural limitations of the approach, such as quadratic stability and the
LMI conditions being independent of the membership functions wi(z) have been
discussed. A very important point to achieve the control objectives is therefore to
estimate the state vector, thus going from state feedback to output feedback schemes.
Therefore, the next chapters focus on the design of observers based on TS models.



Chapter 4
Observers for TS Fuzzy Systems

In practical situations, not all state variables of a given system can be measured. In
such cases, an observer has to be designed to estimate the unmeasured states based
on the system model and the available input-output data. This chapter introduces the
concept of observers used for TS fuzzy systems and reviews methods for designing
observers such that the estimation error asymptotically converges to zero. We also
briefly describe observer-based stabilization.

4.1 Observer Design for TS Systems

When the whole state information is needed, an observer that is able to estimate the
unmeasured variables has to be designed. Once an estimate of the states is available,
they can be further used, for instance for control, fault detection, etc.

In this section we review observer design methods for TS fuzzy systems. The
observer considered uses the system model and the available input and output mea-
surements. Consider the affine fuzzy system

ẋ =
m∑

i=1

wi(z)(Aix + Biu + ai)

y =
m∑

i=1

wi(z)(Cix + ci)

(4.1)

where x denotes the state vector, y the measurement vector, and u the input vector,
which is known (measured). The observer design problem arises as soon as the mea-
surement vector does not coincide with the state vector, i.e., y �= x. For the model
(4.1), several types of observers have been considered, including linear observers,
fuzzy Luenberger observers (Palm and Driankov, 1999; Bergsten and Palm, 2000),
sliding-mode observers (Palm and Bergsten, 2000; Oudghiri et al., 2007), etc.

Zs. Lendek et al.: Stability and Observer Design Using TS Models, STUDFUZZ 262, pp. 49–71.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010
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The observer used in this book is of the form

˙̂x =
m∑

i=1

wi(ẑ)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ =
m∑

i=1

wi(ẑ)(Cix̂ + ci).

(4.2)

where x̂ denotes the estimated state vector, ŷ denotes the estimated measurement
vector, ẑ is the vector of the estimated scheduling variables (in the case when the
scheduling vector also has to be estimated), and Li, i = 1, 2, . . . , m, are the ob-
server gains that have to be designed. Note that the observer itself is a TS fuzzy sys-
tem. When designing an observer, it is generally required that the estimated states
converge asymptotically to the true ones, i.e., x̂ → x, as t → ∞. This requirement
is equivalent to the dynamics of the estimation error e = x − x̂ being asymptot-
ically stable, and therefore many design conditions are formulated in terms of the
asymptotic stability of the estimation error.

The observability (and similarly controllability) of TS systems is rarely discussed
in the literature. TS systems are nonlinear systems, and therefore it does seem
straightforward to use the observability criteria for nonlinear systems. However,
since the observers are designed such that each rule has a local gain, it is required
that the local models are observable or detectable instead of the full nonlinear sys-
tem. Note that in general this requirement is neither sufficient nor necessary for the
nonlinear system to be observable or detectable. However, due to the form of the
observer (4.2), it is required and for the design it is implicitly assumed that the local
models, i.e., the pairs (Ai, Ci), i = 1, 2, . . . , m, are observable.

The observer (4.2) can be seen as a generalization of the classical Luen-
berger observer (Luenberger, 1966) to fuzzy systems, and is referred to as a
“fuzzy-Luenberger observer” in several publications (Palm and Driankov, 1999;
Bergsten and Palm, 2000). In what follows, we refer to it simply as a fuzzy observer.

The dynamics of the estimation error when using observer (4.2) for system (4.1)
can be derived as

ė = ẋ − ˙̂x

=
m∑

i=1

wi(z)(Aix + Biu + ai) −
m∑

i=1

wi(ẑ)(Aix̂ + Biu + ai + Li(y − ŷ))

=
m∑

i=1

wi(ẑ)(Aix + Biu + ai) −
m∑

i=1

wi(ẑ)(Aix + Biu + ai)

+
m∑

i=1

wi(z)(Aix + Biu + ai) −
m∑

i=1

wi(ẑ)(Aix̂ + Biu + ai + Li(y − ŷ))
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=
m∑

i=1

wi(ẑ)(Aie − Li(y − ŷ)) +
m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + ai)

=
m∑

i=1

wi(ẑ)
(
Aie − Li

( m∑

j=1

wj(z)(Cjx + cj) −
m∑

j=1

wj(ẑ)(Cjx̂ + cj)
))

+
m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + ai)

=
m∑

i=1

wi(ẑ)
(
Aie − Li

( m∑

j=1

wj(z)(Cjx + cj) −
m∑

j=1

wj(ẑ)(Cjx + cj)

+
m∑

j=1

wj(ẑ)(Cjx + dj) −
m∑

j=1

wj(ẑ)(Cj x̂ + cj)
))

+
m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + ai)

=
m∑

i=1

wi(ẑ)
(
Aie − Li

( m∑

j=1

wj(ẑ)Cje +
m∑

j=1

(wj(z) − wj(ẑ))(Cjx + cj)
))

+
m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + ai)

since
∑m

j=1 wi(ẑ) = 1, and ultimately formulated as

ė =
m∑

i=1

wi(ẑ)
m∑

j=1

wj(ẑ)(Ai − LiCj)e

+
m∑

i=1

wi(ẑ)Li

m∑

j=1

(wj(z) − wj(ẑ))(Cjx + cj)

+
m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + ai)

The expression above represents the general (and complex) case, when all the
scheduling variables depend on unmeasured state variables, and the measurement
is nonlinear. For observer design under such conditions, the interested reader is re-
ferred to (Lendek et al., 2010a). In what follows, two cases will be distinguished: 1)
the scheduling vector does not depend on unmeasured states, i.e., in the observer the
known (measured) scheduling variables can be used; and 2) the scheduling vector
depends on states that are not measured. However, for this second case, for the sim-
plicity of the computations, we consider that the measurement matrix is common
for all the rules, i.e., the measurements are linear in the states.
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Note that the design conditions presented in the sequel are only sufficient con-
ditions. Similarly to the stability analysis, a major advantage of these conditions is
that they are cast into an LMI form, and therefore easily solvable. However, this can
also be considered a shortcoming of the approaches, since if the LMIs are infeasible,
no conclusive result is obtained. Moreover, the dimension of the LMI problem may
be exponential in the number of the rules, and therefore computationally involved
to solve.

Although the observer (4.2) is most often used for TS fuzzy systems, in particular
for output-feedback control, other observers, such as fuzzy sliding mode observers
have also been used. For details on sliding mode observers, the interested reader
is referred to (Palm and Driankov, 1999; Palm and Bergsten, 2000; Oudghiri et al.,
2007).

4.2 Observer Design: Measured Scheduling Vector

Consider first the case when the scheduling vector depends only on measured vari-
ables, i.e., it does not depend on states that have to be estimated. In this case, the
scheduling vector itself (instead of its estimate) can be used in the observer, and the
observer becomes

˙̂x =
m∑

i=1

wi(z)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ =
m∑

i=1

wi(z)(Cix̂ + ci)

(4.3)

Using the observer (4.3), the error dynamics can be written as

ė =
m∑

i=1

m∑

j=1

wi(z)wj(z)(Ai − LiCj)e (4.4)

For this error dynamics several sufficient stability conditions have been formulated,
with the large majority derived from the use of the candidate Lyapunov function
V = eT Pe, with P = PT > 0. In fact, note that the error dynamics (4.4) is itself a
fuzzy system. Therefore, the conditions derived for observer design are extensions
of the stability conditions presented in Chapter 3. Moreover, this case is the dual of
the stabilization problem described in Chapter 3, and therefore the conditions are
again formulated as LMIs.

A first result for establishing the stability of (4.4) has been formulated by
Wang et al. (1996) as follows:
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Theorem 4.1. (Wang et al., 1996) The estimation error dynamics (4.4) are asymp-
totically stable, if there exist P = P T > 0, and Li, i = 1, 2, . . . , m, so that

H(P (Ai − LiCi)) < 0
H(P (Ai − LiCj + Aj − LjCi)) ≤ 0

(4.5)

for i = 1, 2, . . . , m, j = i + 1, i + 2, . . . , m, provided that two rules that are
simultaneously active1, i.e., ∀ i < j ∈ {1, 2, . . . , m} for which there exists z ∈ Cz

such that wi(z)wj(z) �= 0, where H denotes the symmetric part of a matrix, i.e.
H(X) = X + XT .

Although the conditions (4.5) are conservative, they have the advantage that they are
simple and that they can easily be formulated as linear matrix inequalities (LMIs),
using the change of variablesMi = PLi, i = 1, 2, . . . , m. Then, the design of the
observer (4.3) is reduced to solving the LMI feasibility problem findP = PT > 0,
andMi, i = 1, 2, . . . , m, such that

H(PAi − MiCi) < 0
H(PAi + PAj − MiCj − MjCi) ≤ 0

for i = 1, 2, . . . , m, ∀i < j : ∃z : wi(z)wj(z) �= 0.
The design of an observer using the conditions of Theorem 4.1 is illustrated on

the following example.

Example 4.1. Consider the nonlinear dynamic system

ẋ =
(−x2

1 + x2

x2
1x2 − x2

)
+
(

x1x2

1

)
u

y =
(

x1

x1x2

)

with x1, x2 ∈ [−1, 1], u ∈ R.
This system can be expressed as

ẋ =
(−x1 1

x1x2 −1

)(
x1

x2

)
+
(

x1x2

1

)
u

y =
(

1 0
0 x1

)(
x1

x2

) (4.6)

and can be exactly represented (using the sector nonlinearity approach) by a 4-rule
fuzzy system with the local matrices
1 In what follows, for the ease of the notation, this condition will be denoted as ∀i < j :
∃z : wi(z)wj(z) �= 0.
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A1 =
(

1 1
−1 −1

)
B1 =

(−1
1

)
C1 =

(
1 0
0 −1

)

A2 =
(

1 1
1 −1

)
B2 =

(
1
1

)
C2 =

(
1 0
0 −1

)

A3 =
(−1 1
−1 −1

)
B3 =

(−1
1

)
C3 =

(
1 0
0 1

)

A4 =
(−1 1

1 −1

)
B4 =

(
1
1

)
C4 =

(
1 0
0 1

)

and membership functions w1 = η1
0η

2
0 , w2 = η1

0η2
1 , w3 = η1

1η
2
0 , w4 = η1

1η
2
1 , where

η1
0 = 1−x1

2 , η2
0 = 1−x1x2

2 , η1
1 = 1 − η1

0 , and η2
1 = 1 − η2

0 . Note that the scheduling
variables are z1 = x1 and z2 = x1x2, which are both measured, and thus can be
used in the observer.

To design the observer, the conditions (4.5) are transformed into LMIs using
the change of variables Mi = PLi, i = 1, 2, . . . , m. Then, the following LMI
feasibility problem is solved2: findP = P T > 0,Mi, i = 1, 2, . . . , m, such that

H(PAi − MiCi) < 0
H(PAi + PAj − MiCj − MjCi) ≤ 0

for3 i = 1, 2, 3, 4, j = i + 1, . . . , 4. The observer gains are recovered as Li =
P−1Mi, i = 1, 2, 3, 4, and are found as4

L1 =
(

6.56 0.38
4.95 −0.27

)
L2 =

(
5.40 1.95
5.18 0.84

)

L3 =
(

2.40 0.44
1.68 0.60

)
L4 =

(
1.42 1.93
2.03 1.58

)

A trajectory5 of the estimation error using the observer gains above is presented in
Figure 4.1. For this particular trajectory, the true initial states were (0.1 0.3)T , and
the estimated initial states were (−0.2 0.1)T , and the input u = 0. As can be seen,
the estimation error converges to zero. �

Similarly to the conditions described in Chapter 3, several results exist, which, by
manipulating the convex sum

m∑

i=1

m∑

j=1

wi(z)wj(z)H(P (Ai − LiCj))

2 For solving the LMIs in this chapter, the SeDuMi solver within the Yalmip toolbox was
used.

3 When the TS model is obtained using the sector nonlinearity approach, all the rules are
simultaneously active.

4 All numerical results are given rounded to two decimal places.
5 In this chapter, for numerical integration the ode45 Matlab function was used.
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Fig. 4.1 Simulation results for Example 4.1.

aim to reduce the conservativeness of conditions (4.5) for (a class of) systems. For
instance, both Kim and Lee (2000) and Bergsten (2001) proposed the following
conditions:

Theorem 4.2. (Bergsten, 2001) The estimation error dynamics (4.4) are asymptoti-
cally stable, if there exist P = PT > 0, and Li, i = 1, 2, . . . , m, so that

⎛

⎜⎜⎜⎝

H11 H12 . . . H1m

H21 H22 . . . H2m

...
...

. . .
...

Hm1 Hm2 . . . Hmm

⎞

⎟⎟⎟⎠ < 0

where

Hij =

{
H(P (Ai − LiCi)) if i = j

H(P (Ai − LiCj + Aj − LjCi))/2 otherwise

for i = 1, 2, . . . , m, j = 1, 2, . . . , m.

Similarly to the conditions of Theorem 4.1, the conditions of Theorem 4.2 can be
transformed into LMI conditions with the change of variables Mi = PLi, i =
1, 2, . . . , m.

The observer design using the conditions of Theorem 4.2 are illustrated on the
following example.

Example 4.2. Consider the nonlinear system and its fuzzy representation in Exam-
ple 4.1. Using the conditions of Theorem 4.2, for the observer design one has to
solve the LMI: findP = P T > 0,Mi, i = 1, 2, 3, 4, so that

⎛

⎜⎜⎝

H11 H12 H13 H14

HT
12 H22 H23 H24

HT
13 HT

23 H33 H34

HT
14 HT

24 HT
34 H44

⎞

⎟⎟⎠ < 0
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where
Hij = H(PAi − MiCj + PAj − MjCi)/2

for i, j = 1, 2, 3, 4.
The observer gains are recovered as Li = P−1Mi, i = 1, 2, 3, 4, and are

found to be
L1 =

(
3.01 1.42
1.48 −0.27

)
L2 =

(
3.76 1.91
2.00 −0.73

)

L3 =
(

0.68 0.35
0.33 0.28

)
L4 =

(
0.63 1.41
1.19 0.37

)

A trajectory of the estimation error using the observer gains above is presented in
Figure 4.2. This particular trajectory has been obtained with the true initial states
being (0.1 0.3)T , the estimated initial states being (−0.2 0.1)T , and the inputu = 0.
As can be seen, the estimation error converges to zero. �
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Fig. 4.2 Simulation results for Example 4.2.

A result similar to Theorem 4.2 can be obtained using the relaxation developed by
Liu and Zhang (2003). This result requires the introduction of additional decision
variables and is formulated as:

Theorem 4.3. (Liu and Zhang, 2003) The estimation error dynamics (4.4) are
asymptotically stable, if there exist P = P T > 0, Li, Qii, i = 1, 2, . . . , m, and
Qij = QT

ji, i = 1, 2, . . . , m, j = i + 1, i + 2, . . . , m, so that

H(P (Ai − LiCi)) + Qii < 0
H(P (Ai − LiCj)) + H(P (Aj − LjCi)) + Qij + Qji < 0

for i = 1, 2, . . . , m, j = i + 1, i + 2, . . . , m, and, furthermore
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⎛

⎜⎜⎜⎝

Q11 Q12 . . . Q1m

Q21 Q22 . . . Q2m

...
...

. . .
...

Qm1 Qm2 . . . Qmm

⎞

⎟⎟⎟⎠ > 0

Similarly to the previously presented results, the conditions of Theorem 4.3 can be
formulated as LMIs using the change of variablesMi = PLi, i = 1, 2, . . . , m. The
observer design using the conditions of Theorem 4.3 is illustrated on the following
example.

Example 4.3. Consider the nonlinear system and its fuzzy representation in Exam-
ple 4.1. Using the conditions of Theorem 4.3, for the observer design one has to
solve the LMIs: findP = PT > 0, Mi, Qii, Qij , i = 1, 2, 3, 4, j = i + 1, . . . , 4,
so that

H(PAi − MiCi) + Qii < 0

H(PAi − MiCj + PAj − MjCi) + Qij + QT
ij < 0

⎛

⎜⎜⎝

Q11 Q12 Q13 Q14

QT
12 Q22 Q23 Q24

QT
13 QT

23 Q33 Q34

QT
14 QT

24 QT
34 Q44

⎞

⎟⎟⎠ < 0

for i = 1, 2, 3, 4, j = i + 1, . . . , 4.
The observer gains are recovered as Li = P−1Mi, i = 1, 2, 3, 4 and are found

as
L1 =

(
3.17 0.57
1.53 −0.48

)
L2 =

(
3.23 1.51
2.43 −0.47

)

L3 =
(

0.78 0.45
0.47 0.62

)
L4 =

(
0.49 1.48
1.31 0.84

)

A trajectory of the estimation error using the observer gains above is presented in
Figure 4.3. This particular trajectory has been obtained with the true initial states
being (0.1 0.3)T , the estimated initial states being (−0.2 0.1)T , and the inputu = 0.
As can be seen, the estimation error converges to zero. �

Depending on how the fuzzy model (4.1) has been obtained (e.g., using the meth-
ods described in Chapter 2), not all the rules may be active at the same time. This
property has been used by Tanaka et al. (1998) to reduce the conservativeness of the
design as follows.

Theorem 4.4. (Tanaka et al., 1998) Consider the estimation error dynamics (4.4),
and let s, 1 < s ≤ m, be the maximum number of rules that are simultaneously
active. Then, the error dynamics (4.4) are asymptotically stable, if there exist P =
P T > 0, Li, i = 1, 2, . . . , m, andQ = QT > 0, so that:

H(P (Ai − LiCi)) + (s − 1)Q < 0
H(P (Gij + Gji)) − 2Q ≤ 0
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Fig. 4.3 Simulation results for Example 4.3.

for i = 1, 2, . . . , m, ∀i < j : ∃z : wi(z)wj(z) �= 0, j = i + 1, i + 2, . . . , m,
where Gij = Ai − LiCj .

This result is useful if triangular or trapezoidal membership functions are used,
i.e., when only a relatively small number of rules are active at the same time.
Moreover, the conservativeness is reduced in the second condition. The conditions
above can also be formulated as LMIs, using the change of variables Mi = PLi,
i = 1, 2, . . . , m. The observer design using the conditions of Theorem 4.4 is illus-
trated on the following example.

Example 4.4. Consider the nonlinear dynamic system

ẋ =
(−x1 + 2x2 − 1

x1x2 − 3x2 + 1

)
y =

(
x1

x1x2

)

with x1, x2 ∈ [−1, 1].
Using x1 as a (measured) scheduling variable, and choosing the linearization

points {−1, 0, 1}, this system can be approximated by a three-rule fuzzy system
using the method from Section 2.3.2. The local matrices are obtained as

A1 =
(−1 2

0 −4

)
a1 =

(−1
1

)
C1 =

(
1 0
0 −1

)

A2 =
(−1 2

0 −3

)
a2 =

(−1
1

)
C2 =

(
1 0
0 0

)

A3 =
(−1 2

0 −2

)
a3 =

(−1
1

)
C3 =

(
1 0
0 1

)

Bi = 0, i = 1, 2, 3, and the triangular membership functions presented in
Figure 4.4 are used. Note that using these membership functions, for any value of
x1 at most two rules are activated simultaneously, i.e., only two of the membership
functions are non-zero.
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Fig. 4.4 Membership functions used for Example 4.4.

To design the observer, the conditions of Theorem 4.4 are transformed into LMIs
using the change of variables Mi = PLi, i = 1, 2, . . . , m. Then, the following
LMI feasibility problem is solved: find P = PT > 0, Q = QT > 0, and Mi,
i = 1, 2, . . . , m, such that

H(PAi − MiCi) + Q < 0
H(PAi + PAj − MiCj − MjCi) − 2Q ≤ 0

i = 1, 2, 3, ∀i < j : ∃z : wi(z)wj(z) �= 0, j = i + 1, i + 2, . . . , m. The
observer gains are recovered as Li = P−1Mi, i = 1, 2, 3 and are found as

L1 =
(−2.08 0.46

3.51 −0.05

)
L2 =

(−2.06 0.06
3.45 0.92

)
L3 =

(−2.02 −0.33
3.36 1.91

)

A trajectory of the estimation error using the observer gains above is presented in
Figure 4.5. For this particular trajectory, the true initial states were (0.1 0.3)T , and
the estimated initial states were (−0.2 0.1)T . As can be seen, the estimation error
converges to zero. �

A similar relaxation for the case when all rules may be simultaneously active was
given by Tuan et al. (2001), see Lemma 3.1. Using this relaxation, the observer de-
sign problem can be formulated as follows.

Corollary 4.1. (Tuan et al., 2001) The estimation error dynamics (4.4), are asymp-
totically stable, if there exist P = PT > 0, and Li, i = 1, 2, . . . , m, so that

Γii < 0
1

m − 1
Γii + Γij + Γji < 0

(4.7)

for i = 1, 2, . . . , m, j = 1, 2, . . . , m, i �= j, where Γij = H(P (Ai − LiCj)).
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Fig. 4.5 Simulation results for Example 4.4.

The observer design using Corollary 4.1 is illustrated on the following example.

Example 4.5. Consider the nonlinear system and its fuzzy representation in Exam-
ple 4.1. Using the conditions of Corollary 4.1, to design the observer, the condi-
tions (4.7) are transformed into LMIs, using the change of variables Mi = PLi,
i = 1, 2, 3, 4, and solved.

The observer gains are recovered as Li = P−1Mi, i = 1, 2, 3, 4 and are
found to be

L1 =
(

2.35 0.57
0.85 −0.15

)
L2 =

(
2.64 1.92
2.22 −0.57

)

L3 =
(

0.28 0.12
0.13 0.21

)
L4 =

(
0.19 1.19
1.12 0.40

)

A trajectory of the estimation error using the observer gains above is presented in
Figure 4.6. This particular trajectory has been obtained with the true initial states
being (0.1 0.3)T , the estimated initial states being (−0.2 0.1)T , and the inputu = 0.
As can be seen, the estimation error converges to zero. �

Note that all the conditions presented above require that an observer is designed for
each local model, such that the local error dynamics are asymptotically stable (first
conditions in Theorems 4.1, 4.4, and 4.1, respectively). Furthermore, the observers
have to satisfy a “fuzzy condition”, resulting from the fact that several rules are
activated at the same time.

The results presented can be modified such that not only the asymptotic stability
is ensured, but also performance measures are satisfied, by using the stability con-
cepts presented in Chapter 3. Of the performance measures, the most well-known
concerns the convergence rate of the observer, or, conversely, the decay rate of the
estimation error. For instance, the observer design conditions such that a desired
decay rate of the estimation error is guaranteed using the conditions of Theorem 4.1
can be formulated as follows:



4.2 Observer Design: Measured Scheduling Vector 61

0 1 2 3 4
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time [s]

E
st

im
at

io
n 

er
ro

r

 

 
e

1

e
2

Fig. 4.6 Simulation results for Example 4.5.

Corollary 4.2. (Wang et al., 1996) The decay rate of the error system (4.4) is at
least α, if there exist P = P T > 0, and Li, i = 1, 2, . . . , m, so that

H(P (Ai − LiCi) + 2αP < 0
H(P (Ai − LiCj)) + H(P (Aj − LjCi)) + 4αP < 0

(4.8)

for i = 1, 2, . . . , m, j = i + 1, i + 2, . . . , m, ∀i < j : ∃z : wi(z)wj(z) �= 0.

The observer design such that a desired convergence rate is obtained is illustrated
on the following example.

Example 4.6. Consider the fuzzy system from Example 4.1. The observer may be
designed so that the error system has a desired decay rate α by solving the LMIs:
findP = P T > 0,Mi, i = 1, 2, 3, 4, so that

H(PAi − MiCi) + 2αP < 0
H(PAi + PAj − MiCj − MjCi) + 4αP ≤ 0

Solving the above LMIs for a desired decay rate α = 5, the observer gains are
found as

L1 =
(

25.30 0.12
191.09 0.28

)
L2 =

(
24.93 0.17
189.38 0.71

)

L3 =
(

17.92 0.58
137.34 4.96

)
L4 =

(
17.54 0.64
135.63 5.33

)

A trajectory of the estimation error using the observer gains above is presented in
Figure 4.7. For this particular trajectory, the true initial states were (0.1 0.3)T , and
the estimated initial states were (−0.2 0.1)T , and the input u = 0. As can be seen,
the estimation error converges to zero much quicker than in the previous example,
however, the overshoot also becomes larger. �
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Fig. 4.7 Simulation results for Example 4.6.

Note that if the scheduling vector is known, the (known) input u, and the input
matrices Bi, i = 1, 2, . . . , m, respectively, do not influence the observer design
conditions. Moreover, for this case, non-quadratic stability conditions, such as those
presented in Chapter 3, can also be relatively easily extended to observer design.
For instance, the results of Bernal et al. (2009) are the dual conditions for control
design, while the extension of the results of Guerra and Bernal (2009) to observer
design has been reported in (Lendek et al., 2010b).

4.3 Observer Design: Estimated Scheduling Vector

In this section, we consider the observer design problemwhen the scheduling vector
depends on the states to be estimated. Note that in this case the true scheduling vari-
ables cannot be used in the observer, and instead their estimated values have to be
used. For the simplicity of the notation, only the case with common measurement
matrices, i.e., Ci = C, i = 1, 2, . . . , m, will be considered. If the measurement
matrix is different for each rule, the observer gains may be designed similarly, al-
though the design conditions are more complex. For the complete derivation, the
interested reader is referred to (Lendek et al., 2010a).

For common measurement matrices, the observer (4.2) becomes

˙̂x =
m∑

i=1

wi(ẑ)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ = Cx̂

(4.9)

and the error dynamics can be expressed as

ė =
m∑

i=1

wi(ẑ)(Ai − LiC)e +
m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + ai) (4.10)
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Clearly, there is a time-varying difference between the true and estimated states,∑m
i=1(wi(z) − wi(ẑ))(Aix + Biu + ai), which, since the variables are defined in

a compact set, goes to zero if ẑ → z. In order for the estimated states to converge
to the real ones, the observer has to be robust enough to deal with this difference.
For the system (4.10), sufficient stability conditions were given by Bergsten (2001),
based on the conditions of Theorem 4.1. Note that similar conditions can be incor-
porated into any of the theorems presented in Section 4.3. For simplicity, only the
simple case of Theorem 4.1 is presented.

Theorem 4.5. (Bergsten, 2001) Consider the error system (4.10), and assume that

∥∥∥
m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + ai)
∥∥∥ ≤ μ‖e‖ (4.11)

where μ > 0 is a known constant. Then, the error system (4.10) is exponentially
stable, if there exist P = P T > 0, Q = QT > 0, and Li, i = 1, 2, . . . , m, so that

H(P (Ai − LiC)) ≤ −Q
(

Q − μ2I P
P I

)
> 0

(4.12)

for i = 1, 2, . . . , m.

Remark: Note that as long as the membership functions are smooth and the vari-
ables are defined on a compact set, there exists μ > 0 so that (4.11) holds. The
bounding constant μ in general can be found by solving the optimization prob-
lem (Khalil, 2002)

μ = max
x,u,x̂,ẑ

∥∥∥
∂(wi(z) − wi(ẑ))(Aix + Biu + ai)

∂e

∥∥∥

The observer design when the scheduling vector depends on states that have to be
estimated is illustrated using the following example.

Example 4.7. Consider the nonlinear dynamic system

ẋ =
(−x1 + 2x2

1x2 + x2

x2
1x2 − x2

)
y = x1

with x1, x2 ∈ [−1, 1].
This system can be expressed as

ẋ =
( −1 2x1

1 + 1
x1x2 −1

)(
x1

x2

)

y =
(
1 0

)(x1

x2

)
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and can be exactly represented (using the sector nonlinearity approach) by a 4-rule
fuzzy system with the local matrices

A1 =
(−1 1
−1 −1

)
A2 =

(−1 1
1 −1

)

A3 =
(−1 3
−1 −1

)
A4 =

(−1 3
1 −1

)

and membership functions w1 = η1
0η

2
0 , w2 = η1

0η2
1 , w3 = η1

1η
2
0 , w4 = η1

1η
2
1 , where

η1
0 = 1−x2

1, η2
0 = 1−x1x2

2 , η1
1 = 1− η1

0 , and η2
1 = 1− η2

0 . Note that the scheduling
variables are z1 = x1 and z2 = x1x2, of which only z1 is measured, z2 depending
on unmeasured states. Therefore, the estimate od the scheduling variable, ẑ2 has to
be used in the observer. The equation

∥∥∥
m∑

i=1

(wi(z) − wi(ẑ))Aix
∥∥∥ ≤ μ‖e‖

is satisfied with μ = 1.
To design the observer, the conditions (4.12) are transformed into LMIs using the

change of variables Mi = PLi, i = 1, 2, . . . , m. Then, the following LMI feasi-
bility problem is solved: find P = PT > 0, and Mi, i = 1, 2, . . . , m, such that

H(PAi − MiCi) < −Q
(

Q − μ2I P
P I

)
> 0

for i = 1, 2, 3, 4. The observer gains are found as

L1 =
(

3.42
1.23

)
L2 =

(
3.42
3.23

)
L3 =

(
4.39
2.91

)
L4 =

(
4.39
4.91

)

A trajectory of the estimation error using the observer gains above is presented in
Figure 4.8. For this particular trajectory, the true initial states were (0.1 0.3)T , and
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Fig. 4.8 Simulation results for Example 4.7.
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the estimated initial states were (−0.2 0.1)T . As can be seen, the estimation error
converges to zero. �

Since the fuzzy models are in general defined on a compact set and the membership
functions are smooth, an upper bound on the Lipschitz constant μ can in general be
determined. However, the conditions of Theorem 4.5 are conservative, due to the
worst-case assumption of an unstructured, bounded disturbance. In many cases, an
observer will work even though the second condition of Theorem 4.5 is not satisfied
by the computed bound. Such a case is illustrated on the following example.

Example 4.8. Consider the nonlinear dynamic system

ẋ =
(−x1 + 2x2

1x2 + x2

2x2
1x2 − x2

)
y = x1

with x1, x2 ∈ [−1, 1].
Note that this system is not asymptotically stable. Similarly to the system in

Example 4.7, this model can be exactly represented (using the sector nonlinearity
approach) by a 4-rule fuzzy system with the local matrices

A1 =
(−1 1
−2 −1

)
A2 =

(−1 1
2 −1

)

A3 =
(−1 3
−2 −1

)
A4 =

(−1 3
2 −1

)

and with the same membership functions as those used in Example 4.7. However,
the equation

∥∥∥
m∑

i=1

(wi(z) − wi(ẑ))Aix
∥∥∥ ≤ μ‖e‖

is satisfied with μ = 2.
With this μ, the LMIs

H(PAi − MiCi) < −Q
(

Q − μ2I P
P I

)
> 0

(4.13)

for i = 1, 2, 3, 4 are not feasible. The maximum μ for which (4.13) are feasible is
μ =

√
2. Solving (4.13) with μ =

√
2, the observer gains are found as

L1 =
(

8.18
7.18

)
L2 =

(
8.18
11.18

)
L3 =

(
13.67
15.82

)
L4 =

(
13.67
19.82

)

Note that the estimate given by the observer found in this way is not guaranteed to
converge to the true states. However, simulation results indicate that the estimate
does converge, as can be seen in Figure 4.9. For this particular trajectory, the true
initial states were (0.1 0.3)T , and the estimated initial states were (−0.2 0.1)T . �
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Fig. 4.9 Simulation results for Example 4.8.

In many cases, only some of the scheduling variables depend on states that have
to be estimated. In such a case, those scheduling variables that are measured, can be
used in the observer. If this means that a structured uncertainty can be constructed as

m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + ai) = μEuΔ̄Fue (4.14)

with Eu and Fu structure matrices of appropriate dimensions, and Δ̄T Δ̄ ≤ I , one
can use (4.14) instead of (4.11) to reduce the conservativeness of the approach.
Using (4.14), the design conditions can be formulated as follows.

Theorem 4.6. (Bergsten, 2001) Consider the error system (4.10), and assume that

m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + ai) = μEuΔ̄Fue

Δ̄T Δ̄ ≤ I

where μ > 0 is a known constant, and Eu and Fu are known structure matrices.
Then, the error system (4.10) is exponentially stable, if there exist P = P T > 0,
Q = QT > 0, and Li, i = 1, 2, . . . , m, so that

H(P (Ai − LiC)) ≤ −Q
(

Q − μ2FT
u Fu PEu

ET
u P I

)
> 0

(4.15)

for i = 1, 2, . . . , m.

The observer design when a structured uncertainty can be used is illustrated using
the following example.
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Example 4.9. Consider the nonlinear dynamic system and its fuzzy representation
in Example 4.8. Recall that z1 = x1 is measured (and therefore can be used in the
observer), while z2 = x1x2 is not measured, and therefore its estimated value has
to be used in the observer. As already stated in Example 4.8, the equation

∥∥∥
m∑

i=1

(wi(z) − wi(ẑ))Aix
∥∥∥ ≤ μ‖e‖

is satisfied with μ = 2, a value for which the LMIs used to design the observer are
unfeasible. However, this equation can also be written as

m∑

i=1

(wi(z) − wi(ẑ))Aix =

=
(( −1 2x2

1 + 1
2x1x2 −1

)
−
( −1 2x2

1 + 1
2x1x̂2 −1

))(
x1

x2

)

=
(

0 0
2x1(x2 − x̂2) 0

)(
x1

x2

)

=
(

0
2x2

1e2 0

)

=
(

0 0
0 2x2

1

)(
e1

e2

)

= 2
(

0 0
0 1

)(
0 0
0 x2

1

)(
1 0
0 1

)

i.e., μ = 2, Eu =
(

0 0
0 1

)
, Fu = I , and Δ̄ =

(
0 0
0 x2

1

)
, with Δ̄T Δ̄ ≤ I , since

x1 ∈ [−1, 1].
Solving the LMI problem: find P = PT , Q = QT > 0, and Mi, i =

1, 2, . . . , m, so that
H(PAi − MiC) ≤ −Q

(
Q − μ2FT

u Fu PEu

ET
u P I

)
> 0

(4.16)

for i = 1, 2, . . . , m, the observer gains are obtained as Li = P−1Mi, i =
1, 2, 3, 4

L1 =
(

4.24
16.09

)
L2 =

(
4.24
20.09

)
L3 =

(
11.52
46.67

)
L4 =

(
11.52
50.67

)

A trajectory of the estimation error using the observer gains above is presented in
Figure 4.10. For this particular trajectory, the true initial states were (0.1 0.3)T ,
and the estimated initial states were (−0.2 0.1)T . As expected, the estimation error
converges to zero. �
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Fig. 4.10 Simulation results for Example 4.9.

Although the remainder of this book is not concerned with controller design, it
has to be mentioned that observers for TS fuzzy systems are used extensively in
output-feedback controller design. A brief description of observer-based stabiliza-
tion is given in the following section.

4.4 Observer-Based Stabilization

Several authors have considered the case of joint design of the observer and of
the linear state-feedback controller and have developed relaxed stability conditions
for the augmented system. The conditions usually lead to (generalized) eigenvalue
problems that can be solved using LMIs (Taniguchi et al., 1999b; Tanaka et al.,
1998; Taniguchi et al., 1999a), if the scheduling variables are known and the sep-
aration principle holds. In the case when the scheduling variables depend on the
estimated states, the observer and the controller cannot be designed separately
(Tanaka and Sano, 1994; Tanaka and Wang, 2001), and in general a two-step proce-
dure is employed (Uang and Chen, 2000; Tanaka and Wang, 2001; Tseng, 2008). In
what follows, we briefly describe observer-based stabilization for the case when the
scheduling vector is measured. For the general case when the scheduling vector de-
pends on states to be estimated, the interested reader is referred to (Uang and Chen,
2000; Tanaka and Wang, 2001; Yoneyama et al., 2001; Guerra et al., 2006; Tseng,
2008).

For observer-based stabilization, consider the TS fuzzy model

ẋ =
m∑

i=1

wi(z)(Aix + Biu)

y =
m∑

i=1

wi(z)Cix

(4.17)



4.4 Observer-Based Stabilization 69

where x is the state vector, u is the input vector, y is the measurement vector,
z is the vector of scheduling variables, which depends only on known (measured)
variables. Similarly to stabilization of TS systems (see Section 3.4), the local models
are considered linear and the scheduling vector does not depend on the input u.

The observer considered is of the form

˙̂x =
m∑

i=1

wi(z)(Aix̂ + Biu + Li(y − ŷ))

ŷ =
m∑

i=1

wi(z)Cix̂

(4.18)

similarly to the observer presented in Section 4.2, and the controller used is

u = −
m∑

i=1

wi(z)Kix̂ (4.19)

Note that since the state vector is not measured, in the controller, the estimated
values are used.

The estimation error is obtained as (4.4), repeated here for convenience:

ė =
m∑

i=1

m∑

j=1

wi(z)wj(z)(Ai − LiCj)e.

The closed-loop dynamics using the estimate-based control law is:

ẋ =
m∑

i=1

wi(z)(Aix − Bi

m∑

j=1

wj(z)Kjx̂)

=
m∑

i=1

m∑

j=1

wi(z)wj(z)((Ai − BiKj)x − BiKje)

(4.20)

Combining the dynamics of the estimation error and the state, we obtain
(

ė
ẋ

)
=

m∑

i=1

m∑

j=1

m∑

k=1

wi(z)wj(z)wk(z)
(

Ai − LiCk 0
−BjKk Aj − BjKk

)(
e
x

)

(4.21)
Then, the combined observer and control design problem consists in finding the
gains Li and Ki, i = 1, 2, . . . , m, such that the system (4.21) is asymptoti-
cally stable. For the system (4.21), the separation principle holds (Ma et al., 1998;
Yoneyama et al., 2000), which means that it is possible to design separately the
observer and the controller, and therefore one can make use of the results and re-
laxations presented in Sections 3.2.2, 3.4, and 4.2. For instance, using Theorem 3.3
with conditions (3.4) for controller design and Theorem 3.1 for observer design, the
following results can be formulated (Tanaka and Wang, 2001):
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Theorem 4.7. The closed-loop dynamics (4.21) is asymptotically stable, if there ex-
ist X = XT > 0, Yi, P = PT > 0, andMi, i = 1, 2, . . . , m, such that

H(AiX − BiYi) < 0
H(AiX − BiMi + AjX − BjMj) ≤ 0
H(PAi − MiCi) < 0
H(PAi + PAj − MiCj − MjCi) ≤ 0

(4.22)

for i = 1, 2, . . . , m, j = i + 1, i + 2, . . . , m, ∀i < j : ∃z : wi(z)wj(z) �= 0
hold. Moreover, if the conditions (4.22) are satisfied, then the controller gains are
Ki = YiX

−1, and the observer gains are Li = P−1Mi, i = 1, 2, . . . , m.
The following example illustrates observer-based control design:
Example 4.10. Consider the nonlinear system

ẋ =
(

1 x2
1 + 1

−x1 − 2 x2
1 − 2

)
x +

(
1
0

)
u

y =
(
1 ; 0

)
x

(4.23)

with x1, x2 ∈ [−1, 1].
This system can be exactly represented (using the sector nonlinearity approach)

by a 4-rule fuzzy system with the local matrices

A1 =
(

1 1
−3 −2

)
A2 =

(
1 2
−3 −1

)
A3 =

(
1 1
−1 −2

)
A4 =

(
1 2
−1 −1

)

Bi =
(

1
0

)
Ci =

(
1 0

)
i = 1, 2, 3, 4

and membership functions w1 = η1
0η

2
0 , w2 = η1

0η2
1 , w3 = η1

1η
2
0 , w4 = η1

1η
2
1 , where

η1
0 = 1−x1

2 , η2
0 = 1 − x2

1, η1
1 = 1 − η1

0 , and η2
1 = 1 − η2

0 . Note that the scheduling
variables are z1 = x1 and z2 = x2

1, which depend on x1 which is measured, and
thus can be used in the observer.

To design the observer, the conditions (4.22) are solved. Note that since both
the input matrix and the measurement matrix is common for all the rules, the LMI
problem is reduced to
findP = PT > 0,X = XT > 0, Yi, andMi, i = 1, 2, . . . , m, so that

H(AiX − BiYi) < 0
H(PAi − MiCi) < 0

for i = 1, 2, . . . , m.
The observer gains are recovered as Li = P−1Mi, i = 1, 2, 3, 4, and are found

to be

L1 =
(

4.61
0.25

)
L2 =

(
5.29
2.01

)
L3 =

(
4.61
2.25

)
L4 =

(
5.29
4.01

)
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(a) Estimation errors.
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(b) State variables.

Fig. 4.11 Simulation results for Example 4.10.

and the controller gains as Ki = YiX
−1, i = 1, 2, 3, 4, with the values

K1 =
(
10.65 −33.56

)
K2 =

(
10.14 −30.17

)

K3 =
(
5.88 −11.04

)
K4 =

(
5.37 −7.66

)

A trajectory of the estimation error and of the states of the closed-loop system using
the observer and controller gains above is presented in Figures 4.11(a) and 4.11(b).
For this particular trajectory, the true initial states were (0.1 0.3)T , and the esti-
mated initial states were (−0.2 0.1)T . As can be seen, all the variables converge to
zero. �

4.5 Summary

For TS systems, several types of observers have been developed in the literature. In
this chapter, the Luenberger type fuzzy observer has been discussed, together with
the design conditions that are used in the following chapters. Regarding the observer
design, two cases can be distinguished, depending on whether or not the schedul-
ing vector is a function of the states to be estimated. When the scheduling vector
depends on the states to be estimated, an observer that can handle the mismatch be-
tween the true and estimated value of the membership functions, has to be designed.
We have also briefly described observer-based stabilization of TS systems for the
case when the scheduling vector depends only on measured variables.

The presented design conditions are only sufficient conditions. A major advan-
tage of these conditions is that they are cast into an LMI form, which is easily solv-
able. However, this can also be considered a shortcoming of the approaches, since
if the LMIs are infeasible, no conclusive result is obtained.





Chapter 5
Cascaded TS Systems and Observers

Many physical systems are distributed, i.e., they are composed of lower dimen-
sional, interacting subsystems. In this chapter, a special class of distributed systems
is considered: cascaded systems. Systems can either be naturally cascaded, or can
be transformed into a cascade of submodels by a suitable reordering of the state
variables. It is assumed that both the whole system, and also the subsystems are
represented by TS fuzzy models, i.e., the systems are cascaded TS fuzzy systems.

This chapter consists of three parts. First, an algorithm to partition a general
nonlinear system into the cascade of two subsystems is presented, together with
stability conditions for cascaded nonlinear systems. In the second part, we consider
the cascaded stability analysis of cascaded TS systems. Finally, cascaded observer
design for TS systems is studied.

5.1 Introduction

Many physical systems, such as power systems, communication networks, eco-
nomic systems, and traffic networks are interconnections of lower-dimensional sub-
systems. An important class of these systems, such as material processing systems or
chemical processes, can be represented as cascaded subsystems (Seibert and Suarez,
1990; Jankovic et al., 1996; Arcak et al., 2002). It has since long been investigated
whether based solely on the analysis of the subsystems conclusions referring to
the whole system can be drawn or under which conditions such conclusions can
be drawn. For instance, for linear systems, the stability of the subsystems implies
the stability of the cascaded system (Loria and Panteley, 2005). For nonlinear, or
time-varying systems, however, this property does not hold in general. Even global
asymptotic stability of the individual subsystems does not always imply the stability
of the cascade.

The stability of several types of cascaded systems has already been studied
in the literature. Conditions to ensure the overall stability of general cascades,
in which both subsystems are nonlinear, have been derived by Sontag (1989b);
Seibert and Suarez (1990); Loria and Panteley (2005). Some of these conditions

Zs. Lendek et al.: Stability and Observer Design Using TS Models, STUDFUZZ 262, pp. 73–102.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010
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represent the basis for the stability analysis of cascaded TS systems and are pre-
sented in the next section. In addition, an algorithm is given to determine whether
a nonlinear system is the cascade of observable subsystems. The chapter continues
with the presentation of stability conditions for cascaded TS systems. Finally, ob-
server design is considered, i.e., conditions for the cascaded design of observers for
cascaded TS systems are presented.

5.2 Stability of Cascaded Dynamic Systems

The stability and design conditions for cascaded TS systems presented in this
chapter are based on results obtained for general nonlinear dynamical systems.
The first motivation to consider cascaded dynamical systems came from the anal-
ysis of the models obtained after input-output linearization (Arcak et al., 2002;
Loria and Panteley, 2005). Following this, stability conditions have been derived for
different types of subsystems. In this section, stability conditions for cascaded non-
linear systems are presented, together with an algorithm for partitioning a system
into cascaded subsystems. For the ease of notation and without loss of generality,
only two subsystems are considered.

5.2.1 Cascaded Dynamic Systems

Consider the following general nonlinear system:

ẋ1 = f1(x, u) y1 = h1(x)
ẋ2 = f2(x, u) y2 = h2(x)
...

...
ẋnx = fnx(x, u) yny = hny(x)

(5.1)

where x = (x1, ..., xnx)T is the state vector, u = (u1, ..., unu)T is the input vector,
y = (y1, ..., yny)T is the measurement vector, f = (f1, ..., fnx)T is the vector of
state equations, and h = (h1, ..., hny)T is the vector of measurement equations.
This system is the cascade of two subsystems, if it can be written as

ẋ1 = f1(x1, u)
y1 = h1(x1)

(5.2)

and
ẋ2 = f2(x1, x2, u)
y2 = h2(x1, x2)

(5.3)

where x = Rx(xT
1 xT

2 )T , y = Ry(yT
1 yT

2 )T , with Rx and Ry being suitable per-
mutation matrices. In this setting, x1 can also be considered an input for the second
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subsystem (5.3). In general, such a partition of the model does not necessarily exist,
and if it exists, the partition might not be unique. Note that if it is not possible to
determine a partition by reordering the variables, it may still be possible to partition
the system by a transformation of the state variables. However, in this book such a
transformation is not considered.

When partitioning a nonlinear system, two cases can be distinguished, depend-
ing on whether stability analysis or observer design is considered. If one considers
partitioning the system in order to facilitate stability analysis, only the state tran-
sition functions have to be partitioned. Such a cascaded structure is illustrated in
Figure 5.1 for the case of two subsystems.

Fig. 5.1 A block diagram of two cascaded subsystems.

On the other hand, if the goal is to design cascaded observers, both the state and
measurement equations have to be partitioned, and, furthermore, two conditions
have to be satisfied. First of all, the nonlinear system (5.1) has to be observable,
and must have at least two measurement equations. Second, the system (5.1) should
be partitioned into (5.2) and (5.3), such that (5.2) is observable. In this case, since
both (5.1) and (5.2) are observable, the subsystem (5.3) is also observable, givenx1.
The cascaded structure for two subsystems together with the measurement equations
is presented in Figure 5.2.

After a partition has been determined, cascaded observer design can be per-
formed. This means that the observers are designed for the individual subsystems,
with some observers using the estimates obtained by other observers. For two sub-
systems, the cascaded observer structure is depicted in Figure 5.3.

Fig. 5.2 Cascaded subsystems with measurement equations.
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Fig. 5.3 Cascaded observers.

5.2.2 Partitioning a Nonlinear System

Before performing the cascaded analysis or design, one has to determine whether
the system considered can be written as the cascade of at least two subsystems.
In what follows, partitioning a system for cascaded observer design is considered.
Therefore, it is assumed that the nonlinear system (5.1) is observable, and ny ≥ 2,
i.e., there are at least two different measurement equations. Since the given state
variables should be preserved, no coordinate change is allowed.

In what follows, an algorithm that determines whether a system is the cascade
of two subsystems is presented. Given the nonlinear system (5.1), for each mea-
surement function, one can determine the variables observable from the respective
measurement, thereby constructing sets of observable variables. After these sets are
constructed, the problem of determining whether the system is cascaded is reduced
to that of partitioning the variable sets. The algorithm can be given as follows:

Algorithm 5.1

1. Construct the variable table presented in Table 5.1, where v1,i, i = 1, 2, . . . , ny

is the set of state variables that appear in the expression of hi, v2,i, i =
1, 2, . . . , ny is the set of state variables that appear in the expression of hi and
Lfhi, etc., where Lfhi denotes the derivative1 of hi with respect to f .

Table 5.1 Variable table
h1 h2 . . . hny

h v1,1 v1,2 . . . v1,ny

Lf h v2,1 v2,2 . . . v2,ny

L2
f h v3,1 v3,2 . . . v3,ny

. . .

After a maximum of nx steps, these sets cannot expand anymore, vnx,i = vnx+1,i.
The “worst” case is an nxth-order integrator, in which case at each step a new
variable appears and the expansion stops at exactly the nxth step.

1 The derivative of hi with respect to f is defined as: Lf hi = ∂hi
∂x

f . The second-order
derivative is L2

f hi = Lf (Lf hi), etc.
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2. Denote with φi the set of state variables corresponding to hi, i = 1, 2, . . . , m,
i.e., φi = ∪nx

j=1vi,j . It can be easily seen that, since the system (5.1) is ob-
servable, ∪ny

i=1φi = Φ, where Φ corresponds to the set of all state variables,
Φ = {x1, x2, . . . , xnx}.

3. Group together those measurement equations, which have or include the same
set of variables: hi = {hk|φk ⊂ φi} and delete the doubles. If only one pair
(hi, φi) remains, the system cannot be partitioned using this algorithm.

4. For each pair (hi, φi) for which φi �= Φ construct the subsystem

ẋi = f i(xi, u)

yi = hi(xi)
(5.4)

where xi is the vector of the variables in φi, f i is the set of the corresponding
functions, hi is obtained at Step 3, and yi are the measurements given by hi.
If any of the systems (5.4) is observable, then it can be considered as one of the
subsystems, and the remaining variables and functions form a second subsystem.
Otherwise, the system cannot be partitioned using this algorithm.

The procedure is illustrated on the following example.

Example 5.1. Consider the nonlinear system

ẋ1 = x2
1 − x2 + 3x3 y1 = x1 + x3

ẋ2 = 2x2 + x1x2 − 3x2
3 y2 = x3 + x4

ẋ3 = 3x3 + 5x4 y3 = x4

ẋ4 = −5x3

(5.5)

This system is observable. The derivatives of h with respect to f are computed as

h =

⎛

⎝
x1 + x3

x3 + x4

x4

⎞

⎠

Lfh =

⎛

⎝
x2

1 − x2 + 6x3 + 5x4

−31x3 − 10x4

−5x3

⎞

⎠

L2
fh =

⎛

⎝
2x3

1 − 3x1x2 + 6x1x3 − 2x2 + 3x3
3 − 7x3 + 30x4

−16x3 + 15x4

−15x3 − 25x4

⎞

⎠

(5.6)

Applying the Algorithm 5.1, the following results are obtained.

1. Based on (5.6), the variable table presented in Table 5.2 can be constructed for
system (5.5).

Note that it is not necessary to compute L3
fh, as the sets of variables are no

longer changing.
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Table 5.2 Variable table for system (5.5)

h1 h2 h3

h {x1, x3} {x3, x3} {x4}
Lf h {x1, x2, x3, x4} {x4, x3} {x4, x3}
L2

f h {x1, x2, x3, x4} {x4, x3} {x4, x3}

2. The sets of variables are obtained as φ1 = {x1, x2, x3, x4}, φ2 = {x3, x4},
and φ3 = {x3, x4}.

3. The measurement equations are grouped together as: h1 = {h1, h2, h3} with
the corresponding φ1 and h2 = {h2, h3} with the corresponding φ2.

4. Finally, the system is partitioned as
First subsystem:

ẋ3 = 3x3 + 5x4 y2 = x3 + x4

ẋ4 = −5x3 y3 = x4

(5.7)

Second subsystem:

ẋ1 = x2
1 − x2 + 3x3 y1 = x1 + x3

ẋ2 = 2x2 + x1x2 − 3x2
3

It can easily be verified that the subsystem (5.7) is observable, and therefore this
partition is valid.

Note that this is not the only possible partition. Since the subsystem

ẋ3 = 3x3 + 5x4

ẋ4 = −5x3

is observable both from the measurement equation y2 = x3 +x4 and from y3 = x4,
the partitions

First subsystem:

ẋ3 = 3x3 + 5x4 y2 = x3 + x4

ẋ4 = −5x3

Second subsystem:

ẋ1 = x2
1 − x2 + 3x3 y1 = x1 + x3

ẋ2 = 2x2 + x1x2 − 3x2
3 y3 = x4

or
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First subsystem:

ẋ3 = 3x3 + 5x4 y2 = x4

ẋ4 = −5x3

Second subsystem:

ẋ1 = x2
1 − x2 + 3x3 y1 = x1 + x3

ẋ2 = 2x2 + x1x2 − 3x2
3 y3 = x3 + x4

are also possible.
However, the latter two partitions do not use all available information: the mea-

surement equations y3 = x4 and y2 = x3 + x4, when used in the second subsystem
do not add new information. In order to use all available information, the mea-
surement equations corresponding to the same set of variables have to be grouped
together, as it is done in the algorithm. �

Note that the partitioning of a system, even without loss of information, is in general
not unique, as illustrated in the following example.

Example 5.2. Consider the system

ẋ1 = x1 + x3 y1 = x1

ẋ2 = x2 + x3 y2 = x2

ẋ3 = u

This system is observable, and there are two possible ways to divide it: by using as
first subsystem

ẋ1 = x1 + x3 y1 = x1

ẋ3 = u

or, by using as first subsystem

ẋ2 = x2 + x3 y1 = x2

ẋ3 = u

both being observable. The corresponding variable sets are φ1 = {x1, x3} and
φ2 = {x2, x3}. �

Remark: The partitioning of a general nonlinear dynamics system into two observ-
able subsystems does not guarantee that observers can be designed for the subsys-
tems by using a given method. Moreover, the cascade of the observers designed for
the individual subsystems is in general not a valid observer for the cascaded system.
That is why we study the special case of cascaded TS fuzzy systems.

Remark: Algorithm 5.1 can also be used to partition a system for stability analysis,
by using instead of the measurement equations h the state vector x. In this case, in
Step 4, the observability of the first subsystem does not have to be verified.
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5.2.3 Stability of Cascaded Systems

It is well-known that the cascade of stable linear systems is stable
(Loria and Panteley, 2005), since the eigenvalues of the joint system are determined
only by the eigenvalues of the individual subsystems. Therefore, the stability of the
joint, cascaded system is directly implied by the stability of the subsystems. How-
ever, the same reasoning does not necessarily hold for nonlinear or time-varying
systems. Even global asymptotic stability (GAS) of the individual subsystems does
not necessarily imply the stability of the cascade.

General cascades, in which both subsystems are nonlinear, were studied and con-
ditions to ensure overall stability were derived in (Loria and Panteley, 2005). A se-
lection of relevant results is presented below. These results rely on the ISS property
(see Property 3.6).

Consider the nonlinear, cascaded, autonomous system

ẋ1 = f1(x1) (5.8)
ẋ2 = f2(x1, x2) (5.9)

Without loss of generality, x = 0 is considered to be the equilibrium point. Condi-
tions for the stability of this system have been derived by Sontag (1989a).

Theorem 5.1. Consider the nonlinear system (5.8)–(5.9). If

• the functions f1 and f2 are sufficiently smooth in their arguments,
• system (5.9) is input-to-state-stable with regard to the input x1, and
• systems (5.8) and

ẋ2 = f2(0, x2) (5.10)

are globally asymptotically stable (GAS),

then the cascade (5.8)-(5.9) is GAS.

An equivalent sufficient stability condition is presented by Seibert and Suarez
(1990): the cascaded system is GAS, if both subsystems (5.8) and (5.10) are GAS
and all trajectories are bounded. The main difficulty with this approach is that in
general, boundedness of all the solutions is not easy to determine and the conditions
that ensure boundedness may be very conservative.

More relaxed sufficient stability conditions have been derived for systems of the
form

ẋ1 = f1(x1)
ẋ2 = f2(x2) + g(x1, x2)

(5.11)

assuming that the individual subsystems are GAS and, additionally, certain restric-
tions related to the continuity and/or slope, apply for the interconnection term
g(x1, x2) (Jankovic et al., 1996; Arcak et al., 2002; Chaillet and Loria, 2006). A
theorem for ensuring that the cascaded system (5.11) is uniformly GAS (UGAS)
(Loria and Panteley, 2005) is presented below. This result is valid under the follow-
ing assumptions:
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Assumption 5.1. System
ẋ2 = f2(x2) (5.12)

is UGAS.

Assumption 5.2. There exist constants γ1, γ2, μ ≥ 0 and a Lyapunov function
V (t, x2) for (5.10) such that V is positive definite, radially unbounded, V̇ (t, x2) ≤
0 and ∥∥∥∥

∂V

∂x2

∥∥∥∥ ‖x2‖ ≤ γ1V (t, x2) ∀x2 : ‖x2‖ > μ

∥∥∥∥
∂V

∂x2

∥∥∥∥ ≤ γ2 ∀x2 : ‖x2‖ ≤ μ

(5.13)

Assumption 5.3. There exist two continuous functions θ1, θ2 : R
+ → R

+ such
that g(x1, x2) satisfies

‖g(x1, x2)‖ ≤ θ1(‖x1‖) + θ2(‖x1‖)‖x2‖ (5.14)

Assumption 5.4. There exists a class K function α(·) so that for all t0 ≥ 0, the
trajectories of the system

ẋ1 = f1(x1)

satisfy ∫ ∞

t0

‖x1(t)‖dt ≤ α(‖x1(t0)‖) (5.15)

Using the assumptions above, the following theorem has been formulated
(Loria and Panteley, 2005):

Theorem 5.2. Let Assumption 5.1 hold and suppose that the trajectories of (5.8)
are uniformly globally bounded. If, in addition, Assumptions 5.2–5.4 are satisfied,
then the solutions of system (5.11) are uniformly globally bounded. If furthermore,
system (5.8) is UGAS, then so is the cascaded system (5.11).

Proposition 5.1. If in addition to the above assumptions systems (5.8) and (5.12)
are exponentially stable, then the cascaded system (5.11) is also exponentially
stable.

Different cases of interconnection terms have been studied in (Loria and Panteley,
2005; Arcak et al., 2002). Stabilizability conditions for cascaded systems have been
derived by Bacciotti et al. (1993); Chaillet and Loria (2006); Roebenack and Lynch
(2006).
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5.3 Cascaded TS Fuzzy Systems

In this section, the stability and convergence rate of cascaded TS systems are ana-
lyzed, and sufficient conditions that are based on the stability of the subsystems are
presented. The idea behind this type of stability analysis is that many systems are
cascaded (e.g., hierarchical large-scale systems, flow processes), while others may
be represented as a cascaded system that is less complex than the original system.
Since the dimensions of the subsystems of a cascaded system are smaller than that
of the whole system, a cascaded analysis involves LMI problems of smaller dimen-
sions, thereby reducing the computational costs.

5.3.1 Stability Analysis of Cascaded TS Systems

First, the stability analysis of cascaded TS systems is considered. The results pre-
sented in this section make use of the stability conditions of Section 5.2.3. Consider
a general, nonlinear autonomous dynamical system given as

ẋ = f(x)

that is the cascade of two subsystems

ẋ1 = f1(x1)
ẋ2 = f2(x1, x2)

(5.16)

Using the methods for constructing TS models presented in Chapter 2, for a cas-
caded nonlinear system, it is always possible to determine a fuzzy representation or
approximation that is also cascaded. This means that it is possible to determine a
fuzzy representation or approximation of the form

ẋ =
m∑

i=1

wi(z)Aix (5.17)

where the system matrices for each rule i = 1, 2, . . . , m can be written as

Ai =
(

A1i 0
A21i A2i

)

Hence, the system (5.16) can be expressed or approximated as

ẋ1 =
m1∑

i=1

w1i(z1)A1ix1

ẋ2 =
m2∑

i=1

w2i(z2)(A21ix1 + A2ix2)

(5.18)
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with normalized membership functions w1i and w2i. Note that system (5.18) can
always be written using lower block-triangular local matrices2:

ẋ =

⎛

⎜⎜⎜⎝

m1∑

i=1

w1i(z1)A1ix1

m2∑

i=1

w2i(z2)A21ix1 +
m2∑

i=1

w2i(z2)A2ix2

⎞

⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

m1∑

i=1

w1i(z1)
m2∑

j=1

w2i(z2)A1i 0

m1∑

i=1

w1i(z1)
m2∑

j=1

w2j(z2)A21j

m1∑

i=1

w1i(z1)
m2∑

j=1

w2j(z2)A2j

⎞

⎟⎟⎟⎟⎠

(
x1

x2

)

=
m1∑

i=1

w1i(z1)
m2∑

j=1

w2j(z2)
(

A1i 0
A21j A2j

)
x

(5.19)
Since z2 may contain functions of the states of the first subsystem, or even schedul-
ing variables of the first subsystem, the number of rules in (5.19) is larger than the
number of rules in a fuzzy system obtained directly from (5.16). The construction
of a cascaded TS system is illustrated using the following example.

Example 5.3. Consider the nonlinear system

ẋ1 = −2x3
2

ẋ2 = x1x
2
2 − x1

ẋ3 = 2x1 + x3x
2
2 + 2x4

ẋ4 = 3x2 + x3 − x3
4 + x3x4

(5.20)

with xi ∈ [−1, 1]. This system can be written as the cascade of the two subsystems:
(

ẋ1

ẋ2

)
=
(

0 −2x2
2

−1 x1

)(
x1

x2

)

and
(

ẋ3

ẋ4

)
=
(

2 0 x2
2 2

0 3 1 (x3 − x4)

)
⎛

⎜⎜⎝

x1

x2

x3

x4

⎞

⎟⎟⎠

To write the TS fuzzy models for this example, the sector nonlinearity approach is
employed. The first subsystem is represented using four rules. The scheduling vector
is z1 = (x2

2, x1)T , the membership functions are computed as the products of the

2 Recall that
∑m1

i=1 w1i(z1) = 1 and
∑m2

i=1 w2i(z2) = 1, ∀z1, z2.
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weighting functions η1
10 = 1−x2

2, η1
11 = 1−η1

10, η2
10 = (1−x1)/2, η2

11 = 1−η2
10,

and the local matrices are

A11 =
(

0 0
−1 −1

)
A12 =

(
0 0
−1 1

)
A13 =

(
0 −2
−1 −1

)
A14 =

(
0 −2
−1 1

)

The second subsystem is again represented using four rules. The scheduling vector
for this subsystem is z2 = (x2

2, x3 − xT
4 ), the membership functions are computed

as the products of the weighting functions η1
20 = 1 − x2

2, η1
21 = 1 − η1

20, η2
20 =

(2 − x3 + x4)/4, η2
21 = 1 − η2

20, and the local matrices are

A21 =
(

0 2
1 −2

)
A22 =

(
0 2
1 2

)
A23 =

(
1 2
1 −2

)
A24 =

(
1 2
1 2

)

The interconnection term is linear, therefore we have A21j =
(

2 0
0 3

)
, j =

1, 2, 3, 4. The term x2
2 is a scheduling variable both for the first and the second

subsystem. Due to this, writing the overall system as (5.19) results in a TS system
with 4 × 4 = 16 rules, while by using the sector nonlinearity approach directly for
the system (5.20) results in a cascaded TS system with only 8 rules. Nevertheless,
both systems are exact fuzzy representations of the nonlinear system (5.20). �

As shown in the example above, in general it is computationally more efficient to
use a system description of the form (5.18), instead of (5.17) with the matrices
having a cascaded form. Therefore, the system (5.18) is considered in the remainder
of this section. Using the results presented in Section 5.2.3 and assuming that the
subsystems

ẋ1 =
m∑

i=1

w1i(z1)A1ix1 (5.21)

and

ẋ2 =
m∑

i=1

w2i(z2)A2ix2 (5.22)

are uniformly globally asymptotically stable (UGAS), the following basic result can
be formulated.

Theorem 5.3. If there exist two Lyapunov functions of the form V1(x1) = xT
1 P1x1

and V2(x2) = xT
2 P2x2 so that the subsystems (5.21) and (5.22) are UGAS, then

the cascaded system (5.18) is also UGAS.

Proof: The Lyapunov functions V1(x1) = xT
1 P1x1 and V2(x2) = xT

2 P2x2 for
the subsystems (5.21) and (5.22) satisfy Assumption 5.1. They also ensure that As-
sumption 5.4 is satisfied. Note that although (5.18) is not of the form (5.11), as the
fuzzy term corresponding to f2(x2) also contains x1, the common quadratic Lya-
punov function V2(x2) = xT

2 P2x2 ensures the global asymptotic stability (5.22),
irrespective of the value and the dynamics of x1.
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Assumption 5.2 is satisfied as: ∀x2 : ‖x2‖ > μ,
∥∥∥∥

∂V2

∂x2

∥∥∥∥ ‖x2‖ = 2‖xT
2 ‖‖P2‖‖x2‖ ≤ 2λmax(P2)‖x2‖2 ≤ γ1V2(x2)

for any γ1 ≥ 2λmax(P2)
λmin(P2)

. For the second condition of Assumption 5.2, we have
∀x2 : ‖x2‖ ≤ μ,

∥∥∥∥
∂V2

∂x2

∥∥∥∥ = ‖2xT
2 P2‖ ≤ 2‖x2‖‖P2‖ ≤ 2μλmax(P2) = γ2

The interconnection term g(x1, x2) is a nonlinear combination of local linear mod-
els, g(x1, x2) =

∑m2
i=1 w2i(z2)A12x1. To satisfy Assumption 5.3, consider con-

tinuous, positive functions θ1(‖x1‖) = max
z

‖A21(z)‖‖x1‖ and θ2(‖x1‖) = 0,
whereA21(z) =

∑m2
i=1 w2i(z2)A21i. By selecting these functions, it is ensured that

‖g(x1, x2)‖ = ‖∑m
i=1 wi(z2)A21ix1‖ ≤ θ1(‖x1‖) + θ2(‖x1‖)‖x2‖ and there-

fore Assumption 5.3 is satisfied.
Since the conditions of Theorem 5.2 are satisfied, the cascaded system is UGAS.

Furthermore, if these Lyapunov functions ensure exponential stability of the subsys-
tems, based on Proposition 5.1, the cascaded system is also exponentially stable. �
Although the stability of the cascaded system is ensured by the above conditions,
finding a Lyapunov function valid for the cascaded system is not trivial. In gen-
eral, the sum of the Lyapunov functions of the individual subsystems is not a valid
Lyapunov function for the whole system. A global Lyapunov function of the form

V0(x1, x2) = V1(x1) + V2(x2) + Ψ(x1, x2) (5.23)

has been proposed by Jankovic et al. (1996), with V1 and V2 being Lyapunov func-
tions for the systems (5.21) and (5.22), respectively.

For the case when the first subsystem is linear and time-invariant, it has been
proven by Jankovic et al. (1996) that the cross-term Ψ(x1, x2) exists and is con-
tinuous, and V0 is positive definite and radially unbounded. Moreover, if (5.21) is
globally exponentially stable, the result can be extended to the system (5.18). The
cross-term Ψ has been formally proven to be

Ψ(x1, x2) =
∫ ∞

0

∂V2

∂x2
(x̃2(s))A21(z2(s))x̃1(s)ds

where x̃1 and x̃2 are the trajectories of systems (5.21) and (5.22), respectively, and
A21(z2) =

∑m2
i=1 w2i(z2)A21i.

The cascaded approach can also be used when the TS system is subject to vanish-
ing disturbances, i.e., disturbances that go to zero as x → 0 (see (Bergsten, 2001))
or the local models are affine (Johansson et al., 1999). The resulting stability condi-
tions are presented below.
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To formulate stability conditions in the cascaded setting when the system is sub-
ject to vanishing disturbances, consider the cascaded TS system:

ẋ1 =
m1∑

i=1

w1i(z1)A1ix1 + D1(x1)

ẋ2 =
m2∑

i=1

w2i(z2)(A21ix1 + A2ix2) + D21(x1) + D2(x2)

(5.24)

whereD1(x1), D21(x1), andD2(x2) denote disturbance terms that are bounded as

‖D1(x1)‖ ≤ μ1‖x1‖
‖D21(x1)‖ ≤ μ21‖x1‖
‖D2(x2)‖ ≤ μ2‖x2‖

where μ1, μ21, and μ2 are known non-negative finite constants.
Then, the stability conditions can be stated as:

Theorem 5.4. The system (5.24) is UGAS, if there exist P1 = PT
1 > 0, P2 = PT

2 >
0, Q1 = QT

1 > 0, and Q2 = QT
2 > 0 so that

H(P1A1i) < −Q1 i = 1, 2, . . . , m1(
Q1 − μ2

1I P1

P1 I

)
> 0

H(P2A2i) < −Q2 i = 1, 2, . . . , m2(
Q2 − μ2

2I P2

P2 I

)
> 0

Proof: The Lyapunov functions V1 = xT
1 P1x1 and V2 = xT

2 P2x2 prove the UGAS
of the subsystems with the corresponding disturbance term

ẋ1 =
m1∑

i=1

w1i(z1)A1ix1 + D1(x1)

and

ẋ2 =
m2∑

i=1

w2i(z2)A2ix2 + D2(x2)

The rest of the proof is similar to that of Theorem 5.3. �
The cascaded approach can also be used for affine TS systems, by using the ap-
proach of Johansson et al. (1999). For this, consider the affine cascaded fuzzymodel
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ẋ1 =
m1∑

i=1

w1i(z1)(A1ix1 + a1i)

ẋ2 =
m2∑

i=1

w2i(z2)(A21ix1 + A2ix2 + a2i)

(5.25)

Similarly to the result of Johansson et al. (1999), the analysis relies on dividing the
state-space of each individual subsystem into polyhedral partitions. Let K1 and K2

be the number of operating and interpolation regions (see Johansson et al. (1999))
for the individual subsystems, with Ki

1 and Kj
2 the index sets corresponding to the

local models of the subsystems active in the regions X i
1 and Xj

2 . In general, the
number of regions generated in such a way is smaller than the number of regions
for the global system, i.e., K1 + K2 ≤ K and therefore, the number of LMIs to be
solved is smaller. Then, the conditions can be expressed as:

Proposition 5.2. The system (5.18) is UGAS, if there exist matrices P i
1 = (P i

1)
T >

0, P j
2 = (P j

2 )T > 0,H1 = HT
1 > 0,H2 = HT

2 > 0, F i
1 , and F j

2 , so that:

P i
1 = (F i

1)
T H1F

i
1

P j
2 = (F j

2 )T H2F
j
2

F i
1x1 = F t

1x1 ∀x1 ∈ X i
1 ∩ Xt

1

F j
2 x2 = F l

2x2 ∀x2 ∈ Xj
2 ∩ X l

2

H(P i
1A1k) < 0 ∀k ∈ Ki

1

H(P j
2 A2k) < 0 ∀k ∈ Kj

2

(5.26)

for all i, t = 1, 2, . . . , K1, j, l = 1, 2, . . . , K2.

The conditions above are still only sufficient conditions for the stability of cascaded
fuzzy systems. Nevertheless, by taking advantage of the special form of the sys-
tem, i.e., by considering the subsystems instead of the overall fuzzy system, the
dimension of the associated LMI problem is reduced with respect to a centralized
approach, as illustrated by the following example.

Example 5.4. Consider the nonlinear system:

ẋ1 = x2
1 − 3x1

ẋ2 =
x2

1

2 + x2
− 2x3

2 − x2

where x1, x2 ∈ [−1, 1]. This system has a locally asymptotically stable equilibrium
point in x = 0, provable e.g., by using the Lyapunov function V = x2

1/2 + x2
2/2.

A fuzzy representation of this system can be obtained by using the sector nonlin-
earity approach. In total, 8 rules are obtained, with the state matrices being:
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A1 =
(−4 0
−1 −3

)
A2 =

(−4 0
1 −3

)
A3 =

(−4 0
−1 −1

)
A4 =

(−4 0
1 −1

)

A5 =
(−2 0
−1 −3

)
A6 =

(−2 0
1 −3

)
A7 =

(−2 0
−1 −1

)
A8 =

(−2 0
1 −1

)

i.e., there are 8 local linear models. Using Theorem 3.1, this means that 8 LMIs
have to be solved. Using the cascaded approach, the problem is reduced to finding
P1 > 0, and P2 > 0, such that

−4P1 + P1(−4) < 0
−2P1 + P1(−2) < 0

−3P2 + P2(−3) < 0
−1P2 + P2(−1) < 0

As can be seen, by analyzing the subsystems instead of the global fuzzy system,
both the number of LMIs and their size can be reduced. �

5.3.2 Convergence Rate of Cascaded Systems

In this section, the convergence rate of the system (5.18) compared to the conver-
gence rate of the individual subsystems (5.21) and (5.22) is studied.

For this, consider that both subsystems are exponentially stable, i.e., there exist
k1, k2, α1, α2 > 0 so that

‖x1‖ ≤ k1‖x10‖e−α1t (5.27)
‖x2‖ ≤ k2‖x20‖e−α2t (5.28)

Since a Lyapunov function of the form V (x) = V1(x1) + V2(x2), where V1 and
V2 are Lyapunov functions for the individual subsystems is not a Lyapunov function
for the cascaded system, other approaches to determine the convergence rate of the
cascaded system have to be considered.

The convergence rate of the system (5.18) is at least γ/β if there exists a Lya-
punov function V = xT Px, P = PT > 0, and γ > 0, so that:

α‖x‖2 ≤ V ≤ β‖x‖2

V̇ ≤ −γ‖x‖2

In terms of the subsystems, the above conditions are satisfied, if there exist two
Lyapunov functions V1 = xT

1 P1x1 and V2 = xT
2 P2x2 that ensure the stability of

the subsystems, and, furthermore

• α ≤ min(λmin(P1), λmin(P2)),
• β ≥ max(λmax(P1), λmax(P2)), and
• λmax(diag[H(P1A1i), H(P2A2j)]) ≤ −γ
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However, the above condition can be relaxed, and the convergence rate of the joint
system can be expressed as follows.

Theorem 5.5. The convergence rate of the system (5.18) is at least
max{−α1,−α2} + ε, for an arbitrary ε > 0 if

1. system (5.21) is exponentially stable, with convergence rate −α1,
2. system (5.22) is exponentially stable, with convergence rate −α2, and
3. the matrices A21j are bounded, i.e., there exists M ∈ R, so that

‖A21j‖ ≤ M, j = 1, 2, . . . , m2

Proof: Condition 1 above can be written as ‖x1(t)‖ ≤ k1‖x10‖e−α1t, for some
k1 > 0, i.e., as (5.27). The solution of the system (5.22) is the homogeneous solution
x2h(t) of the system

ẋ2 =
m2∑

i=1

w2i(z2)(A21ix1 + A2ix2) (5.29)

and therefore it satisfies ‖x2h(t)‖ ≤ k2‖x20‖e−α2t, for some k2 > 0. The particu-
lar solution of equation (5.29) can be expressed as

x2p =
∫ t

t0

x2h(t − s)A21(z2(s))x1(s)ds

with A21(z2) =
∑m2

i=1 w2i(z2)A21i.
Hence,

‖x2p‖ =
∥∥∥
∫ t

t0

x2h(t − s)A21(z(s))x1(s)ds
∥∥∥

≤
∫ t

t0

‖x2h(t − s)‖‖A21(z(s))‖‖x1(s)‖ds

≤
∫ t

t0

k2‖x20‖e−α2(t−s)Mk1‖x10‖e−α1sds

≤ k1k2M‖x10‖‖x20‖e−α2t

∫ t

t0

e(α2−α1)sds

If α2 �= α1, we have

‖x2p‖ ≤ k1k2M‖x10‖‖x20‖|α2 − α1|−1 · e−α2t|e(α2−α1)t − e(α2−α1)t0 |
≤ k1k2M‖x10‖‖x20‖|α2 − α1|−1|e−α1t − γ1e

−α2t|

where γ1 = e(α2−α1)t0 .
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So in this case, a bound on the general solution of (5.29) is

‖x2‖ ≤ ‖x2h‖ + ‖x2p‖
≤ k2‖x20‖e−α2t + k1k2M‖x10‖‖x20‖ · |α2 − α1|−1|e−α1t − γ1e

−α2t|
≤ γ2e

max{−α1,−α2}t

where γ2 =max{k2‖x20‖(1+k1M‖x10‖|α2−α1|−1γ1), k1k2‖x10‖‖x20‖M |α2−
α1|−1}, i.e., the convergence rate of (5.29) is at least max{−α1,−α2}.

For α1 = α2 = α, we have

‖x2p‖ ≤ k1k2M‖x10‖‖x20‖e−αt(t − t0)
‖x2‖ ≤ ‖x2h‖ + ‖x2p‖

≤ k2‖x20‖e−αt + k1k2M‖x10‖‖x20‖e−αt(t − t0)

≤ γ3e
−αt + γ4te

−αt

(5.30)

with γ3 = k2‖x20‖ and γ4 = k1k2‖x10‖‖x20‖M . For the bound γ3e
−αt+γ4te

−αt

on (5.30) it has been shown in (Baddou et al., 2006) that the convergence rate is at
least −α + ε, for an arbitrary ε > 0, i.e., the one stated in Theorem 5.5.

This means that the convergence rate of the system (5.29), and, therefore, of the
system (5.18) is determined by the convergence rate of the individual subsystems. �

5.4 Cascaded TS Fuzzy Observers

This section presents the cascaded approach applied to observer design for TS fuzzy
systems, i.e., for cascaded TS systems observers are designed in a cascaded manner.
The benefit of this type of estimation is that separate observers can be designed
for the individual subsystems, which makes their tuning easier. Moreover, different
types of observers can be combined, depending on the subsystem considered.

For observer design, consider the fuzzy system with normalized membership
functions:

ẋ =
m∑

i=1

wi(z)(Aix + Biu + ai)

y =
m∑

i=1

wi(z)(Cix + ci)

(5.31)

with the system matrices for each rule i = 1, 2, . . . , m having the lower block-
triangular form

Ai =
(

A1i 0
A21i A2i

)

Ci =
(

C1i 0
C21i C2i

)



5.4 Cascaded TS Fuzzy Observers 91

or, consider the equivalent cascaded TS system, with the first subsystem being

ẋ1 =
m1∑

i=1

w1i(z1)(A1ix1 + B1iu + a1i)

y1 =
m1∑

i=1

w1i(z1)(C1ix1 + c1i)

(5.32)

and the second subsystem

ẋ2 =
m2∑

i=1

w2i(z2)(A21ix1 + A2ix2 + B2iu + a2i)

y2 =
m2∑

i=1

w2i(z2)(C21ix1 + C2ix2 + c2i)

(5.33)

For system (5.31), a fuzzy observer of the form

˙̂x =
m∑

i=1

wi(ẑ)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ =
m∑

i=1

wi(ẑ)(Cix̂ + ci)

(5.34)

is considered, with the overall observer gain having the form Li =
(

L1i 0
0 L2i

)
,

where i denotes the rule number. Such an observer is equivalent to the cascaded
observer

x̂1 =
m1∑

i=1

w1i(ẑ1)(A1ix̂1 + B1iu + a1i + L1i(y1 − ŷ1))

ŷ1 =
m1∑

i=1

w1i(ẑ1)(C1ix̂1 + c1i)

(5.35)

for the first subsystem (5.32), and

x̂2 =
m2∑

i=1

w2i(ẑ2)(A21ix̂1 + A2ix̂2 + B2iu + a2i + L2i(y2 − ŷ2))

ŷ2 =
m2∑

i=1

w2i(ẑ2)(C21ix̂1 + C2ix̂2 + c2i)

(5.36)

for the second subsystem, (5.33).
For the design two cases are distinguished: 1) the scheduling vector depends only

on measured variables and 2) the scheduling vector depends on states that have to
be estimated.
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5.4.1 Measured Scheduling Vector

If the weights do not depend on the states to be estimated, one can use the known
scheduling variables in the observer. Then, the error dynamics can be written as

ė =
m∑

i=1

m∑

j=1

wi(z)wj(z)(Ai − LiCj)e

=
m∑

i=1

m∑

j=1

wi(z)wj(z)
(

A1i − L1iC1j 0
A21i − L2iC21j A2i − L2iC2j

)
e

(5.37)

or, in the cascaded form

ė1 =
m1∑

i=1

w1i(z1)
m1∑

j=1

w1j(z1)(A1i − L1iC1j)e1

ė2 =
m2∑

i=1

w2i(z2)
m2∑

j=1

w2j(z2)
[
(A21i − L2iC21j)e1 + (A2i − L2iC2j)e2

]

(5.38)
This system is of the form (5.18), for which the stability conditions from Section 5.3
can be used. If the C matrix is common for all the rules, then the theorems of
Section 5.3 can be directly applied, and the following theorem can be formulated:

Theorem 5.6. Consider the system (5.38), with C1i = C1, i = 1, 2, . . . , m1,
C21i = C21, and C2i = C2, i = 1, 2, . . . , m2. If there exist P1 = PT

1 > 0,
L1i, i = 1, 2, . . . , m1, P2 = PT

2 > 0, and L2i, i = 1, 2, . . . , m2, so that

H(P1(A1i − L1iC1)) < 0 (5.39)

for i = 1, 2, . . . , m1, and

H(P2(A2i − L2iC2)) < 0 (5.40)

for i = 1, 2, . . . , m1, respectively, then the cascaded system

ė1 =
m1∑

i=1

w1i(z1)(A1i − L1iC1)e1

ė2 =
m2∑

i=1

w2i(z2)[(A21i − L2iC21)e1 + (A2i − L2iC2)e2]

(5.41)

is UGAS.

If the measurement matrices are different for each rule, relaxed conditions, such
as those of Theorem 4.1 or of Corollary 4.1 can be combined with those of Theo-
rem 5.3. Using the conditions of Theorem 4.1 we have
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Theorem 5.7. If there exist P1 = PT
1 > 0, L1i, i = 1, 2, . . . , m1, P2 = PT

2 > 0,
and L2i, i = 1, 2, . . . , m2, so that

H(P1(A1i − L1iC1i)) < 0 i = 1, 2, . . . , m1

H(P1(A1i − L1iC1j) + P1(A1j − L1jC1i)) < 0
i = 1, 2, . . . , m1 j = i + 1, . . . , m1

∀i < j : ∃z1 : w1i(z1)w1j(z1) �= 0

(5.42)

and
H(P2(A2i − L2iC2i)) < 0 i = 1, 2, . . . , m2

H(P2(A2i − L2iC2j) + P2(A2j − L2jC2i)) < 0
i = 1, 2, . . . , m2 j = i + 1, . . . , m2

∀i < j : ∃z2 : w2i(z2)w2j(z2) �= 0

(5.43)

respectively, then the cascaded error system (5.38) is UGAS.

If Corollary 4.1 is used, the following result can be formulated.

Theorem 5.8. If there exist P1 = PT
1 > 0, L1i, i = 1, 2, . . . , m1, P2 = PT

2 > 0,
and L2i, i = 1, 2, . . . , m2, so that

H(P1(A1i − L1iC1i)) < 0 i = 1, 2, . . . , m1

H(
2

m1 − 1
P1(A1i − L1iC1i) + P1(A1i − L1iC1j) + P1(A1j − L1jC1i)) < 0

i = 1, 2, . . . , m1 j = 1, . . . , m1 i �= j
(5.44)

and

H(P2(A2i − L2iC2i)) < 0 i = 1, 2, . . . , m2

H(
2

m2 − 1
P2(A2i − L2iC2i) + P2(A2i − L2iC2j) + P2(A2j − L2jC2i)) < 0

i = 1, 2, . . . , m2 j = 1, . . . , m2 i �= j
(5.45)

respectively, then the cascaded error system (5.38) is UGAS.

In the case when the scheduling vector does not depend on the states to be estimated,
Theorem 5.5 can also be applied to the design of observers with a guaranteed con-
vergence rate, using the following conditions.

Theorem 5.9. The decay rate of the error system (5.37) is at least α, if there exist
P1 = PT

1 > 0, L1i, i = 1, 2, . . . , m1, P2 = PT
2 > 0, and L2i, i = 1, 2, . . . , m2,

so that
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H(P1(A1i − L1iC1i)) + 2αP1 < 0 i = 1, 2, . . . , m1

H(P2(A2i − L2iC2i)) + 2αP2 < 0 i = 1, 2, . . . , m2

H(P1(A1i − L1iC1j) + P1(A1j − L1jC1i)) + 4αP1 < 0
i = 1, 2, . . . , m1 j = i + 1, . . . , m1

∀i < j : ∃z1 : w1i(z1)w1j(z1) �= 0
H(P2(A2i − L2iC2j) + P2(A2j − L2jC2i)) + 4αP2 < 0
i = 1, 2, . . . , m2 j = i + 1, . . . , m2

∀i < j : ∃z2 : w2i(z2)w2j(z2) �= 0

The above conditions explicitly state that in order to design a global observer with a
desired convergence rate, it is sufficient to design observers for the subsystems with
the same convergence rate.

The cascaded observer design for systems where the scheduling vector does not
depend on states to be estimated is illustrated using the following example.

Example 5.5. Consider the following cascaded system

ẋ1 = −2x2 y1 = x2

ẋ2 = x1 + 3x2
2 y2 = x3

ẋ3 = x2
2 + 5x2 + 6x3 − 7x3x4

ẋ4 = −2x2
2 + x3

3 − 2x3 − x4

(5.46)

with xi ∈ [−1, 1], for which an observer has to be designed.
This system is the cascade of two observable subsystems, with the first subsystem

being
ẋ1 = −2x2 y1 = x2

ẋ2 = x1 + 3x2
2

and the second subsystem

ẋ3 = x2
2 + 5x2 + 6x3 − 7x3x4 y2 = x3

ẋ4 = −2x2
2 + x3

3 − 2x3 − x4

An exact fuzzy fuzzy representation of the subsystems can be obtained using the
sector nonlinearity approach as follows. For the first subsystem, there is one nonlin-
earity, and therefore one scheduling variable, x2. Note that the state x2 is measured,
in fact y1 = x2. Then, the weighting functions, and also the membership functions,
are (see Section 2.3.1)

w11 = η1
0 =

1 − x2

2
=

1 − y1

2

w12 = η1
1 =

1 + y1

2
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and the corresponding matrices are

A11 =
(

0 −2
1 −3

)
A12 =

(
0 −2
1 3

)

In the second subsystem there are three nonlinear terms: x2 (note that x2 + 5 and
−x2 lead to the same weighting functions and therefore they are not considered
separately), x3, and x2

3. However, of these, x3 is measured (and consequently x2
3

is also known) and x2 is part of the interconnection term, not of the individual
second subsystem. Therefore, the scheduling vector of the second subsystems is
z2 = (x3, x2

3)
T , and the individual second subsystem can be represented using the

weighting functions

η1
0 =

1 − x3

2
=

1 − y2

2
η1
1 =

1 + y2

2
η2
0 = 1 − y2

2 η2
1 = y2

2

Then, the membership functions and the corresponding matrices are

w21 = η1
0η

2
0 A21 =

(
6 −7
−2 −1

)

w22 = η1
0η

2
1 A22 =

(
6 −7
−1 −1

)

w23 = η1
1η

2
0 A23 =

(
6 7
−2 −1

)

w24 = η1
1η

2
1 A24 =

(
6 7
−1 −1

)

The observer gains are found by solving the conditions of Theorem 5.6. The ob-
server gains3 of the first subsystem are

L11 =
(

2.63
6.43

)
L12 =

(
2.6
0.43

)

and the gains of the second subsystem are

L21 =
(

7.82
1.25

)
L22 =

(
7.82
2.25

)
L23 =

(
7.82
−4.25

)
L24 =

(
7.82
5.25

)

A trajectory4 of the estimation error is presented in Figure 5.4. This trajectory has
been obtained with the initial states being [0.25, 0.25, 0.25, 0.25]T , and the esti-
mated initial states being zero. As expected, the estimation error converges to zero.

3 All values are given rounded to two decimal places.
4 Unless otherwise stated, for numerical integration in this chapter the ode45 Matlab func-
tion was used.
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Fig. 5.4 Estimation error trajectory using the cascaded observer in Example 5.5.

Using Theorem 4.1 for a TS model of the centralized system (5.46), the observer
gains for the centralized observer are

L1 = 104 ·

⎛

⎜⎜⎝

1.77 0.05
3.22 −0.12
−0.17 0.59
−0.77 0.02

⎞

⎟⎟⎠ L2 = 104 ·

⎛

⎜⎜⎝

1.76 −0.07
3.22 −0.15
−0.17 0.60
−0.77 0.03

⎞

⎟⎟⎠

L3 = 104 ·

⎛

⎜⎜⎝

1.74 −0.06
3.21 −0.14
−0.17 0.66
−0.77 0.05

⎞

⎟⎟⎠ L4 = 104 ·

⎛

⎜⎜⎝

1.73 −0.05
3.20 −0.13
−0.16 0.67
−0.77 0.05

⎞

⎟⎟⎠

L5 = 104 ·

⎛

⎜⎜⎝

1.79 −0.05
3.30 −0.11
−0.16 0.63
−0.78 0.03

⎞

⎟⎟⎠ L6 = 104 ·

⎛

⎜⎜⎝

1.79 −0.09
3.30 −0.18
−0.18 0.63
−0.79 0.04

⎞

⎟⎟⎠

L7 = 104 ·

⎛

⎜⎜⎝

1.69 −0.06
3.13 −0.15
−0.16 0.67
−0.74 0.05

⎞

⎟⎟⎠ L8 = 104 ·

⎛

⎜⎜⎝

1.71 −0.07
3.17 −0.16
−0.17 0.67
−0.75 0.06

⎞

⎟⎟⎠

The trajectory of the estimation error using the centralized observer and the same
initial conditions as for the cascaded observer is presented in Figure 5.5. Due to the
large gains, for numerical integrations the ode15sMatlab function has been used. �

5.4.2 Estimated Scheduling Vector

Now, consider the case when the parameters z depend on the states to be estimated,
i.e., in the observer, the estimated values of the scheduling variables have to be used.
For the simplicity of the computations, only the case with common measurement
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Fig. 5.5 Estimation error trajectory using a centralized observer for Example 5.5.

matrix is considered. For different measurement matrices, similar, although more
complex conditions are obtained. Consider the fuzzy system expressed as

ẋ =
m∑

i=1

wi(z)(Aix + Biu + ai)

y = Cx + c,

(5.47)

Using cascaded observers, with gains L1i, i = 1, 2, . . . , m1, for the first observer
and L2i, i = 1, 2, . . . , m2, for the second observer, the error system can be written
as:

ė =
m∑

i=1

wi(ẑ)
(

A1i − L1iC1 0
A21i − L2iC21 A2i − L2iC2

)
e

+
m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + ai)

(5.48)

or, considering the individual subsystems

ė1 =
m1∑

i=1

w1i(ẑ1)(A1i − L1iC1)e1

+
m1∑

i=1

(w1i(z1) − w1i(ẑ1))(A1ix1 + B1iu + a1i)

ė2 =
m2∑

i=1

w2i(ẑ2)[(A21i − L2iC21i)e1 + (A2i − L2iC2i)e2]

+
m2∑

i=1

(w2i(z2) − w2i(ẑ2))((A21ix1 + A2ix2 + B2iu + a2i)
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Using the cascaded approach for this error system, Theorem 5.3 can be combined
with the conditions of Theorem 4.5 and the following result can be stated:

Theorem 5.10. The cascaded error system (5.48) is UGAS, if there exist a Lyapunov
function V1(x1), P2 = PT

2 > 0 and two continuous functions θ1, θ2 : R
+ → R

+

such that:

1. The Lyapunov function V1 ensures exponential stability of the error system

ė1 =
m∑

i=1

w1i(ẑ1)(A1i − L1iC1i)e1+

+ (w1i(z1) − w1i(ẑ1))(A1ix1 + B1iu + a1i)

(5.49)

2. P2 satisfiesH(P2A2i) < 0, i = 1, 2, . . . , m, and
3. ‖∑m

i=1(w2i(z2) − w2i(ẑ2))(A21ix1 + A2ix2 + B2iu + a2i)‖ ≤ θ1(‖e1‖) +
θ2(‖e1‖)‖e2‖.

Proof: The proof follows the same line of thought as that of Theorem 5.3 and makes
use of Assumptions 5.1–5.4, as follows.

Since H(P2A2i) < 0, i = 1, 2, . . . , m, V2 is a Lyapunov function for

ė2 =
m∑

i=1

w2i(ẑ2)(A2i − L2iC2i)e2 (5.50)

and this system is UGAS (Assumption 5.1). Let γ1 = 2λmax(P2)
λmin(P2)

, γ2 = 2ηλmax(P2).
With these constants, Assumption 5.2 is satisfied. The Lyapunov function V1 satis-
fies Assumption 5.4.

Now, the interconnection term in the second subsystem can be written as

g(e1, e2) =
m∑

i=1

w2i(ẑ2)(A21i − L2iC2i)e1+

+
m∑

i=1

(w2i(z2) − w2i(ẑ2))(A21ix1 + A2ix2 + B2iu + a2i)

‖g(e1, e2)‖ ≤
m∑

i=1

‖w2i(ẑ2)‖‖A21i − L2iC2i‖‖e1‖ + θ1(‖e1‖) + θ2(‖e1‖)‖e2‖

‖g(e1, e2)‖ ≤τ‖e1‖ + θ1(‖e1‖) + θ2(‖e1‖)‖e2‖
‖g(e1, e2)‖ ≤θ

′
1(‖e1‖) + θ2(‖e1‖)‖e2‖

where θ
′
1(‖e1‖) = τ‖e1‖ + θ1(‖e1‖). With this, Assumption 5.3 (see (5.14)) is

satisfied, and based on Theorem 5.2, the cascaded system is UGAS. Moreover, since
the first subsystem is exponentially stable, the cascaded system is also exponentially
stable (see Proposition 5.1). �
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Fig. 5.6 Cascaded tanks system.

For real-world systems, the membership functions, and therefore the scheduling
variables will in general be dependent on the states. The observer design for such a
case is illustrated in the following example (Waurajitti et al., 2000).

Example 5.6. Consider the three tanks connected in a cascade as shown in
Figure 5.6. Water is pumped from a reservoir into the upper tank (3). From this
tank, the water flows to the middle tank (2) and to the lower tank (1) and from the
lower tank back to the reservoir. The system has one control input u, which is the
voltage applied to the motor of the pump and two measured outputs: the water levels
h3 in the upper tank and h1 in the lowest tank. The flow rate Fin, provided by the
pump, and the water level h2 in the middle tank need to be estimated, and therefore,
an observer has to be designed. The differential equations describing the dynamics
of this system are the following (Waurajitti et al., 2000):

τḞin = −Fin + Qs · u

ḣ3 =
Fin

A3
− s3

√
2gh3

A3

ḣ2 =
s3

√
2gh3

A2
− s2

√
2gh2

A2

ḣ1 =
s2

√
2gh2

A1
− s1

√
2gh1

A1

(5.51)

The parameter values are listed in Table 5.3.
It is assumed that the tanks have the same height, hmax = 2m, and if a tank is

full the overflowing water does not affect the level of the water in the other tanks.
Therefore, all levels are bounded, hi ∈ [0, hmax]. We construct an approximate TS
model using linearization.
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Table 5.3 Parameter values used.
Parameter Symbol Value Units

Acceleration due to gravity g 9.81 m/s2

Cross-sectional area of tank 1 A1 12 m2

Cross-sectional area of tank 2 A2 10 m2

Cross-sectional area of tank 3 A3 15 m2

Outlet area of tank 1 s1 0.1 m2

Outlet area of tank 2 s2 0.5 m2

Outlet area of tank 3 s3 0.3 m2

Input to flow gain Qs 0.3 m3/s/V
Motor time constant τ 3 s

To obtain a good coverage of the levels, for each level hi, four points hi ∈
{0.1, 0.55, 1.05, 1.6} are chosen5, together with the π-shaped membership func-
tions depicted in Figure 5.7. These membership functions are defined as

ω(h; a, b, c, d) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
(

h−a
b−a

)2

if a ≤ h ≤ a+b
2

1 − 2
(

h−b
b−a

)2

if a+b
2 ≤ h ≤ b

1 if b ≤ h ≤ c

1 − 2
(

h−c
d−c

)2

if c ≤ h ≤ c+d
2

2
(

h−d
d−c

)2

if c+d
2 ≤ h ≤ d

0 otherwise

The scheduling vector consists of the levels h1, h2, and h3, which are the states to
be estimated.

The system (5.51) is linearized (see Section 2.3.2) for each combination of the
chosen points. Since the linearization is not done in equilibria, the consequents are
affine. For instance, the rule obtained by linearizing in h1 = 0.55, h2 = 0.1 and
h3 = 0.55 is:
If h1 is approximately 0.55 and h2 is approximately 0.1 and h3 is approximately

0.55, then ẋ = Ax + Bu + a, with

A =

⎛

⎜⎜⎝

−0.3333 0 0 0
0.1111 −0.0995 0 0

0 0.1120 −0.1751 0
0 0 0.1401 −0.0747

⎞

⎟⎟⎠ B =

⎛

⎜⎜⎝

0.1120
0
0
0

⎞

⎟⎟⎠

a = (0 − 0.0547 0.0441 − 0.0271)T

where x = (Fin h3 h2 h1)T . The membership degree of the scheduling vector is
computed as the product of the individual membership degrees of the variables.
5 The value hi = 0.1 is chosen because the system is not linearizable in hi = 0, i = 1, 2, 3.
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Fig. 5.7 Membership functions for the heights.
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Fig. 5.8 Estimation errors using cascaded observers for Example 5.6.
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Fig. 5.9 Estimation errors using a centralized observer for Example 5.6.
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The system is cascaded, with x1 = (Fin h3)T and x2 = (h2 h1)T . Therefore,
observers can be designed separately for the individual subsystems. The observers
are designed both for the whole system and for the individual subsystems using the
same conditions. Both observers have the form

˙̂x =
m∑

i=1

wi(ẑ)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ =
m∑

i=1

wi(ẑ)(Cix̂ + di).

When simulating the system, the estimated values given by the fuzzy model and
those given by the observer were saturated at 0 and hmax. A piecewise constant
input has been used. The initial conditions were (0.25 0.25 0.25 0.25)T , while the
estimated initial states were (0.5 0.5 0.5 0.5)T . Due to the larger number of LMIs
to be solved to obtain the centralized observer (64 4-by-4 LMIs), the CPU time
needed to solve the LMIs for the centralized observer was 5 times larger than the
time needed to design the cascaded observer.

The estimation errors obtained by the cascaded and centralized observers, are
presented in Figures 5.8 and 5.9, respectively. In both cases, the estimation error
converges to zero, as expected. �

5.5 Summary

In many real-life applications, a complex process model can be decomposed into
simpler, cascaded subsystems. This partitioning of a process leads to increased mod-
ularity and a reduced complexity of the problem, while also making the analysis
easier.

In this chapter, a cascaded approach for the stability analysis and observer de-
sign for TS fuzzy systems has been presented. First, an algorithm for partitioning
a nonlinear system and stability conditions for cascaded nonlinear systems have
been introduced. Next, cascaded TS fuzzy systems were considered. Based on the
stability conditions for general nonlinear systems, stability conditions for cascaded
TS systems have been presented. It has been shown that, similarly to linear sys-
tems, the exponential stability of the individual subsystems implies the stability of
the cascaded system. Moreover, the convergence rate of the cascaded TS system is
the maximum of the convergence rates of the individual subsystems. In addition, the
cascaded stability analysis reduces the dimension of the LMI problems to be solved.

Observer design has also been performed in the cascaded setting. If the system
under consideration can be represented as a cascade of TS fuzzy systems, observers
can be designed in a cascaded fashion. This partitioning of a process and observer
leads to increased modularity and reduced complexity of the problem, which results
in reduced computational costs.



Chapter 6
Distributed TS Systems and Observers

The previous chapter has presented stability analysis and observer design for the
special case of distributed systems that can be represented as a cascade of sub-
systems. In this chapter, a more general case is considered, namely when the sub-
systems are coupled. We present methods for the distributed stability analysis and
observer design for TS fuzzy systems. The results presented in general rely on com-
mon quadratic Lyapunov functions, and LMI conditions are derived that are easy
to solve. For large-scale or distributed systems, such an approach presents several
advantages compared to the centralized approach, among which flexibility and re-
duced computational costs.

6.1 Introduction

Large-scale or distributed systems are composed of a number of subsystems that
influence each other. In addition, in many cases, the structure of the overall system
is not fixed, i.e., subsystems may be added online, and therefore a centralized anal-
ysis and/or design may be computationally intractable. For such systems, decentral-
ized analysis and control design has received much attention (Akar and Özgüner,
2000; Krishnamurthy and Khorrami, 2003; Wang and Luoh, 2004; Liu and Zhang,
2005; Haijun et al., 2006; Zhang et al., 2006; Liu et al., 2007). In general, con-
ditions developed for distributed stability analysis and controller or observer de-
sign are more conservative than those developed for centralized analysis or design
(Bavafa-Toosi et al., 2006), but have the benefit of a reduced computational com-
plexity. For control purposes, the decentralized design presents several advantages:
flexibility, fault tolerance, simplified design, and easier tuning.

Decentralized control has been successfully employed in economic sys-
tems, power systems, large space-structures, traffic control, and process con-
trol. Although decentralized control has received much attention (Sandell et al.,
1978; Akar and Özgüner, 2000; Jiang, 2000; Krishnamurthy and Khorrami, 2003;
Wang and Chai, 2005; Zhang et al., 2006; Bavafa-Toosi et al., 2006) in this con-
text, decentralized state estimation has not been addressed as much. Moreover, de-
centralized state estimation has rarely been addressed for TS systems, although

Zs. Lendek et al.: Stability and Observer Design Using TS Models, STUDFUZZ 262, pp. 103–147.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010
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numerous results exist for linear and stochastic systems. In case of linear or
stochastic systems, in general sensor fusion is considered, with a network archi-
tecture of sensor nodes (López-Orozco et al., 2000; Roumeliotis and Bekey, 2002;
Schmitt et al., 2002), such that each node shares information with other nodes and
computes a local estimate. Observers used include, but are not limited to linear
observers (Sundareshan and Elbanna, 1990; Saif and Guan, 1992; Hou and Müller,
1994), Kalman filter variants (Durrant-Whyte et al., 1990; Benigni et al., 2008), and
particle filters (Bolic et al., 2004; Coates, 2004).

In this chapter we consider the distributed stability analysis and observer de-
sign for a system composed of interconnected subsystems. Each subsystem is rep-
resented by a TS fuzzy model. The coupling between the subsystems is realized
through their states, i.e., the states of a subsystem may influence the dynamics of
another subsystem. Note that we do not treat the issue of decomposing a given
system into subsystems. This is because in many systems, the decomposition is
given, i.e., the system considered is naturally composed of interacting subsystems.
When this is not the case, decomposition techniques such as the ones presented by
Gegov and Frank (1995) or Michel et al. (1978) can be used. Of these techniques,
the one developed by Gegov and Frank (1995) specifically treats fuzzy systems,
while the method given by Michel et al. (1978) relies on the transformation of the
system into lower-block triangular form, effectively a transformation into a cascaded
system.

Consider a distributed system consisting of ns interacting subsystems, with each
subsystem l represented by the TS model

ẋl =
ml∑

i=1

wli(zl)
(
Alixl +

ns∑

j=1,j �=l

f lij(xj)
)

(6.1)

for stability analysis and

ẋl =
ml∑

i=1

wli(zl)
(
Alixl + Bliul + ali +

ns∑

j=1,j �=l

f lij(xj)
)

yl =
ml∑

i=1

wli(zl)
(
Clixl + cli +

ns∑

j=1,j �=l

hlij(xj)
) (6.2)

for observer design, where xl, ul, and zl, l = 1, 2, . . . , ns denote the state, input,
and scheduling vectors of the lth subsystem, ml is the number of rules in the fuzzy
representation of the lth subsystem, Ali, Bli, Cli, ali, and cli are the corresponding
local matrices and biases, and f lij and hlij denote the interconnection from the jth
subsystem to the ith rule of the lth subsystem, and can be nonlinear functions. A
general assumption is that these interconnection terms are Lipschitz in the states,
i.e., there exist μf

lij ≥ 0 and μh
lij ≥ 0 such that ‖f lij(xj)‖ ≤ μf

lij‖xj‖, and
‖hlij(xj)‖ ≤ μh

lij‖xj‖.
Current approaches to decentralized stability analysis and controller or observer

design for distributed TS systems can be classified as perturbation methods (see
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Sandell et al. (1978); Bakule (2008), and the references therein), i.e., the intercon-
nection between the subsystems is treated as a perturbation. The stability analysis
and the design are in general performed according to the following steps:

1. The distributed system considered consists of interconnected subsystems. De-
pending on the approach, the description of these subsystems may be available
a priori or become available during the analysis or design. In this book, we refer
to the case when the description of all the subsystems is available a priori as
parallel analysis and design. If subsystem may be added to an existing system,
we use the term sequential analysis or design.

2. It is assumed that each individual subsystem (i.e., without the interconnection
terms) is stable. Moreover, some measure of stability, in general, a bound on the
derivative of the Lyapunov function, is available.

3. Given that the individual subsystems are stable, a measure on their stability is
available, and that the strength of the interconnection terms is known, determine
the conditions under which the interconnected system is stable.

Both in stability analysis and in controller or observer design the most common
case considered is weak coupling between the subsystems, that is the case when
the bound on the interconnection terms is sufficiently small to not influence the
stability of the subsystems. In this case, the stability analysis is actually reduced to
the robust stability analysis of the subsystems. In state feedback controller design
this translates into robust stabilization.

While controller and observer design are generally considered dual problems,
note that for decentralized design this is not the case due to the “knowledge” con-
straints: a well-designed distributed stabilizing controller is able to stabilize the
whole system without taking into account the influence between the subsystems, as-
suming that the influence is small enough, but if the system is not stabilized to zero,
without knowing (at least) the estimates of the influencing subsystems, the estimate
given by the observer will never converge to the true values. Although in observer
design for centralized TS systems approaches that decouple unknown inputs exist –
which, for distributed TS systems would translate to decoupling the influence of
other subsystems – these approaches have not yet been extended to distributed sys-
tems. Moreover, complete decoupling of the unknown input is cumbersome when
the measurement matrices differ for each rule. This is one of the reasons why, in the
context of distributed TS systems, decentralized state estimation, without the con-
trol counterpart, has rarely been addressed. Observers have been used in the context
of observer-based control. However, in case of observer-based control, the observer
and controller design are coupled: in most cases, the observer cannot be used with-
out the controller (Uang and Chen, 2000; Tseng and Chen, 2001; Tseng, 2008).

This chapter first presents current results for the stability analysis of distributed
TS system, and afterwards results for observer design for distributed TS fuzzy sys-
tems. These results in general rely on the stability of the independent subsystems
and the “sufficient weakness” of the interconnection terms. Results are presented
both for parallel and sequential analysis.
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Note that although in the literature the term “large-scale fuzzy system” is often
used, we refer to the TS systems used here as “distributed TS systems”.

6.2 Distributed Stability Analysis of TS Systems

To study the stability of a decentralized system, consider a continuous-time dis-
tributed TS system composed of ns subsystems, with each subsystem given as

ẋl =
ml∑

i=1

wli(zl)
(
Alixl +

ns∑

j=1,j �=l

f lij(xj)
)

(6.3)

where xl is the state vector and zl is the vector of scheduling parameters of the
lth subsystem, ml denotes the number of rules, Ali are the local matrices of the lth
subsystem, and f lij(xj) are the interconnection terms between the ith rule of the
lth subsystem and the jth subsystem.

While in centralized stability analysis of TS fuzzy systems, several types of Lya-
punov functions have been employed, stability analysis of distributed TS systems
mainly relies on the existence of a common quadratic Lyapunov function for each
subsystem. Most results make use of the assumption that the number of subsystems
and some bounds on the interconnection terms are known a priori. Although such
an assumption restricts the class of systems considered, in the sense that new sub-
systems cannot be added, it allows for a parallel analysis of the subsystems. Some
of these results are presented in what follows.

6.2.1 Parallel Stability Analysis

An early result that relies on the existence of anM-matrix1 or positive definite matri-
ces has been formulated as follows (Akar and Özgüner, 2000; Wang and Lin, 2005).
Let each subsystem of the decentralized system be given as (6.3), and the intercon-
nection terms be bounded as ‖flij(xj)‖ ≤ μf

lj‖xj‖, with μf
lj , l, j = 1, 2, . . . , ns,

i = 1, 2, . . . , ml, known positive constants. Then,

Theorem 6.1. (Akar and Özgüner, 2000) The distributed system, with each sub-
system given by (6.3) is asymptotically stable, if there exist Pl = PT

l > 0, and
Ql = QT

l > 0, l = 1, 2, . . . , ns, such that

H(PlAli) < −Ql i = 1, 2, . . . , ml (6.4)

where H(X) = X + XT , and, furthermore, the matrix M defined as

mli =

{
λmin(Ql) − 2μf

ll‖Pl‖, if l = i

−2μf
li‖Pl‖, if l �= i

(6.5)

1 A square matrix M is an M-matrix if the off-diagonal elements are all negative and all the
eigenvalues of M have non-negative real part.
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is an M-matrix, where λmin denotes the eigenvalue with the smallest absolute
magnitude.

A similar result has been given by Wang and Lin (2003), where it is required
that the matrix M is positive definite instead of being an M-matrix. Requiring
that M is positive definite is less restrictive than requiring that it is an M-matrix
(Wang and Lin, 2003). For discrete-time TS systems, a similar result has been pre-
sented by Hsiao and Hwang (2002).

Note that the conditions of Theorem 6.1 are in fact not distributed. Although a
distributed system is considered and (6.4) can be solved in parallel for all the sub-
systems, the stability of the interconnected system is established only after testing
the matrix M . The application of Theorem 6.1 is illustrated using the following
example.

Example 6.1. Consider a distributed system composed of two subsystems and the
corresponding interconnection terms, as follows:

ẋ1 = A1(x1)x1 + fm
12(x1, x2)x2

ẋ2 = A2(x2)x2 + fm
21(x1, x2)x1

(6.6)

where

x1 = (x1 x2)T x2 = (x3 x4)T

A1(x1) =
(−1 x2

−1 −5 + 2x2
2

)
A2(x2) =

( −4 2 + 2x2
3

−2x2
4 −1

)

fm
12(x1, x2) =

(
0 1/5

−x2
1 0

)
fm

21(x1, x2) =
(

1/5 0
−1/5 2x4

2

)

xi ∈ [−1, 1] i = 1, 2, 3, 4

This interconnected system has an asymptotically stable equilibrium point in 0, as
it can be proven using a centralized common quadratic Lyapunov function.

To obtain a TS system of the form (6.3), the sector nonlinearity approach can be
used on the two individual subsystems. For each subsystem (without the intercon-
nection terms), 4 local models are obtained, with the matrices of the first subsystem:

A11 =
(−1 −1
−1 −5

)
A12 =

(−1 −1
−1 −3

)
A13 =

(−1 1
−1 −5

)
A14 =

(−1 1
−1 −3

)

and the matrices of the second subsystems:

A21 =
(−4 2
−2 −1

)
A22 =

(−4 2
0 −1

)
A23 =

(−4 4
−2 −1

)
A24 =

(−4 4
0 −1

)

The interconnection terms are bounded, as ‖fm
12(x1, x2)x2‖ ≤ μf

12‖x2‖, and
‖fm

21(x1, x2)x1‖ ≤ μf
21‖x1‖, for xi ∈ [−1, 1], i = 1, 2, 3, 4, with μ12 = 0.136

and μ21 = 0.133. Moreover μ11 = 0 and μ22 = 0, as the rules of the subsystems
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are known without uncertainties (there are no “interconnection” terms from the first
subsystem to the first subsystem, and from the second subsystem to the second sub-
system, respectively).

Solving2 the LMIs (6.4), one obtains3 Q1 = Q2 = I , P1 =
(

0.85 −0.02
−0.02 0.80

)
,

‖P1‖ = 0.85, P2 =
(

0.32 −0.02
−0.02 1.03

)
, ‖P2‖ = 1.03.

Using the above computed values, the elements of the matrix M are M =(
1.00 −0.34
−0.95 1.00

)
, and it is an M-matrix, having the eigenvalues 1.57 and 0.43.

Therefore, the stability of the distributed system (6.6) has been established4. �

Hybrid linear-fuzzy systems have also been considered in the literature. For in-
stance, the approach by Xu et al. (2006) concerns stability of distributed systems
with nl subsystems of the form

ẋl = Alxl + f l(xl) +
nl+nt∑

i=1,i�=l

(Dlixi + f li(xi)) (6.7)

with l = 1, . . . , nl and nt subsystems of the form

ẋl =
ml∑

i=1

wli(zl)(Alixl +
nl+nt∑

j=1,j �=l

Alijxj) (6.8)

where l = nl +1, . . . , nl +nt, Al, Ali, Alij , andDli are matrices with appropriate
dimensions, and f l and f li are nonlinear functions satisfying ‖f l(xl)‖ ≤ μf

l ‖xl‖
and ‖f li(xi)‖ ≤ μf

li‖xi‖, respectively. As can be seen, the first nl subsystems
are linear, with Lipschitz nonlinearities, while the following nt subsystems are of
TS type. For such hybrid systems, the following theorem has been formulated by
Xu et al. (2006):

Theorem 6.2. (Xu et al., 2006) The system described by (6.7) and (6.8) is asymp-
totically stable if there exist Pl = PT

l > 0, such that
(H(PlAl) + (μf

l )2I + (nl − 1)(μf
li)

2I + (nl + nt − 1)I Pl

Pl −M−1
l

)
< 0

Ml =
ns∑

i=1,i�=l

(I + DliD
T
li)

(6.9)

2 For solving the LMI problems in this chapter, the SeDuMi solver within the Yalmip tool-
box (Löfberg, 2004) was used.

3 All values are given rounded to two decimal places.
4 Since the nonlinear system is exactly represented by the fuzzy model on a compact set, in
order to estimate the domain of attraction, the outermost level of the Lyapunov function
has to be computed.
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for l = 1, . . . , nl, i = 1, 2, . . . , ml, and, furthermore, there exist Pl = PT
l > 0

such that
(H(PlAli) + nl(μ

f
li)

2I + (nl + nt − 1)I Ml

MT
l −I

)
< 0

Ml = Pl

(
Ali1 Ali2 · · · Ali(l−1) Ali(l+1) · · · Ali(nl+nt)

) (6.10)

for l = nl + 1, . . . , nl + nt, i = 1, 2, . . . , ml.

The approach of Xu et al. (2006) is useful when one has to establish the stability of a
nonlinear system that can be well approximated by a linear model, and also reduces
the computational complexity that would be needed to establish the stability of TS
systems. A shortcoming of the method is that it is assumed that the state variables
of the independent subsystems can be separated in the linear model, i.e., in the
linear model, one cannot have multiplications between states belonging to different
subsystems. The method is illustrated on the following example.

Example 6.2. Consider a distributed system composed of two subsystems and the
corresponding interconnection terms, as follows:

ẋ1 = A1x1 + f1(x1) + D12x2

ẋ2 = A2(x2)x2 + fm
21(x1, x2)x1

(6.11)

where

x1 = (x1 x2)T x2 = (x3 x4)T

A1 =
(−1 −1
−1 −5

)
f1(x1) =

(
x2 + x2

2

5x2 + x3
2

)
D12 =

(
0 1/5
0 0

)

A2(x2) =
( −4 2 + 2x2

3

−2x2
4 −1

)
fm

21(x1, x2) =
(

1/5 0
−1/5 2x4

2

)

xi ∈ [−1, 1] i = 1, 2, 3, 4

This interconnected system is asymptotically stable, provable with a centralized
common quadratic Lyapunov function.

The first subsystem is linear, the second one is nonlinear. To obtain a TS system
of the form (6.8), the sector nonlinearity approach is used for the second subsystem.
Four local models are obtained, with the matrices being

A21 =
(−4 2
−2 −1

)
A22 =

(−4 2
0 −1

)
A23 =

(−4 4
−2 −1

)
A24 =

(−4 4
0 −1

)

The interconnection terms are bounded, as ‖f12(x2)‖ = 0, and consequentlyμf
12 =

0, ‖f1(x1)‖ ≤ μf
1‖x1‖, with μf

1 = 2.83, and ‖fm
21(x1, x2)x1‖ ≤ μf

21‖x1‖, for
xi ∈ [−1, 1], i = 1, 2, 3, 4, with μ21 = 0.133.
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Solving the LMIs (6.9) and (6.10), one obtains P1 =
(

1.38 −0.1
−0.1 0.62

)
and

P2 =
(

0.47 −0.09
−0.09 1.44

)
, and thereby the stability of the distributed system is es-

tablished. �

The results presented so far have been derived for TS systems where the individual
subsystems have linear consequents, and the conditions have been established using
common quadratic Lyapunov functions. An approach for distributed TS systems
with affine consequents, based on piecewise Lyapunov functions (Johansson et al.,
1999) has been developed by Zhang et al. (2006).

To present this result, consider a distributed system consisting of ns intercon-
nected subsystems, where each subsystem l, l = 1, . . . , ns, is represented by the
affine TS system and the interconnection term as

xl =
ml∑

i=1

wli(zl)(Alixl + ali) +
ns∑

j=1,j �=l

Dljxj (6.12)

This approach is an extension of the result by Johansson et al. (1999) to distributed
TS systems. Similarly to the result of Johansson et al. (1999), the analysis relies on
dividing the state-space of each individual subsystem into polyhedral partitions. Let
Ll0 denote the set of indices of the partitions of the l-th subsystem that contain the
origin, Ll1 the set of indices of the partitions that do not contain it, Xli the region
corresponding to Lli, andMli the index set of the rules of the lth subsystem that are
active in the region Xli.

For each subsystem, a piecewise quadratic Lyapunov function is used, such that
each part of the Lyapunov function is valid only in one region. In order to parameter-
ize the piecewise Lyapunov function, matrices Fli, F̄li and Eli, Ēli are constructed
(see (Johansson et al., 1999)) that characterize the boundaries across the regions.
Then, the following result has been formulated by Zhang et al. (2006).

Theorem 6.3. (Zhang et al., 2006) The distributed fuzzy system (6.12) is asymptot-
ically stable, if there exist Tl = T T

l > 0, εl > 0, symmetric matrices Pli, i ∈ Ll0,
P̄li, i ∈ Ll1, l = 1, . . . , ns, and symmetric matricesUli, i ∈ Ll1, andWlij , i ∈ Ll0,
l = 1, . . . , ns, j ∈ Mli, with positive entries, such that

Pli = FT
li TiFli i ∈ Ll0

P̄li = F̄T
li TiF̄li i ∈ Ll1

Pli − ET
li UliEli > 0 i ∈ Ll0⎛

⎝
H(PliAlj) + ET

li WlijEli +
∑

k=1,k �=l εknlkDT
klDkl

√∑ns

k=1,k �=l nklPli√∑ns

k=1,k �=l nklPli −εlI

⎞

⎠ < 0

i ∈ Ll0
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P̄li − ĒT
li UliĒli > 0 i ∈ Ll1⎛

⎝
H(P̄liĀlj) + ĒT

li WlijĒli +
∑

k=1,k �=l εknlkD̄T
klD̄kl

√∑ns

k=1,k �=l nklPli√∑ns

k=1,k �=l nklPli −εlI

⎞

⎠ < 0

i ∈ Ll1

where nkl =

{
1, if Dkl �= 0
0, otherwise

A shortcoming of this method is that only linear interconnection terms among the
subsystems are considered. Moreover, the analysis itself, although it concerns dis-
tributed systems, is not distributed, as it has to be performed at the same time in
parallel for all the subsystems. The method is illustrated on the following example.

Example 6.3. Consider the following distributed system composed of two subsys-
tems and the corresponding interconnection terms:

ẋ1 = A1(x1)x1 + D12x2

ẋ2 = A2(x2)x2 + D21x1

(6.13)

where

x1 = (x1 x2)T x2 = (x3 x4)T

A1(x1) =
(−1 x2

−1 −5 + 2x2
2

)
A2(x2) =

( −4 2 + 2x2
3

−2x2
4 −1

)

D12 =
(

0 1/5
1 0

)
D21 =

(
1/5 0
−1/5 0

)

xi ∈ [−1, 1] i = 1, 2, 3, 4

This interconnected system is asymptotically stable, provable with a centralized
common quadratic Lyapunov function.

To obtain TS models of the subsystems, the sector nonlinearity approach is used
on the two individual subsystems. For each subsystem, 4 local models are obtained,
with the matrices of the first subsystem:

A11 =
(−1 −1
−1 −5

)
A12 =

(−1 −1
−1 −3

)
A13 =

(−1 1
−1 −5

)
A14 =

(−1 1
−1 −3

)

and the matrices of the second subsystems:

A21 =
(−4 2
−2 −1

)
A22 =

(−4 2
0 −1

)
A23 =

(−4 4
−2 −1

)
A24 =

(−4 4
0 −1

)

Since the fuzzy model is obtained using the sector nonlinearity approach, there is
only one region for each subsystem, where all the rules of the subsystem are active.
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Thus, the conditions of Theorem 6.3 are reduced to finding Pl = PT
l > 0, l = 1, 2,

so that
⎛

⎝
H(PlAli) +

∑
k=1,k �=l εknklD

T
klDkl

√∑ns

k=1,k �=l nklPl√∑ns

k=1,k �=l nklPl −εlI

⎞

⎠ < 0

l = 1, 2 i = 1, 2, 3, 4

(6.14)

where nkl =

{
1, if Dkl �= 0
0, otherwise

Solving (6.14) for the two subsystems yields

P1 =
(

0.66 0
0 0.34

)
P2 =

(
0.48 −0.03
−0.03 1.20

)

ε1 = 1.4, ε2 = 2.52, and with this the stability of the interconnected system is
established. �

One particular type of TS systems that have been extensively investigated both in
stability analysis and in (robust) control are uncertain TS fuzzy systems. In case of
a distributed uncertain TS system, each subsystem is described as

ẋl =
ml∑

i=1

wli(zl)(Ali + ΔAli)xl +
ns∑

i=1,i�=l

(Bli + ΔBli)xi (6.15)

with ΔAli = DliFli(t)Eli, ΔBli = D̄liF̄li, Ēli, where Ali, Bli, Dli, Eli, D̄li, and
Ēli are known constant matrices and Fli and F̄li are time-varying matrices with
bounded norms FliF

T
li ≤ μliI and F̄liF̄

T
li ≤ μ̄liI .

Similarly to the previously presented results, the interconnection terms are as-
sumed linear, with a Lipschitz nonlinearity. For such uncertain distributed TS sys-
tems, the following result have been formulated by Liu and Zhang (2005):

Theorem 6.4. The distributed system (6.15) is asymptotically stable if there exist
common positive definite matrices Pl and positive constants al, l = 1, . . . , ns,
such that
⎛

⎝
Xli

√
μlimliPlDil Yl√

μlimliD
T
ilPl −alI 0

Y T
l 0 −I

⎞

⎠ < 0 i = 1, 2, . . . , ml

Xli = H(PlAli) + almliE
T
il Eil +

ns∑

k=1,k �=l

(nlkBT
klPkBkl + nklPl + n̄lkĒT

klĒkl)

i = 1, 2, . . . , ml

Yl = Pl[
√

μ̄l1n̄l1D̄l1 . . .
√

μ̄ll−1n̄ll−1D̄ll−1√
μ̄ll+1n̄ll+1D̄ll+1 . . .

√
μ̄lns n̄lnsD̄lns ]

(6.16)
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where

nkl =

{
1, if Bkl �= 0
0, otherwise

mli =

{
1, if there exists t > 0 such that DliFli(t)Eli �= 0
0, otherwise

n̄kl =

{
1, if there exists t > 0 such that D̄lkF̄lk(t)Ēlk �= 0
0, otherwise

The conditions of Theorem 6.4, similarly to those of Theorem 6.3, are not dis-
tributed, in the sense that in order to establish the stability of the distributed system,
the conditions have to be verified for all the subsystems at the same time, in parallel.
The method is illustrated on the following example.

Example 6.4. Consider a distributed system composed of two subsystems and the
corresponding interconnection terms, as follows:

ẋ1 = A1(x1)x1 + fm
12(x1, x2)x2

ẋ2 = A2(x2)x2 + fm
21(x1, x2)x1

(6.17)

where

x1 = (x1 x2)T x2 = (x3 x4)T

A1(x1) =
(−1 x2

−1 −5 + 2x2
2

)
A2(x2) =

( −4 2 + 2x2
3

−2x2
4 −1

)

fm
12(x1, x2) =

(
0 1/5

−x2
1/15 0

)
fm

21(x1, x2) =
(

1/5 0
−1/5 2x4

2/15

)

xi ∈ [−1, 1] i = 1, 2, 3, 4

The TS models of the subsystems are obtained by using the sector nonlinearity
approach and the matrices of the first subsystem are

A11 =
(−1 −1
−1 −5

)
A12 =

(−1 −1
−1 −3

)
A13 =

(−1 1
−1 −5

)
A14 =

(−1 1
−1 −3

)

while the matrices of the second subsystems are

A21 =
(−4 2
−2 −1

)
A22 =

(−4 2
0 −1

)
A23 =

(−4 4
−2 −1

)
A24 =

(−4 4
0 −1

)

The interconnection terms are nonlinear and they can be expressed as

f12(x1, x2)x2 = (B12+ΔB12)x2, withB12 =
(

0 1/5
0 0

)
,ΔB12 =

(
0 0

−x2
1/15 0

)
,
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with ‖ΔB12‖ ≤ 1/15, and f21(x1, x2)x1 = (B21 + ΔB21)x2, with B21 =(
1/5 0
−1/5 0

)
, ΔB21 =

(
0 0
0 2x4

2/15

)
, with ‖ΔB21‖ ≤ 2/15.

With these values, the conditions (6.16) are feasible, and therefore the stability
of the distributed system is established. �

Results for stability analysis of distributed TS systems have been extended
to stabilization and control of distributed TS systems (Akar and Özgüner,
2000; Tseng and Chen, 2001; Hsiao and Hwang, 2002; Wang et al., 2005;
Tong and Zhang, 2008), including robust control (Tseng and Chen, 2001;
Hsiao et al., 2005b; Wang and Tong, 2006; Liu et al., 2008; Dhbaibi et al., 2009),
control of TS systems with time delays due to the interconnections (Hsiao et al.,
2005a; Hua et al., 2005), and decentralized adaptive control (Chiang and Kuo,
2002; Chiang and Wang, 2003; Hua et al., 2005; Chiang, 2006; Chien and Er,
2006; Chiang and Lu, 2007; Wang et al., 2009). However, since all these results
concern control design, they are not presented here. The interested reader is referred
to the appropriate references.

The results that have been presented so far concern distributed systems where the
structure of the system is fixed and known. Next, a method is presented for sequen-
tial analysis of distributed TS systems whose structure is not fixed, i.e., subsystems
may be added or removed. A sequential analysis has the advantage that subsystems
may be added to or removed from the distributed system on-line. This is not possible
in case of the methods presented so far.

6.2.2 Sequential Stability Analysis

For sequential analysis, without loss of generality, two subsystems are considered,
which are coupled through their states. It is assumed that one subsystem has already
been proven stable, and a bound on the derivative of the Lyapunov function is avail-
able. In this way, the stability of the interconnected system is determined by the
stability of the other subsystem and the interconnection term. After the stability of
the interconnected system is established, the whole system can be considered as a
stable subsystem, to which new subsystems can again be connected.

Consider a TS system (in fact one subsystem) given as:

ẋ2 =
m′∑

i=1

w′
i(z

′)(A2ix2) (6.18)

Due to the addition of a new subsystem, in general both the membership functions
and the local matrices change. In this chapter, we consider only the case when the
membership functions change, assuming that the local matrices remain the same.
Such an assumption holds for material flow systems, traffic networks, etc., where the
addition of a new subsystem does not change the individual dynamics of the existing
subsystems. This assumption is not required if a parallel analysis is performed, as
the whole interconnected system is given prior to the analysis.
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Assumption 6.1. The state matrices of the existing subsystem, A2i, do not change
by the addition of the new subsystem.
The restrictiveness of Assumption 6.1 largely depends on how the fuzzy model is
obtained. For instance, consider the original system (6.18). If, after adding the new
subsystem, the dynamics changes to

ẋ2 =
m′∑

i=1

w′
i(z

′)(A2ix2) + A(x1, x2)x1

withA a smooth nonlinearmatrix function that may depend on bothx1 andx2, then
using the sector nonlinearity approach (see Section 2.3.1), the local models of the
original subsystem will remain the same (in fact they are repeated in several rules of
the centralized system), although the membership functions will change, as shown
in what follows. Using the sector nonlinearity approach, the interconnection term
A(x1, x2)x1 can be represented by the TS fuzzy system

∑mn

j=1 wj(zn)(A2jix1),
with normalized membership functions wj , j = 1, 2, . . . , mn. Then,

ẋ2 =
m′∑

i=1

w′
i(z

′)(A2ix2) + A(x1, x2)x1

=
m′∑

i=1

w′
i(z

′)(A2ix2) +
mn∑

j=1

hj(zn)(A21jx1)

=
m′∑

i=1

w′
i(z

′)
mn∑

j=1

hj(zn)(A2ix2 + A21jx1)

=
m′∑

i=1

mn∑

j=1

w′
i(z

′)hj(zn)(A2ix2 + A21jx1)

=
m′·mn∑

i=1

wi(z)(A2ix2 + A21ix1)

If the local models are obtained using Taylor series expansion (see Section 2.3.2),
then this assumption becomes more restrictive.

If the global system is known prior to the analysis, and no new subsystems are
added, then Assumption 6.1 is not needed.

Example 6.5. Consider the distributed system described in Example 6.1. If both sub-
systems are given, together with the interconnection terms, the fuzzy models can be
derived as in Example 6.1, and Assumption 6.1 is not needed.

However, depending on how the distributed system is constructed, it is possible
that at a certain moment only the second subsystem exists, i.e., the system is simply

ẋ2 = A2(x2)x2 A2(x2) =
( −4 2 + x2

3

−2x2
4 −1

)
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for which a fuzzy model can be written as

ẋ2 =
4∑

i=1

w
′
2i(z2)A2ix2

with A2i being the matrices given in Example 6.1.
To this subsystem, the new subsystem given by

ẋ1 = A1(x1)x1

is added. The connections between the subsystems are realized by the interconnec-
tion terms fm

12(x1, x2)x2 and fm
21(x1, x2)x1 such that the interconnected system

can be described as

ẋ1 = A1(x1)x1 + fm
12(x1, x2)x2

ẋ2 = A2(x2)x2 + fm
21(x1, x2)x1

Since in the interconnection term f21(x1, x2)x1 there is one nonlinearity, the new
fuzzy model

ẋ2 = A2(x2)x2 + fm
21(x1, x2)x1

i.e., the second subsystem together with the interconnection term, can be written as

ẋ2 =
4∑

i=1

w
′
2i(z2)A2ix2 +

2∑

j=1

w
′
21j(z21)A21jx1

=
4∑

i=1

2∑

j=1

w
′
2i(z2)w

′
21j(z21)(A2ix2 + A21jx1)

As can be seen, in this case the already available matrices A2i do not change: they
are repeated in the interconnected system for each nonlinearity in the interconnec-
tion term fm

21(x1, x2)x2. �

When the new subsystem is added, and Assumption 6.1 is satisfied, the whole sys-
tem, i.e., the subsystem added (with states x1), the existing subsystem (with states
x2), and the interconnection terms are expressed together as

ẋ1 =
m∑

i=1

wi(z)(A1ix1 + A12ix2)

ẋ2 =
m∑

i=1

wi(z)(A2ix2 + A21ix1)

(6.19)

The structure of system (6.19) is then presented in Figure 6.1.
For this system, the following stability conditions have been formu-

lated (Lendek et al., 2008):
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Fig. 6.1 Two subsystems coupled through their states.

Theorem 6.5. The system (6.19) is asymptotically stable, if there exist P1 = PT
1 >

0, P2 = PT
2 > 0, Q1 = QT

1 > 0, and Q2 = QT
2 > 0, so that for i = 1, 2, . . . , m,

H(P1A1i) < −2Q1

H(P2A2i) < −2Q2

λmin(Q1) ≥ max
i

‖P1A12i‖
λmin(H(P1A1i + Q1))

maxi ‖P1A12i‖ >
maxi ‖AT

21iP2‖2

λmin(Q2)λmin(H(P2A2i + Q2))

where λmin(.) denotes the eigenvalue with the smallest absolute magnitude.

Proof: System (6.19) can be seen as the cascaded system

ẋ1 =
m∑

i=1

wi(z)(A1ix1)

ẋ2 =
m∑

i=1

wi(z)(A2ix2 + A21ix1)

(6.20)

with an extra feedback term given by
∑m

i=1 wi(z)A12ix2. As it has been established
in Chapter 5, according to Theorem 5.3, system (6.20) is exponentially stable, if
there exist P1 = PT

1 > 0, P2 = PT
2 > 0, Q1 = QT

1 > 0, and Q2 = QT
2 > 0, so

that for i = 1, 2, . . . , m, it holds that

H(P1A1i) < −2Q1

H(P2A2i) < −2Q2

(6.21)

In order to make the step from the stable cascaded system to the analysis
of the distributed system, a Lyapunov function is needed. One way of con-
structing the Lyapunov function using P1 and P2 is by considering the function
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Vc = xT diag(αP1, P2)x. This choice allows one to determine α ∈ R+ so that
V̇c < −2xT Qx, with Q = diag(αQ1, Q2):

V̇c =
m∑

i=1

wi(z)xT

(
αH(P1A1i) AT

21iP2

P2A21i H(P2A2i)

)
x

Then, V̇c < −2xT Qx, if
(

αH(P1A1i) A21
T
i P2

P2A21i H(P2A2i)

)
< −2

(
αQ1 0

0 Q2

)

for i = 1, 2, . . . , m, or
(

αH(P1A1i + Q1) A21
T
i P2

P2A21i H(P2A2i + Q2)

)
< 0

for i = 1, 2, . . . , m. Using the Schur complement, one has

αH(P1A1i + Q1) − (AT
21iP2)(H(P2A2i + Q2))−1P2A21i < 0

for i = 1, 2, . . . , m, which is true if α is chosen such that

α >
1

λmin(H(P1A1i + Q1))
· maxi ‖AT

21iP2‖2

λmin(H(P2A2i + Q2))
(6.22)

for i = 1, 2, . . . , m, where λmin(.) denotes the eigenvalue with the smallest abso-
lute magnitude. Now, consider the full system (6.19). Using the above constructed
Vc as a candidate Lyapunov function for (6.19), one obtains

V̇c =
m∑

i=1

wi(z)xT

[(
αH(P1A1i) AT

21iP2

P2A21i H(P2A2i)

)
+
(

0 αP1A12i

αAT
12iP1 0

)]
x

< −2xT

(
αQ1 0

0 Q2

)
x + 2xT α max

i
‖P1A12i‖Ix

< −2xT

(
α(Q1 − maxi ‖P1A12i‖I) 0

0 Q2 − α maxi ‖P1A12i‖I
)

x

which leads to the conditions

λmin(Q1) > maxi ‖P1A12i‖ (6.23)
λmin(Q2) > α maxi ‖P1A12i‖ (6.24)

for i = 1, 2, . . . , m.
Combining (6.22) and (6.24), such an α exists, and Vc is a Lyapunov function for

the whole system if
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λmin(Q2)
maxi ‖P1A12i‖ >

maxi ‖AT
21iP2‖2

λmin(H(P1A1i + Q1))λmin(H(P2A2i + Q2))

or
λmin(H(P1A1i + Q1))

maxi ‖P1A12i‖ >
maxi ‖AT

21iP2‖2

λmin(Q2)λmin(H(P2A2i + Q2))

for i = 1, 2, . . . , m. With this, Theorem 6.5 is proven. �
Remark: IfA12i = 0, for i = 1, 2, . . . , m, orA21i = 0, for i = 1, 2, . . . , m, then
based on Theorem 5.3, the system (6.19) is stable if the individual subsystems are
stable, and the last two conditions are not required.

A shortcoming of Theorem 6.5 is that the conditions are not LMIs. However, LMI
conditions, which, when satisfied ensure the conditions of Theorem 6.5 can be for-
mulated using the following two-step procedure. Note that the following conditions
are more conservative than those of Theorem 6.5.

Algorithm 6.1. Sequential stability analysis

1. Assume that the existing system

ẋ2 =
m∑

i=1

wi(z)A2ix

is already proven to be stable using a quadratic Lyapunov function and there-
fore P2 and Q2 such that H(P2A2i) < −2Q2, have been computed. Thanks to
this, when adding the new subsystem, with the interconnection terms, one can
compute

γ =
maxi ‖AT

21iP2‖2

λmin(Q2)mini(λmin(H(P2A2i + Q2))
)

2. Now, for the added subsystem and the corresponding interconnection terms the
conditions:

H(P1A1i) < −2Q1

λmin(Q1) ≥ max
i

‖P1A12i‖
λmin(H(P1A1i + Q1)) > γmax

i
‖P1A12i‖

for i = 1, 2, . . . , m, are satisfied if the LMIs

H(P1A1i + Q1) < −t1I

Q1 > t2I(
t2I maxi ‖A12i‖P1

maxi ‖A12i‖P1 t2I

)
> 0

(
t1I γ maxi ‖A12i‖P1

γ maxi ‖A12i‖P1 t1I

)
> 0

(6.25)

for i = 1, 2, . . . , m are feasible.
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Moreover, if one takes into consideration that new subsystems will be added
to the whole system (6.19), the analysis of the new subsystems can be facilitated
by minimizing the expression:

‖P1‖2

λmin(Q1)mini(λmin(H(P1A1i + Q1)))

which will in turn minimize the bound γ computed for the system (6.19).
This can be achieved by solving the LMI-based convex problem: find P1 =
PT

1 > 0, Q1 = QT
1 > 0, and maximize t1, t2, t3 subject to (6.25) and P1 <

t3I . �

The application of Theorem 6.5, using Algorithm 6.1 is illustrated on the following
example.

Example 6.6. Consider the distributed system in Example 6.1, constructed as in Ex-
ample 6.5. First the system available is the second subsystem

ẋ2 = A2(x2)x2 A2(x2) =
( −4 2 + 2x2

3

−2x2
4 −1

)

For this system a fuzzy model is written as

ẋ2 =
4∑

i=1

w
′
2i(z2)A2ix2

with

A21 =
(−4 2
−2 −1

)
A22 =

(−4 2
0 −1

)
A23 =

(−4 4
−2 −1

)
A24 =

(−4 4
0 −1

)

The stability of this system is verified by solving the LMI problem: find P2 =
P T

2 > 0, and Q2 = QT
2 > 0 such that H(P2A2i) < −2Q2. One obtains P2 =(

0.23 −0.03
−0.03 0.77

)
, Q2 = 0.247I .

Now, the new subsystem is added, with the interconnection terms fm
21(x1, x2)x1

and fm
12(x1, x2)x2. The new subsystem is also written as a fuzzy model, with the

matrices

A11 =
(−1 −1
−1 −5

)
A12 =

(−1 −1
−1 −3

)
A13 =

(−1 1
−1 −5

)
A14 =

(−1 1
−1 −3

)

The interconnection terms can also be expressed as fuzzy models, both hav-

ing two rules, with the matrices A211 =
(

1/5 0
−1/5 0

)
, A212 =

(
1/5 0
−1/5 2/5

)
,

A121 =
(

0 1/5
−1/50

)
, and A122 =

(
0 1/5
0 0

)
. With these values, γ from Step 1 of

Algorithm 6.1 can be computed as γ = 0.66.
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In the second step of Algorithm 6.1, the stability of the interconnected system

ẋ1 = A1(x1)x1 + fm
12(x1, x2)x2

ẋ2 = A2(x2)x2 + fm
21(x1, x2)x1

is analyzed, by solving (6.25). One obtains P1 =
(

0.68 −0.07
−0.07 0.32

)
, and Q1 =

0.22I . With this, the stability of the interconnected system is established. �

A shortcoming of the approach at this point is that although the stability analysis

of the second subsystem has been performed, and Vc =
(

αP1 0
0 P2

)
is used as a

Lyapunov function, all that is known is that V̇c < 0, i.e., a bound on the derivative of
the Lyapunov function is not yet available. To continue the reasoning when the next
subsystem will be added, it is desired that V̇c ≤ −2xT Qx, for some Q = QT > 0.
To obtain such a Q, consider the derivative of V̇c,

V̇c < −2xT

(
α(Q1 − maxi ‖P1A12i‖I) 0

0 Q2 − α maxi ‖P1A12i‖I
)

x

By imposing that
(

α(Q1 − maxi ‖P1A12i‖I) 0
0 Q2 − α maxi ‖P1A12i‖I

)
> β

(
αQ1 0

0 Q2

)

where i = 1, 2, . . . , m, for some arbitrary β ∈ (0, 1), the following conditions are
obtained

Q1 − max
i

‖P1A12i‖I > βQ1

Q2 − α max
i

‖P1A12i‖I > βQ2

i.e.,
(1 − β)Q1 > max

i
‖P1A12i‖I

(1 − β)Q2 > α max
i

‖P1A12i‖I
(6.26)

where i = 1, 2, . . . , m. Combining (6.26) and the conditions of Theorem 6.5, the
following corollary can be formulated.

Corollary 6.1. V =
(
xT

1 xT
2

)(αP1 0
0 P2

)(
x1

x2

)
is a Lyapunov function for (6.19)

and V̇ < β
(
xT

1 xT
2

)(αQ1 0
0 Q2

)(
x1

x2

)
for an arbitrary β ∈ (0, 1) if, for i =

1, 2, . . . , m:
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H(P1A1i) < −2Q1

H(P2A2i) < −2Q2

(1 − β)λmin(Q1) ≥ max
i

‖P1A12i‖
λmin(H(P1A1i + Q1))

maxi ‖P1A12i‖ >
maxi ‖AT

21iP2‖2

(1 − β)λmin(Q2)λmin(H(P2A2i + Q2))

(6.27)

The application of the conditions of Corollary 6.1 are illustrated using the following
example.

Example 6.7. Consider the distributed system in Example 6.6, where the stability
of the interconnected system has been established, but a bound on the derivative of
the Lyapunov function has not yet been found. This bound is needed for analyzing
the stability if again a new subsystem is added. To obtain this bound, one has to
solve (6.27) instead of (6.25).

Since the conditions (6.27) are nonlinear, with a fixed β ∈ [0, 1], sufficient LMI
conditions, similar to (6.25) are formulated as

H(P1A1i + Q1) < −t1I

Q1 > t2I(
(1 − β)t2I maxi ‖A12i‖P1

maxi ‖A12i‖P1 (1 − β)t2I

)
> 0

(
(1 − β)t1I γ maxi ‖A12i‖P1

γ maxi ‖A12i‖P1 (1 − β)t1I

)
> 0

(6.28)

for i = 1, 2, . . . , m. In fact the LMIs (6.25) are a special case obtained for β = 1
of the conditions (6.28).

Conditions (6.28) may not be feasible for any β. For the distributed system in
Example 6.6, we obtain that (6.28) is feasible for β = 0.1, but it is not feasible for
instance for β = 0.9. Since the goal is to determine β as large as possible to facili-
tate the analysis of possible subsystems that will be added, one can consider (6.28)
a BMI problem, with both β and P1 decision variables. Solving (6.28) as a BMI

problem5 yields P1 =
(

0.23 −0.03
−0.03 0.77

)
, β = 0.42, and Q1 = 0.25I . �

Recall that it was assumed that the interconnection terms or bounds on them are
not known before adding a new subsystem. However, if γk = maxij ‖Akij‖, i.e., a
bound on the interconnection terms is known beforehand, the analysis of the sub-
systems can be decoupled and the following result can be stated:

Theorem 6.6. Given γ1 = maxi ‖A12i‖ and γ2 = maxi ‖A21i‖, i = 1, 2, . . . , m,
the distributed system (6.19) is exponentially stable, if there exist P1 = P T

1 > 0,
P2 = PT

2 > 0, Q1 = QT
1 > 0, Q2 = QT

2 > 0, so that
5 For solving BMI problems, Penbmi (Kočvara and Stingl, 2008) has been used.
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H(P1A1i) < −2Q1

H(P2A2i) < −2Q2

λmin(H(P1A1i + Q1)) > λmin(Q1)
λmin(H(P2A2i + Q2)) > λmin(Q2)
λmin(Q1) ≥ γ1‖P1‖
λmin(Q2) ≥ γ2‖P2‖

(6.29)

for i = 1, 2, . . . , m, where λmin(.) is the eigenvalue with the smallest absolute
magnitude.

Proof: The last condition of Theorem 6.5 is

λmin(H(P1A1i + Q1))
maxi ‖P1A12i‖ >

maxi ‖AT
21iP2‖2

λmin(Q2)λmin(H(P2A2i + Q2))

for i = 1, 2, . . . , m, which can be rewritten as

λmin(H(P1A1i + Q1))λmin(Q2)λmin(H(P2A2i + Q2)) >

max
i

‖P1A12i‖max
i

‖AT
21iP2‖2

for i = 1, 2, . . . , m. The third condition of Theorem 6.5 already states that for
i = 1, 2, . . . , m

λmin(Q1) ≥ max
i

‖P1A12i‖ (6.30)

If Q2 is similarly restricted, i.e., the condition

λmin(Q2) ≥ max
i

‖P2A21i‖ (6.31)

i = 1, 2, . . . , m is imposed, then the last condition of Theorem 6.5 becomes

λmin(H(P1A1i + Q1))λmin(Q2)λmin(H(P2A2i + Q2)) > λmin(Q1)λ2
min(Q2)

λmin(H(P1A1i + Q1))λmin(H(P2A2i + Q2)) > λmin(Q1)λmin(Q2)

for i = 1, 2, . . . , m, which is satisfied if

λmin(H(P1A1i + Q1)) > λmin(Q1)
λmin(H(P2A2i + Q2)) > λmin(Q2)

for i = 1, 2, . . . , m. However, since only the bounds on the interconnection terms
γ1 and γ2 are known, instead of (6.30) and (6.31) one has to use

λmin(Q1) ≥ γ1‖P1‖
λmin(Q2) ≥ γ2‖P2‖

(6.32)

Together with the restrictions onQ1 andQ2, and (6.32), the conditions expressed in
Theorem 6.6 are obtained. �
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Example 6.8. Consider again the distributed system of Example 6.6. To apply The-
orem 6.6, one can bound the interconnection terms as γ2 = maxi ‖A21i‖ = 0.46
and γ1 = maxi ‖A12i‖ = 0.2, i = 1, 2, . . . , m. However, similarly to the result in
Example 6.4, the conditions (6.29) are not feasible. In this case, the unfeasibility of
the conditions is due to the “too large” interconnection term f21, in fact γ2. If this
interconnection term would be such that this bound has the value γ2/2, the stability
of the interconnected system can be established using (6.29). �

The conditions of Theorem 6.6 are similar to those reported by Wang and Lin
(2005). As it has already been stated, the parallel analysis has the advantage that
it is less conservative when for each subsystem the strength of the interconnec-
tion terms is approximately the same and are weak in both directions, i.e., there is
a weak coupling (Sandell et al., 1978) between the subsystems. A shortcoming of
such approaches is that the result can only be obtained if bounds on the intercon-
nection terms that are introduced to the system by the addition of a new subsystem
are known beforehand. This condition is not needed for Theorem 6.5, as, thanks
to the sequential analysis, the interconnection terms only need to be known when
the subsystem that introduces them is analyzed. In fact, Theorem 6.5 and the re-
sulting Algorithm 6.1, are comparable to methods developed for strong coupling,
i.e., only one of the subsystems has to converge quickly enough so that stability is
preserved. The sequential approach can also be thought of as an asymmetrical weak
coupling, i.e., only one of the influences has to be weak enough for stability to be
preserved.

One of the assumptions that restricts the applicability of the presented methods
is that they require the stability of the individual subsystems. Since no restrictions
are assumed on the structure of the interconnected system (e.g., conditions such
as only the neighboring subsystems are interconnected), this is a reasonable as-
sumption. Moreover, this shortcoming can be alleviated for instance for sequential
stability analysis (Theorem 6.5) by using a full Lyapunov matrix instead of the
block-diagonal one when deriving the stability conditions. However, such an ap-
proach results in even more complex nonlinear conditions. Note that this is a disad-
vantage mainly of interconnected systems where subsystems are added on-line. If
the whole interconnected system is known prior to the analysis, this disadvantage
may disappear, for instance because the addition of new subsystems changes the dy-
namics of the individual subsystems (e.g., two inverted pendulums connected with a
spring).

On the other hand, if subsystems can be added and removed over time, for estab-
lishing the stability of the interconnected system, it is necessary that the individual
subsystems are stable. If no subsystem is removed, this assumption is no longer
necessary, i.e., theoretically it is allowed that some subsystems are unstable as long
as the other subsystems stabilize it. Results for such systems exist for special cases
of linear systems, but, in the context of TS fuzzy systems, this issue has not been
addressed.
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6.3 Distributed Observer Design for TS Systems

Distributed observer design has been early recognized as an important problem and
attracted research interest since the 1970s. However, most of the obtained results
concern linear systems.

The general approach is that first one constructs a set of observers for the indepen-
dent subsystems. However, unless there is no interconnection between the subsys-
tems, the set of local observers does not guarantee the convergence of the estimation
error to zero for the interconnected system. Therefore, one either has to incorporate
an appropriate compensation to account for the influence of other subsystems or de-
termine conditions under which the collection of the individual observers is a valid
observer for the distributed system. In this section, we consider distributed observer
design for TS systems, and present conditions that ensure that the estimation error
converges to zero.

6.3.1 General Framework

For observer design, we consider a system consisting of ns subsystems, with each
subsystem l represented by the TS model

ẋl =
ml∑

i=1

wi(z)
(
Alixl + Bliul + ali +

ns∑

j=1,j �=l

f lij(xj)
)

yl =
ml∑

i=1

wi(z)
(
Clixl + cli +

ns∑

j=1,j �=l

hlij(xj)
) (6.33)

where xl, and ul, l = 1, 2, . . . , ns denote the state and input vectors of the lth
subsystem, ml is the number of rules in the fuzzy representation of the lth sub-
system, Ali, Bli, Cli, ali, and cli are the corresponding local matrices and biases,
and f lij and hlij denote the (usually nonlinear) interconnection terms from other
subsystems. A general assumption, similarly to stability analysis, is that these inter-
connection terms are Lipschitz in the states, i.e., there exist μf

lij and μh
lij such that

‖f lij(xl)‖ ≤ μf
lij‖xl‖, and ‖hlij(xl)‖ ≤ μh

lij‖xl‖.
We start with presenting a result for the linear case. Observer design for TS sys-

tems in general follows the same line of reasoning.
For linear systems, in general, two main approaches have been considered. The

first approach considers the case when, for some reason, the estimated values can-
not be communicated. In such a case, the interconnection term is usually treated
as an unknown input, and is either decoupled or estimated. While unknown input
observers have attracted research interest for linear systems (Xiong and Saif, 2003;
Pertew et al., 2005; Hsieh, 2009), and for centralized TS systems with linear mea-
surements (Marx et al., 2007) to the authors’ best knowledge, this setting has not
been considered in the context of distributed TS systems.
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For distributed linear systems, Saif and Guan (1992) proposed a decentralized
observer scheme based on this approach. In the approach of Saif and Guan (1992),
a local observer is designed for each subsystem that treats the influence from other
subsystems as an unknown input and effectively decouples them. A similar method
has been employed by Hou and Müller (1994). Note, however, that designing such
an observer is not possible in all cases, even less in the case of TS systems with a
nonlinear measurement model.

The second approach is when the measured or estimated variables are communi-
cated between the subsystems that directly influence each other. Although in prac-
tice such an assumption can lead to a communication overhead, or may be even
impossible to realize, in theoretical developments this is a common assumption.

For the linear case, consider the distributed system where each subsystem l, l =
1, . . . , ns, is described as

ẋl =Alxl + Blul +
ns∑

i=1,i�=l

Dlixi

yl =Clxl

(6.34)

For this system, the following observer can be used, see (Sundareshan and Elbanna,
1990) and the references therein:

˙̂xl = (Al − LlCl)x̂l + Lly + Blul +
ns∑

i=1,i�=l

Dlix̂i

If the subsystems are independent, i.e., Dli = 0, Ll can be determined as for in-
stance Ll = PlC

T
l , where Pl = PT

l > 0 is the solution of the Riccati equation

H(PlAl) − PlC
T
l ClPl + Ql = 0

with Ql = QT
l > 0.

Otherwise, the error dynamics for the overall distributed system can be written
as

ė = (A + D − LC)e (6.35)

withA = diag(A1, . . . , Ans),C = diag(C1, . . . , Cns),L = diag(L1, . . . , Lns),

and D =

⎛

⎜⎜⎜⎝

0 D12 · · · D1ns

D21 0 · · · D2ns

...
... · · · ...

Dns1 Dns2 · · · 0

⎞

⎟⎟⎟⎠. The observer design problem is then reduced

to finding L such that the error system (6.35) is stable.
The assumption that the estimate of the variables is communicated is used for

instance by Sundareshan and Elbanna (1990) for linear systems. The result ob-
tained relies on block-diagonal Lyapunov functions and establishes that the matrix
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block-diagonal terms in the derivative of the Lyapunov function are dominant.
Although the method presented by (Sundareshan and Elbanna, 1990) requires the
transformation of each subsystem into observer canonical form, it is in effect equiv-
alent to the extension of Theorem 6.1 to observer design, under the assumption that
the estimates of the states are communicated between the subsystems.

In fact, the results presented in Section 6.2.1 can be directly extended for ob-
server design under the assumptions that 1) the scheduling vector depends only on
measured variables and 2) the estimated states are communicated between the sub-
systems that influence each other.

Under these assumptions, consider the distributed TS fuzzy system where each
subsystem l = 1, 2, . . . , ns is described as

ẋl =
ml∑

i=1

wli(zl)(Alixl + Bliul + ai +
ns∑

j=1,j �=l

Alijxj)

y =
ml∑

i=1

wli(zl)(Clixl + cli)

(6.36)

For each subsystem l = 1, 2, . . . , ns, the following observer can be used

˙̂xl =
ml∑

i=1

wli(zl)
(
Alix̂l + Bliul + ai +

ns∑

j=1,j �=l

Alij x̂j

+ Lli(yl − ŷl)
)

yl =
ml∑

i=1

wli(zl)(Clix̂l + cli)

(6.37)

and the estimation error dynamics of subsystem l are expressed as

ėl =
ml∑

i=1

ml∑

j=1

wli(zl)wlj(zl)
(
(Ali − LliClj)el +

ns∑

k=1,k �=l

Alikek

)
(6.38)

System (6.38) is equivalent to system (6.3). Depending on the interconnection terms
Alik , the conditions presented in Section 6.2.1, namely Theorems 6.1–6.4 can be
used.

However, the extension of the results regarding stability analysis of distributed
TS systems to observer design has not been reported in the literature. Instead, paral-
lel observer-based control design (Chiang and Kuo, 2002; Chiang and Wang, 2003;
Hua et al., 2005; Chien and Er, 2006; Huang and Ho, 2007; Tseng, 2008) has been
addressed.

In general, for centralized TS systems, in observer-based control, the observer
and controller gains are designed using the separation principle. However, the
separation principle only holds if the scheduling variables do not depend on states
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that are not measured. Furthermore, if a subsystem is influenced by the states of
other subsystems that are not known (communicated), the separation principle can-
not be used. Therefore, results for observer-based control design usually employ a
two-step procedure. Another issue that in general is not taken into account is that the
measurements of one subsystem may depend on the states of the other subsystems.

For distributed uncertain TS systems with time delay due to the the commu-
nication, a robust observer-based control design method has been proposed by
Tong et al. (2007). In this approach the observer and controller design cannot be
separated, due to the uncertainty in the systemmatrices. The same is valid in the case
of the result by Tseng (2008): the observer and the controller have to be designed
simultaneously. Without a stabilizing state-feedback controller, the convergence to
zero of the estimation error cannot be guaranteed.

Distributed observer-based control design has been considered in several set-
tings, such as tracking control (Tseng, 2008), adaptive control (Chiang and Wang,
2003; Chien and Er, 2006; Huang and Ho, 2007), robust control (Chiang and Kuo,
2002; Chiang and Wang, 2003; Chiang, 2006), control in the presence of time delay
(Hua et al., 2005; Chiang, 2006; Chiang and Lu, 2007), and their combinations.

Results for discrete-time controller and observer-based controller design include,
but are not limited to (Akar and Özgüner, 2000; Hsiao and Hwang, 2002). Also for
discrete-time systems the observer design problem is not considered separately.

In the next two sections we present the extension of the results of Section 6.2.2 to
observer design. Consider a distributed system where each subsystem is represented
by a TS fuzzy model, to which new subsystems may be added online. The goal is to
design an asymptotically stable observer for the whole system. Sequential design is
considered, where an observer is designed for each newly added subsystem, without
modifying the already existing observers, so that the overall observer is stable.

Note that it is not assumed that the subsystems are stabilized or controlled at a
known value (i.e., the states are not at some known constant value). However, the
estimated states are communicated among the subsystems that influence each other.

For the ease of notation and without loss of generality, similarly to Sec-
tion 6.2.2, only two subsystems are considered. The observer structure is depicted
in Figure 6.2.
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Fig. 6.2 Distributed observer for two subsystems.
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Then, the fuzzy system consists of two subsystems:

ẋ1 =
m∑

i=1

wi(z)(A1ix1 + B1iu + A12ix2 + a1i)

y1 =
m∑

i=1

wi(z)(C11ix1 + C12ix2 + c1i)

ẋ2 =
m∑

i=1

wi(z)(A2ix2 + B2iu + A21ix1 + a2i)

y2 =
m∑

i=1

wi(z)(C22ix2 + C21ix1 + c2i)

(6.39)

and the observer is of the form:

˙̂x1 =
m∑

i=1

wi(ẑ)(A1ix̂1 + B1iu + A12ix̂2 + a1i + L1i(y1 − ŷ1))

ŷ1 =
m∑

i=1

wi(ẑ)(C11ix̂1 + C12ix̂2 + c1i)

˙̂x2 =
m∑

i=1

wi(ẑ)(A2ix̂2 + B2iu + A21ix̂1 + a2i + L2i(y2 − ŷ2))

ŷ2 =
m∑

i=1

wi(ẑ)(C22ix̂2 + C21ix̂1 + c2i)

(6.40)

The goal is to design the observer gains L1i, i = 1, 2, . . . , m, for each rule of the
subsystem with states x1 so that (6.40) guarantees the convergence of the estimation
error x − x̂ to zero, given that the gains L2i, i = 1, 2, . . . , m, have already been
designed such that the observer

˙̂x2 =
m∑

i=1

wi(ẑ)(A2ix̂2 + B2iu + a2i + L2i(y2 − ŷ2))

ŷ2 =
m∑

i=1

wi(ẑ)(C22ix̂2 + c2i)

guarantees the convergence to zero of the estimation error for the second subsystem
without the interconnection terms:
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ẋ2 =
m∑

i=1

wi(z)(A2ix2 + B2iu + a2i)

y2 =
m∑

i=1

wi(z)(C22ix2 + dc2i)

The system structure considered is characterized by coupling both in the states and
the measurements, and is presented in Figure 6.3. In what follows, two cases are dis-
tinguished: 1) the scheduling vector depends only on measured or known variables
and 2) the scheduling variables depend on states that have to be estimated.
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Fig. 6.3 Two subsystems coupled through their states and measurements.

6.3.2 Sequential Design: Measured Scheduling Vector

Assuming that the scheduling vector depends only on measured variables, and that
the estimated states are communicated among the subsystems, the error systems can
be expressed as:

ė1 =
m∑

i=1

m∑

j=1

wi(z)wj(z)(A1ie1 + A12ie2 − L1iC1je)

ė2 =
m∑

i=1

m∑

j=1

wi(z)wj(z)(A2ie2 + A21ie1 − L2iC2je)

(6.41)

where C1i = (C11i C12i) and C2i = (C21i C22i), or

ė =
m∑

i=1

m∑

j=1

wi(z)wj(z)
(

A1i − L1iC11j A12i − L1iC12j

A21i − L2iC21j A2i − L2iC22j

)
e (6.42)

Since L1i, i = 1, 2, . . . , m, need to be designed, a simple special case is
when there exist P1 = PT

1 > 0 and L1i, so that H(P1(A1i − L1iC11j)) < 0
and A12i − L1iC12j = 0, i = 1, 2, . . . , m, j = 1, 2, . . . , m, ∀i �= j : ∃z :
wi(z)wj(z) �= 0. In this case the error system (6.42) is cascaded, further restrictions
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are not necessary, and the stability conditions for the estimation error dynamics can
be summarized as the consequence of Theorem 5.3:

Corollary 6.2. The error system (6.42) is asymptotically stable if there exist P1 =
P T

1 > 0, P2 = PT
2 > 0, L1i, and L2i, i = 1, 2, . . . , m, so that

H(P1(A1i − L1iC11j)) < 0
H(P2(A2i − L2iC22j)) < 0
A12i − L1iC12j = 0

for i = 1, 2, . . . , m, j = 1, 2, . . . , m, ∀i �= j : ∃z : wi(z)wj(z) �= 0.

Note that the third condition of Corollary 6.2 can rarely be satisfied if the system is
not cascaded, i.e., in general it is not possible to findL1i such thatA12i−L1iC12j =
0, i = 1, 2, . . . , m, j = 1, 2, . . . , m, ∀i �= j : ∃z : wi(z)wj(z) �= 0.

Therefore, the results from Section 6.2.2, in particular Theorem 6.5, are appro-
priately modified:

Corollary 6.3. The error system (6.42) is exponentially stable, if there exist L1i,
L2i, i = 1, 2, . . . , m, P1 = PT

1 > 0, P2 = PT
2 > 0, Q1 = QT

1 > 0, and
Q2 = QT

2 > 0, so that

H(P1G1ij) < −2Q1

H(P2G2ij) < −2Q2

λmin(Q1) ≥ max
ij

‖P1G12ij‖
λmin(H(P1G1ij + Q1))

maxij ‖P1G12ij‖ >
maxij ‖P2G21ij‖2

λmin(Q2)λmin(H(P2G2ij + Q2))

(6.43)

for i = 1, 2, . . . , m, j = 1, 2, . . . , m, ∀i �= j : ∃z : wi(z)wj(z) �= 0,
where G1ij = A1i − L1iC11j , G2ij = A2i − L2iC22j , G12ij = A12i − L1iC12j ,
G21ij = A21i−L2iC21j , andλmin denotes the eigenvaluewith the smallest absolute
magnitude.

Similarly to Algorithm 6.1, sufficient LMI conditions can be formulated, which,
although more conservative than the conditions of Corollary 6.3, when satisfied, en-
sure that the conditions of Corollary 6.3 are satisfied. These LMI conditions lead to
a sequential implementation, as follows. Assume that an observer has been designed
for the subsystem

ẋ2 =
m∑

i=1

wi(z)(A2ix2 + B2iu + a2i)

y2 =
m∑

i=1

wi(z)(C22ix2 + c2i)
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the matrices P2, Q2, and the gains L2i, i = 1, 2, . . . , m are known, and there-
fore, G2ij can be computed. After adding the interconnection terms, G21ij , i =
1, 2, . . . , m, j = 1, 2, . . . , m, also the ratio

γ =
maxij ‖P2G21ij‖2

λmin(Q2)λmin(H(P2G2ij + Q2))

can be computed. The conditions of Corollary 6.3 are then reduced to finding L2i,
i = 1, 2, . . . , m, P1 = PT

1 > 0, Q1 = QT
1 > 0, so that for i = 1, 2, . . . , m,

j = 1, 2, . . . , m

H(P1G1ij) < −2Q1

λmin(Q1) ≥ max
ij

‖P1G12ij‖
λmin(H(P1G1ij + Q1)) > γmax

ij
‖P1G12ij‖

which are satisfied if

H(P1G1ij + Q1) < 0
Q1 ≥ max

ij
‖P1G12ij‖I

H(P1G1ij + Q1) < −γmax
ij

‖P1G12ij‖I

These conditions, in turn are satisfied if the following LMIs are feasible, with the
change of variables Mi = P1L1i, i = 1, 2, . . . , m: f ind L2i, i = 1, 2, . . . , m,
P1 = PT

1 > 0, Q1 = QT
1 > 0, t1 > 0, t2 > 0, and Mi, i = 1, 2, . . . , m, so that

for i = 1, 2, . . . , m, j = 1, 2, . . . , m it holds that

H(P1A1i − MiC1i + Q1) < −t1I

Q1 > t2I(
t2I P1A12i − MiC12j

(P1A12i − MiC12j)T t2I

)
> 0

(
t1I P1γA12i − MiγC12j

(P1γA12i − MiγC12j)T t1I

)
> 0

The steps are summarized as follows:

Algorithm 6.2. Sequential observer design.

1. For the existing observer of the subsystem

ẋ2 =
m∑

i=1

wi(z)(A2ix2 + B2iu + a2i)

y2 =
m∑

i=1

wi(z)(C22ix2 + c2i)
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compute

γ̄ =
‖P2‖2

λmin(Q2)λmin(H(P2G2ij + Q2))

2. When the new subsystem and corresponding interconnection terms are added,
compute γ = γ̄ maxij ‖G21ij‖2. To design the observer for this subsystem,
solve the LMI problem: find L2i, i = 1, 2, . . . , m, P1 = PT

1 > 0, Q1 =
QT

1 > 0, t1 > 0, t2 > 0 Mi, i = 1, 2, . . . , m, so that for i = 1, 2, . . . , m,
j = 1, 2, . . . , m

H(P1A1i − MiC1i + Q1) < −t1I

Q1 > t2I(
t2I P1A12i − MiC12j

(P1A12i − MiC12j)T t2I

)
> 0

(
t1I P1γA12i − MiγC12j

(P1γA12i − MiγC12j)T t1I

)
> 0

The application of Algorithm 6.2 is illustrated on the following example.

Example 6.9. Consider a distributed system consisting of two subsystems as
follows:

ẋ1 =
(−x1 1

x2
1 −3

)
x1 +

(
1
0

)
u1 +

(
3
4

)
+
(

0 1
1 0

)
x2

y1 =
(
1 0

)
x1

ẋ2 =
(−2x2

3 + 3 x3

−2 −1

)
x2 +

(
3
x3

)
u2 +

(
1
2

)
+
(

x1 0
0 1

)
x1

y2 =
(
1 0

)
x2

(6.44)

where x1 = (x1 x2)T , x2 = (x3 x4)T , xi ∈ [−1, 1], i = 1, 2, 3, 4, u1, u2 ∈ R.
Our goal is to design an observer observer for this distributed system.

An exact TS fuzzy representation of this system is obtained using the sector non-
linearity approach. The scheduling variables are chosen as x1 and x2

1 for the first
subsystem and x1, x3, x2

3 for the second subsystem. Since x1 and x3 are measured,
the scheduling vectors of the subsystems do not depend on states that have to be
estimated.

Note that in the actual computation of the observer gains only the local state
matrices take part, i.e., the input matrices and the affine terms do not influence the
computation of the gains. Then, for the second independent subsystem (i.e., the sec-
ond subsystem without the interconnection terms), four distinct local state matrices
can be determined:

A21 =
(

3 −1
−2 −1

)
A22 =

(
3 1
−2 −1

)
A23 =

(
1 −1
−2 −1

)
A24 =

(
1 1
−2 −1

)
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For this subsystem, the observer designed has the gains

L21 =
(

684.41
−3.00

)
L22 =

(
684.41
−1.00

)
L23 =

(
679.85
−3.00

)
L24 =

(
679.85
−1.00

)

the Lyapunov matrix is P2 = 0.1I , and Q2 = 0.05I . The value of γ̄ from the first
step of Algorithm 6.2 is obtained as γ̄ = 1.0612.

Now, the new subsystem, i.e., the subsystem with state variables x1 and x2 is
considered. Again, four distinct state matrices are obtained:

A11 =
(

1 1
0 −3

)
A12 =

(
1 1
1 −3

)
A13 =

(−1 1
0 −3

)
A14 =

(−1 1
1 −3

)

The interconnection term from this subsystem to the existing subsystem is(
0 1
1 0

)
x2. Since the interconnection is realized only through the states, i.e., the

measurements of each subsystem concern only its own states, maxij ‖G21ij‖2 =
maxij ‖A21ij‖2 = 1, and consequently γ = 1.0612.

Solving the LMIs from the second step of Algorithm 6.2, we obtain

L11 =
(

4.81
0.10

)
L12 =

(
4.81
0.20

)
L13 =

(
4.61
0.10

)
L14 =

(
4.61
0.20

)

and with this, all the observer gains have been computed. �
Similarly to Theorem 6.5, and Algorithm 6.1, the shortcoming of the conditions at
this point is that the Lyapunov function for both subsystems and a bound on its
derivative have not yet been determined. To overcome this, the following corollary
can be formulated, similarly to Corollary 6.1:

Corollary 6.4. V =
(
eT

1 eT
2

)(αP1 0
0 P2

)(
e1

e2

)
is a Lyapunov function for (6.42)

and V̇ <
(
eT

1 eT
2

)
β

(
αQ1 0

0 Q2

)(
e1

e2

)
for an arbitrary β ∈ (0, 1) if there exist

L1i, L2i, i = 1, 2, . . . , m, P1 = P T
1 > 0, P2 = P T

2 > 0, Q1 = QT
1 > 0, and

Q2 = QT
2 > 0, so that

H(P1G1ij) < −2Q1

H(P2G2ij) < −2Q2

(1 − β)λmin(Q1) ≥ max
i

‖P1G12ij‖
λmin(H(P1G1ij + Q1))

maxij ‖P1G12ij‖ >
maxij ‖P2G21ij‖2

(1 − β)λmin(Q2)λmin(H(P2G2ij + Q2))

(6.45)

for i = 1, 2, . . . , m, j = 1, 2, . . . , m, ∀i �= j : ∃z : wi(z)wj(z) �= 0,
where G1ij = A1i − L1iC11j , G2ij = A2i − L2iC22j , G12ij = A12i − L1iC12j ,
G21ij = A21i−L2iC21j , andλmin denotes the eigenvaluewith the smallest absolute
magnitude.
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The application of the conditions of Corollary 6.4 are illustrated on the following
example.

Example 6.10. Consider the distributed system in Example 6.9. In Example 6.9, the
observers have been designed for the interconnected system, but a bound on the
the derivative of the Lyapunov function has not yet been found. To determine this
bound, (6.45) is solved instead of (6.43).

Since the conditions (6.45) are nonlinear, they are transformed into conditions
similar to (6.28):

H(P1G1ij + Q1) < −t1I

Q1 > t2I(
(1 − β)t2I maxi ‖G12ij‖P1

maxi ‖G12ij‖P1 (1 − β)t2I

)
> 0

(
(1 − β)t1I γ maxi ‖G12ij‖P1

γ maxi ‖G12ij‖P1 (1 − β)t1I

)
> 0

(6.46)

for i = 1, 2, . . . , m, j = 1, 2, . . . , m, with β ∈ [0, 1] arbitrarily chosen. However,
since (6.28) may not be feasible for any β, and the goal is to determine β as large as
possible to facilitate the analysis of possible subsystems that will be added, (6.46)
is considered a BMI problem, with both β and P1 decision variables. Solving (6.46)
yields the observer gains

L11 =
(

1280.2
0.1

)
L12 =

(
1280.2

0.2

)
L13 =

(
1280.0

0.1

)
L14 =

(
1280.0

0.2

)

with P1 = 0.5I , β = 0.29, and Q1 = 1.5 · 106I . �

Algorithm 6.2 is useful if no bound on the interconnection terms is known before
the subsystem is added. If a bound on A12i, A21i, C21i, C12i, i = 1, 2, . . . , m is
known beforehand, the design can be decoupled starting with the first subsystem, by
analyzing the last condition of Corollary 6.3. Although LMI conditions are obtained,
the following manipulations introduce conservativeness.

Imposing a condition similar to that of the third condition of Corollary 6.3 to the
second subsystem, i.e., for i = 1, 2, . . . , m, j = 1, 2, . . . , m, ∀i �= j : ∃z :
wi(z)wj(z) �= 0

λmin(Q2) ≥ max
ij

‖P2G21ij‖

one obtains

maxij ‖P2G21ij‖2

λmin(Q2)λmin(H(P2G2ij + Q2))
≤ maxij ‖P2G21ij‖

λmin(H(P2G2ij + Q2))

where λmin(H(P2G2ij + Q2)) denotes the eigenvalue with the min-
imum absolute magnitude of all the matrices (H(P2G2ij + Q2)),
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i = 1, 2, . . . , m, j = 1, 2, . . . , m. This expression is similar to that of the recip-
rocal of the first part of the fourth condition of Corollary 6.3, i.e.,

λmin(H(P1G1ij + Q1))
maxij ‖P1G12ij‖

By imposing for both subsystems

λmin(H(PkGkij + Qk))
maxij ‖PkTkpij‖ > 1

where Tkpij , k = 1, 2, p = 1, 2, k �= p, i = 1, 2, . . . , m, j = 1, 2, . . . , m, is
the interconnection term from subsystem p influencing the subsystem k, Tkpij =
Akpi − LkiCkpj , the conditions are decoupled. This result can be summarized as:

Corollary 6.5. The error system (6.42) is exponentially stable, if there exist Lkij ,
k = 1, 2, i = 1, 2, . . . , m, j = 1, 2, . . . , m, Pk = PT

k > 0, and Qk = QT
k > 0

so that
H(PkGkij) < −2Qk

λmin(Qk) ≥ max
ijp

‖PkTkpij‖
λmin(H(PkGkij + Qk)) > max

ijp
‖PkTkpij‖

(6.47)

for i = 1, 2, . . . , m, j = 1, 2, . . . , m, k = 1, 2, p = 1, 2, k �= p, ∀i �= j :
∃z : wi(z)wj(z) �= 0, where Gkij = Aki − LkiCkj , Tkpij = Akpi − LkiCkpj is
the interconnection term that influences the subsystem k, Lki, i = 1, 2, . . . , m are
the observer gains of the kth subsystem, and λmin denotes the eigenvalue with the
smallest absolute magnitude.

The above conditions are not LMIs. By imposing that

λmin(H(PkGkij + Qk)) > λmin(Qk)

for i = 1, 2, . . . , m, j = 1, 2, . . . , m, k = 1, 2, and that tkmI ≤ Qk ≤ tkMI ,
conditions (6.47) are satisfied if

tkmI ≤ Qk ≤ tkMI

H(PkGkij + Qk) < −tkMI

tkmI ≥ max
ijp

‖PkTkpij‖
(6.48)

for i = 1, 2, . . . , m, j = 1, 2, . . . , m, k = 1, 2, p = 1, 2, k �= p. Note that
conditions (6.48) are only sufficient, and therefore more conservative than (6.47).

Recall, that the interconnection term Tkpij is in fact Tkpij = Akpi − LkiCkpj ,
k = 1, 2, p = 1, 2, k �= p, i.e., the interconnection term in the error dynamics. How-
ever, only the bounds on the interconnection terms in the subsystems are known,
i.e., μAk = maxpi ‖Akpi‖ and μCk = maxpi ‖Ckpi‖, where k is the number of the
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current subsystem, k = 1, 2. To be able to use these bounds, let Qk be the sum of
two positive definite matrices, Qk = QkA + QkC that satisfy

QkA ≥ μAk‖Pk‖I
QkC ≥ μCk max

i
‖PkLki‖I

The above conditions may be expressed as LMIs:

QkA ≥ tk1I

QkC ≥ tk2I(
tk1I μAkPk

μAkPk tk1I

)
≥ 0

(
tk2I μCkMki

μCkMT
ki tk2I

)
≥ 0

where Mki = PkLki.
With the decoupled LMI conditions, the result is summarized as:

Theorem 6.7. The error system (6.42) is exponentially stable, if there exist Mki,
i = 1, 2, . . . , m, Pk = P T

k > 0, Qk = QT
k , tk1 > 0, tk2 > 0 , tkM > 0, and

tkm > 0, k = 1, 2, so that

tkmI ≤ Qk ≤ tkMI

H(PkGkij + Qk) < −tkMI

tkmI ≥ QkA + QkC

QkA ≥ tk1I

QkC ≥ tk2I(
tk1I μAkPk

μAkPk tk1I

)
≥ 0

(
tk2I μCkMki

μCkMT
ki tk2I

)
≥ 0

(6.49)

for i = 1, 2, . . . , m, j = 1, 2, . . . , m, ∀i �= j : ∃z : wi(z)wj(z) �= 0,
k = 1, 2.

Note that this result can only be used if a bound on the interconnection terms is
known a priori. Also, the conditions of Theorem 6.7 are more conservative than
those of Corollary 6.3.

The observer design using the conditions of Theorem 6.7 is illustrated on the
following example.

Example 6.11. Consider again the distributed system in Example 6.9, with the TS
fuzzy representation obtained in Example 6.9. For both subsystems, we have μA1 =
μA2 = 1, and μC1 = μC2 = 0. Therefore, the last condition of (6.49) is satisfied
for any tk2 ≥ 0, and the LMI problem that has to be solved is to findMki,
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i = 1, 2, . . . , m, Pk = PT
k > 0, Qk = QT

k , tk1 > 0, tk2 > 0 , tkM > 0, tkm > 0,
k = 1, 2, so that

tkmI ≤ Qk ≤ tkMI

H(PkGkij + Qk) < −tkMI

tkmI ≥ QkA + QkC

QkA ≥ tk1I

QkC ≥ tk2I(
tk1I μAkPk

μAkPk tk1I

)
≥ 0

for i = 1, 2, . . . , m, j = 1, 2, . . . , m, ∀i �= j : ∃z : wi(z)wj(z) �= 0,
k = 1, 2.

Solving conditions (6.49) for the subsystem with state variables x1 and x2 yields
the observer gains

L11 =
(

0.88
0.14

)
L12 =

(
0.88
0.24

)
L13 =

(
0.68
0.14

)
L14 =

(
0.68
0.23

)

However, the LMI referring to the other subsystem, with state variables x3 and x4, is
infeasible for μA21 = 1, and can only be solved, if the bound on the interconnection
term is lower. For the bound μA2 = 0.5, the observer gains are obtained as

L21 =
(

7.42
−2.27

)
L22 =

(
7.42
−1.72

)
L23 =

(
5.42
−2.27

)
L24 =

(
5.42
−1.72

)
�

6.3.3 Sequential Design: Estimated Scheduling Vector

Consider now the case when the scheduling vector depends on the states to be esti-
mated. For the simplicity of notation, only the case when the measurement matrices
are common for all the rules of a subsystem is presented. If the measurement ma-
trices are different for each rule, the observers can be designed in a similar fashion,
although the conditions become more complex.

The error dynamics (similarly to Section 6.3.2) are expressed as:

ė1 =
m∑

i=1

wi(ẑ)(A1ie1 + A12ie2 − L1iC1e)

+
m∑

i=1

(wi(z) − wi(ẑ))(A1ix1 + B1iu + A12ix2)

ė2 =
m∑

i=1

wi(ẑ)(A2ie2 + A21ie1 − L2iC2e)

+
m∑

i=1

(wi(z) − wi(ẑ))(A2ix2 + B2iu + A21ix1)

(6.50)
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or

ė =
m∑

i=1

wi(ẑ)
(

A1i − L1iC11 A12i − L1iC12

A21i − L2iC21 A2i − L2iC22

)
e

+
m∑

i=1

(wi(z) − wi(ẑ))
(

A1ix1 + B1iu + A12ix2

A2ix2 + B2iu + A21ix1

) (6.51)

In case of a centralized observer design in general it is assumed that

Δ =
m∑

i=1

(wi(z) − wi(ẑ))
(

A1ix1 + B1iu + A12ix2

A2ix2 + B2iu + A21ix1

)

is Lipschitz in e, i.e., ‖Δ‖ ≤ μ‖e‖, for some μ > 0. This condition can also be
formulated as Δ = Fe, with F an uncertainty, such that ‖F‖ ≤ μ. In distributed
observer design, the estimation error for the already existing subsystem is

ė2 =
m∑

i=1

wi(ˆ̄z)(A2ie2 − L2iC22e2)

+
m∑

i=1

(wi(z̄) − wi(ˆ̄z))(A2ix2 + B2iu)

(6.52)

where z̄ depends only on the states of this subsystem. For this subsystem, there
already exists a condition on the model-observer mismatch, i.e.,

‖Δ̄‖ = ‖
m∑

i=1

(wi(z̄) − wi(ˆ̄z))(A2ix2 + B2iu)‖ ≤ μ2‖e2‖

When a new subsystem is introduced, both z and Δ change. In order to keep the
symmetry and to have condition similar to that of centralized observer design, one
can require that Δ is expressed as

m∑

i=1

(wi(z) − wi(ẑ))
(

A1ix1 + B1iu + A12ix1

A2ix2 + B2iu + A21ix1

)
=
(

F1 F12

F21 F2

)
e (6.53)

and that the uncertainties are bounded

‖F12‖ ≤ μ12

‖F1‖ ≤ μ1

‖F21‖ ≤ μ21

‖F2‖ ≤ μ2

(6.54)

With the considerations above, the following Proposition is formulated:
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Proposition 6.1. The error system (6.51) is asymptotically stable, if there exist P1 =
P T

1 > 0, P2 = PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0, L1i, and L2i, i =

1, 2, . . . , m so that (6.53) and (6.54) are satisfied and

H(P2(G2i + F2)) < −2Q2

H(P1G1i) < −2Q1

λmin(H(Q1 + P1F1)) > max
i

‖P1(G12i + F12)‖
λmin(H(P1G1i + Q1))
maxi ‖P1(G12i + F12)‖ >

maxi ‖P2(G21i + F21)‖2

λmin(Q2)λmin(H(P2(G2i + F2) + Q2))

for i = 1, 2, . . . , m, where G1i = A1i − L1iC11, G2i = A2i − L2iC21, G12i =
A12i − L1iC12, G21i = A21i − L2iC21, and λmin denotes the eigenvalue with the
smallest absolute magnitude.

Proof: Similarly to the proof of Theorem 6.5, one can see system (6.51) as the
cascaded system

ėc =
m∑

i=1

wi(ẑ)
(

(A1i − L1iC11)e1c

A2ie2c + A21ie1c − L2iC2ec

)

+
m∑

i=1

(wi(z) − wi(ẑ))
(

0
A2ix2 + B2iu + A21ix1

) (6.55)

and an extra feedback term. System (6.55) is asymptotically stable, if the conditions
of Theorem 5.10 are satisfied. Moreover, exponential stability can also be ensured
by using somewhat more conservative conditions: if there exist P1 = PT

1 > 0,
P2 = PT

2 > 0, Q1 = QT
1 > 0, Q2 = QT

2 > 0, μ2 ≥ 0, μ21 ≥ 0, F2, and F21 so
that

H(P1G1i) < −2Q1 i = 1, 2, . . . , m
m∑

i=1

(wi(z) − wi(ẑ))(A2ix2 + B2iu + A21ix1) =
(
F21 F2

)
ec

‖F21‖ ≤ μ21

‖F2‖ ≤ μ2

H(P2(G2i + F2)) < −2Q2 i = 1, 2, . . . , m

with G1i = A1i − L1iC11 and G2i = A2i − L2iC21.
The conditionH(P2(G2i + F2)) < −2Q2 ensures that the already existing error

system is exponentially stable. Moreover, when the new (error) subsystem is con-
nected, the bound on F2 should not change, i.e., although the new subsystem may
influence the membership functions, it should not influence the model-observermis-
match of the second subsystem.

The conditions above also ensure that there exists α ∈ R+ so that

Vc = eT
c diag(αP1, P2)ec
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is a Lyapunov function for (6.55) and V̇c < −2eT
c Qec, with Q = diag(αQ1, Q2)

and G21i = A21i − L2iC21. To show this, consider the Lyapunov function

Vc = eT
c

(
αP1 0
0 P2

)
ec

The derivative is:

V̇c =
m∑

i=1

wi(ẑ)eT
c H

(
αP1G1i 0

P2(G21i + F21) P2(G2i + F2)

)
ec

Then, V̇c < −2eT
c Qec if

(
αH(P1G1i) (G21i + F21)T P2

P2(G21i + F21) H(P2(G2i + F2))

)
< −2

(
αQ1 0

0 Q2

)

for i = 1, 2, . . . , m, which amounts to
(

αH(P1G1i + Q1) (G21i + F21)T P2

P2(G21i + F21) H(P2(G2i + F2) + Q2)

)
< 0

for i = 1, 2, . . . , m.
Using the Schur complement, one obtains

αH(P1G1i + Q1)

− (G21i + F21)T P2(H(P2(G2i + F2) + Q2))−1P2(G21i + F21) < 0

which is satisfied by any α chosen such that for i = 1, 2, . . . , m

α >
1

λmin(H(P1G1i + Q1))
· maxi ‖P2(G21i + F21)‖2

λmin(H(P2(G2i + F2) + Q2))
(6.56)

Now, consider the full error system (6.51), together with the assumptions

m∑

i=1

(wi(z) − wi(ẑ))(A1ix1 + B1iu + A12ix1) =
(
F1 F12

)
e

‖F12‖ ≤ μ12

‖F1‖ ≤ μ1

(6.57)

These assumptions, combined with the assumption that

m∑

i=1

(wi(z) − wi(ẑ))(A2ix2 + B2iu + A21ix1) =
(
F21 F2

)
ec

‖F21‖ ≤ μ21

‖F2‖ ≤ μ2

(6.58)
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are effectively equivalent to those that would be used in the centralized design (see
Theorem 4.5).

By using the above constructed V = Vc as a candidate Lyapunov function
for (6.51), one obtains:

V̇ =
m∑

i=1

wi(ẑ)eT

((
αH(P1G1i) GT

21iP2

P2G21i H(P2G2i)

)
+
(

0 αP1G12i

αGT
12iP1 0

))
e

+ eT

(
αH(P1F1) αP1F12

α(P1F12)T 0

)
e

< −eTH
(

α(Q1 + P1F1) 0
0 Q2

)
e + 2eT (α max

i
‖P1(G12i + F12)‖)Ie

< −eT

(
αH(Q1 + P1F1 − α maxi ‖P1(G12i + F12)‖I) 0

0 H(Q2 − α maxi ‖P1(G12i + F12)‖I)

)
e

leading to the conditions

λmin(H(Q1 + P1F1)) > maxi ‖P1(G12i + F12)‖ (6.59)
λmin(Q2) > α maxi ‖P1(G12i + F12)‖ (6.60)

for i = 1, 2, . . . , m. Combining (6.56) and (6.60), we get that such an α exists, and
V = Vc is a Lyapunov function if

λmin(Q2)
maxi ‖P1(G12i + F12)‖ >

maxi ‖P2(G21i + F21)‖2

λmin(H(P1G1i + Q1))λmin(H(P2(G2i + F2) + Q2))

for i = 1, 2, . . . , m, or

λmin(H(P1G1i + Q1))
maxi ‖P1(G12i + F12)‖ >

maxi ‖P2(G21i + F21)‖2

λmin(Q2)λmin(H(P2(G2i + F2) + Q2))

for i = 1, 2, . . . , m. With this, the proof is concluded. �
If the scheduling vector depends on states to be estimated, a cascaded error sys-

tem can only be obtained in special cases. As in Section 6.3.2, the conditions of
Proposition 6.1 can be implemented in a two-step algorithm, similarly to Algo-
rithm 6.2. A decoupled design, similar to that given in Theorem 6.7 is also possible,
if bounds on the interconnection terms are known in advance.

The decentralized observer design for the case when the scheduling vector de-
pends on the unmeasured state variables is illustrated on the following example.

Example 6.12. Consider a decentralized system, composed of four subsystems, with
their interconnection terms as presented in Figure 6.4.

The order in which the subsystems are added to the distributed system is as fol-
lows: first only Subsystem 1 exists, to which Subsystem 2 is added, then Subsystem
3 is connected to the system composed of Subsystem 1 and Subsystem 2, and finally,
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Fig. 6.4 Four subsystems with their interconnections.

Subsystem 4 is connected to the existing system. The individual subsystems and the
interconnections are described as:

1. Subsystem 1: The scheduling variable z1 is a measured variable, with the mem-
bership functions presented in Figure 6.5.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

z
1

µ(
z 1)

small big

Fig. 6.5 Membership functions of z1.

Model rule 1:
If z1 is small then

ẋ1 =
(−1 1

2 3

)
x1 +

(
1
2

)
u

y1 = (1 0)x1

Model rule 2:
If z1 is big then

ẋ1 =
(

2 3
0 −4

)
x1 +

(
1
2

)
u

y1 = (1 0)x1
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Fig. 6.6 Membership function of z2.

2. Subsystem 2: The scheduling variable z2 is x22, a state to be estimated, with
the membership functions presented in Figure 6.6. The states are bounded,
x21, x22 ∈ [−2, 2].

Model rule 1:
If z2 is not zero then

ẋ2 =
(−0.5 1.5

0 −1

)
x2 +

(
0.1
0.1

)

y2 =
(

1 10
0.1 0

)
x2

Model rule 2:
If z2 is around zero then

ẋ2 =
(

0.5 3
0 1

)
x2 +

(
0

0.1

)

y2 =
(

1 10
0.1 0

)
x2

The interconnection terms are as follows:
If z1 is small and x22 is around zero then:A12 =

(
0.1 0.8
0.5 0

)
, A21 =

(
0.2 0.3
0.1 0

)
.

If z1 is big and x22 is around zero then: A12 =
(−0.3 0.1

0.2 0.3

)
, A21 =

(−0.2 −0.3
0.1 0

)
.

Otherwise there is no direct connection between the subsystems 1 and 2.
3. Subsystem 3: The scheduling variable z3 is an exogenous measured variable,
with the same membership functions as z1.
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Model rule 1:
If z3 is small then

ẋ3 =
(

1 2
3 −3

)
x3 +

(
3
4

)
u

y3 = (1 2)x3

Model rule 2:
If z3 is big then

ẋ3 =
(−2 0

2 2

)
x3 +

(
3
4

)
u

y3 = (1 2)x3

The interconnection terms are as follows:
If z3 is big then: A13 =

(
0.4 0.3
0.8 0

)
.

If z1 is big and z3 is small then: A31 =
(

0.2 −0.3
0.1 0

)
.

if z2 is around zero then: A32 =
(−0.2 0.1

0 −0.1

)
.

Otherwise, there is no connection between the subsystems 1 and 3 and between
2 and 3, respectively.

4. Subsystem 4: The scheduling variable z4 depends on x4, z4 = x41 +x42+4, and
the membership functions are w1(z4) = 0.125(x41 +x42 + 4) (corresponding to
“z4 is small”), and w2(z4) = 1 − w1(z4) (“z4 is big”). The states are bounded,
x41, x41 ∈ [−2, 2] and the input is bounded, u ∈ [−0.5, 0.5].

Model rule 1:
If z4 is small then

ẋ4 =
(−2 0

2 −3

)
x4 +

(
3
2

)
u

y4 = (1 0)x4

Model rule 2:
If z4 is big then

ẋ4 =
(−1 3

2 −1

)
x4 +

(
1
0

)
u

y4 = (1 0)x4

The interconnection terms are as follows:
If rule 1 is active then: A42 =

(
0.1 0.5
0.8 1

)
.

If rule 2 is active then: A43 =
(

0.2 0.5
−0.5 0

)
.

Otherwise, there is no connection between the subsystems 1 and 4, 2 and 4, and
3 and 4, respectively.

The observers are designed sequentially, as the subsystems are added, based on
the conditions of Corollary 6.3 and Proposition 6.1. First, an observer is designed
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Fig. 6.7 Estimation error for the subsystems using distributed observers.

for Subsystem 1, without further conditions. Second, an observer is designed for
Subsystem 2, taking into account the interconnection terms with Subsystem 1.
Third, an observer is designed for Subsystem 3, considering the interconnection
terms with Subsystems 1 and 2. Finally, an observer is designed for Subsystem 4.
Note that the group of subsystems 1-2-3 and subsystem 4 are in cascade, and there-
fore, based on stability conditions for cascaded systems, it is sufficient that the in-
dependent observers are stable.

A typical error trajectory can be seen in Figure 6.7. The system was simulated
using the ode23tb method (trapezoidal rule with second order backward difference
formula) for solving ordinary differential equations of Matlab. This particular trajec-
tory was computed for a randomly generated input and (where applicable) a random
scheduling vector, with the true initial state being (1 2 − 1 3 − 1 1 1 − 1)T

and the estimated initial states being zero. As expected, the error converges asymp-
totically to zero. Note that the error for the second subsystem converges very fast.
This is because of two reasons: 1) the scheduling variable of this subsystem is a
state to be estimated, and the observer has to be robust enough to handle the model
mismatch and 2) at the same time the observer has to comply with the restrictions
imposed by the interconnections to the first subsystem.

If the subsystems are added sequentially, and a bound on the interconnection
terms is not known before the subsystem is added, one has to redesign a centralized
observer each time a subsystem is added. A model of the centralized system can
be obtained by taking all possible combinations of the interconnected subsystems
and an observer can be designed for this system. This means that both the number
of rules and the dimension of the LMI problem to be solved increase in every step:
for the first subsystem, 2 LMIs of dimension 2 have to be solved, when the second
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subsystem is added, 4 LMIs of dimension 4, for the third subsystem 8 LMIs of
dimension 6, and finally, when the fourth is added, 16 LMIs of dimension 8 need to
be solved. �

6.4 Summary

Many physical systems, such as power systems, communication networks, eco-
nomic systems, and traffic networks are composed of lower-dimensional subsystems
that are interconnected. In this chapter, the stability of such decentralized systems
has been studied for the case when the subsystems are represented as TS fuzzy sys-
tems. We have reviewed parallel and sequential methods for analyzing the stability
of and design observers for TS fuzzy subsystems. The presented approaches reduce
the dimension of the problem to be solved, by analyzing the stability of the overall
system based on the individual subsystems and the strength of the interconnection
terms. The same holds for observer design. Observers can be designed for the indi-
vidual subsystems in parallel or sequentially. Such a design has the advantage that
the observer does not need to be redesigned every time a subsystem is added or
removed.

A shortcoming of the methods presented is that they rely on the existence of a
common quadratic Lyapunov function. Moreover, the derivation of LMI conditions,
although facilitating the easier design, introduce conservativeness.





Chapter 7
Adaptive Observers for TS Systems

Many processes change over time or due to the influence of unknown inputs that
cannot be measured. In some cases, the change is considerable and may be due to
the degradation of parts of the system, actuator faults, or disturbances that should
be detected as soon as possible. Therefore, this change has to be considered when
designing observers and controllers. In this chapter, methods to design adaptive ob-
servers that simultaneously estimate the states and unknown inputs of systems rep-
resented by TS fuzzy models are presented.

7.1 Introduction

Adaptive observers are in general defined as observers that simultaneously estimate
the states and unknown parameters of a dynamic system, by processing the mea-
surements online. Adaptive parameter estimators or observers in general fall into
two categories (Sheikholeslam, 1995): 1) input-output identification methods and
2) model-based algorithms that use an observer. In this chapter, we address the sec-
ond category, that is, model-based adaptive observers.

Although in general the application of adaptive observers concerns the estimation
of states and parameters, in this book we also refer to unknown input observers as
being adaptive observers. In fact, in this context, the unknown inputs are considered
to be time-varying parameters. In what follows, we briefly review adaptive observers
for linear and nonlinear dynamic systems.

Starting from the 1970s, the problem of state estimation in the presence of
unknown inputs or unknown parameters has attracted significant research inter-
est (Landau, 1979; Narendra and Annaswamy, 1989; Sastry and Bodson, 1989).
However, these early results concern mainly linear time-invariant, single-input
single-output systems, and their application for nonlinear dynamic systems is
not straightforward. When applying adaptive state and input observers designed
for linear systems to a nonlinear system, such as the approach proposed in
(Xiong and Saif, 2003), the observer can only be used in a small neighborhood of
the linearization point. In general, observers designed for linear systems are rarely
able to estimate the states and the inputs of the nonlinear system.

Zs. Lendek et al.: Stability and Observer Design Using TS Models, STUDFUZZ 262, pp. 149–182.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010
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For nonlinear systems, a general approach, both in adaptive controller and ob-
server design is to assume that the system is SISO and is in or can be trans-
formed into observer canonical form (Marino and Tomei, 1995; Marino et al., 2001;
Park et al., 2001; Park and Park, 2003; Wang and Luoh, 2004; Tong et al., 2004;
Wang and Chai, 2005; Park et al., 2005; Ho et al., 2005; Hyun et al., 2006). Al-
though by this transformation the physical meaning of the state variables is lost,
it facilitates the observer design. By using a quadratic Lyapunov function, ensur-
ing strictly positive real conditions, the Kalman-Yakubovic-Popov lemma can be
applied and the adaptive laws are deduced from the Lyapunov synthesis. A short-
coming of these observers is that they do not incorporate prior information and
cannot be used when physical states have to be estimated, or when a model is
not in a canonical form. Robust versions of these adaptive observers have also
been derived for systems affected by a bounded disturbance, by adding a robust-
ness term (Park et al., 2001; Park and Park, 2003; Park et al., 2005; Wang and Chai,
2005; Labiod and Guerra, 2007). In many cases, when using both an observer and a
controller, the robustness term is incorporated in the controller instead, to deal with
the approximation error and disturbances (Tong et al., 2004; Ho et al., 2005).

A special class of adaptive TS models that can be considered is the class of so-
called evolving fuzzy models (Angelov and Filev, 2004b). However, these models
are in general identified from data, and result in an input-output description, not
a state-space formulation. The interested reader is referred to (Angelov and Filev,
2003, 2004b,a; Angelov et al., 2008; Angelov and Zhou, 2008).

Results for MIMO systems include high-gain observers (Zhang and Xu,
2001), special observer canonical forms of the system (Zhu and Pagilla,
2003; Wang and Luoh, 2004), linearly parameterized neural net-
works (Ruiz Vargas and Hemerly, 2001; Hovakimyan et al., 2002), and observers
based on a known linear part of the model (Ha and Trinh, 2004).

Several methods (Marino et al., 2001; Pertew et al., 2005, 2006) exist that es-
timate the states and parameters of nonlinear systems composed of a known lin-
ear part and a Lipschitz nonlinearity affected by unknown inputs. For instance,
(Ha and Trinh, 2004) provided an estimation method for a class of nonlinear sys-
tems, where the known part of the nonlinearity is Lipschitz in the states and inputs.
This method relies on an assumption related to a rank condition on a matrix com-
posed of the direct feedthrough term and of a distribution matrix of the unknown
nonlinear terms affected by the unknown inputs.

The design of observers in the presence of unknown inputs is an important
problem, since in many cases not all the inputs are known (Xiong and Saif, 2003;
Pertew et al., 2005, 2006). For instance, in machine tool and manipulator appli-
cations, the cutting force exerted by the tool or the exerting force/torque of the
robot is needed, but it is very difficult or expensive to measure (Corless and Tu,
1998; Ha and Trinh, 2004). Load estimation in e.g., electricity distribution networks
(Sheldrake, 2005), or wind turbines (Li and Chen, 2005) is necessary for proper
planning and operation. In biomechanics, the myoskeletal system can be regarded
as a dynamic system, where segment positions and trajectories are the system out-
puts and joint torques are the non-measurable inputs (Guelton et al., 2008b). In
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traffic control, time-varying parameters have to be tracked, which can be regarded
as unknown inputs (Wang and Papageorgiou, 2005). In chaotic systems, for chaos
synchronization and secure communication, one has to estimate not only the state,
but also the input signal (Liao and Huang, 1999).

Adaptive input observers have also been used for fault detection, even when all
inputs are known (see (Frank, 1990) and the references therein). In fact, the class
of adaptive observers has received considerable interest in fault detection and iden-
tification, where the unknown inputs represent the effect of actuator faults or plant
components and its presence has to be detected as soon as possible. However, these
methods usually concern linear systems (Zhang et al., 2005) and only detect the
fault, but do not estimate it (Marx et al., 2007). A method for TS systems in de-
scriptor form has been proposed by Marx et al. (2007) to estimate the states in the
presence of unknown inputs. This method is based either on decoupling the un-
known inputs, or on attenuating their effects on the states. If decoupling is possible,
the states are correctly estimated, and single faults can be isolated by using a bank
of observers. However, the faults (unknown inputs) cannot be reconstructed. For
the case when the decoupling of all the unknown inputs is not possible, Marx et al.
(2007) also proposed a method to attenuate their effect on the states.

In this chapter, methods to design observers that estimate the states and the un-
known inputs of TS fuzzy systems are presented. First, the general framework is
introduced, starting from adaptive observers for linear systems. Afterwards, adap-
tive observers for TS fuzzy systems are considered. Two types of unknown inputs
are considered. First, inputs that are or can be approximated by polynomial func-
tions of time, are studied. Such inputs can be, for instance, biases in the model or
ramp inputs acting on the model. This approach is in fact a generalization of several
results that consider (approximately) constant unknown inputs. The second type of
input considered is uncertainty in the model dynamics.

7.2 Unknown Input Estimation

Adaptive observers have already been investigated in the 1970s, for linear systems
influenced by unknown inputs, with the goal that both the states of the system and
the unknown inputs are estimated. A complete analysis of input observability and
input reconstruction for linear systems has been provided by Hou and Patton (1998).

The early results concern linear systems of the form

ẋ =Ax + Bd

y =Cx + Dd

where d denotes the unknown input, and A, B, C, and D are the system matrices.
For such systems, Hostetter and Meditch (1973) proposed the observer

ξ̇ =Fξ + Gy

χ =Ly + Mξ
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where χ = R

(
x̂

d̂

)
, i.e., it is the estimate of a linear transformation of the states un-

known inputs, and the matrices F , G, L, and M are determined (see
Hostetter and Meditch (1973)) such that the estimation error e = x − x̂ converges
to zero.

Although the method of Hostetter and Meditch (1973) can only be used for SISO
systems in canonical forms, they also proposed that the observer should be extended
with the derivatives of the unknown input. That is, if the unknown input is not con-
stant, but time-varying, its derivatives can be included in the vector χ, and a so-
called ‘k-observer’, in fact a Luenberger observer for this augmented system can be
used. With this observer both the states and the unknown inputs can are estimated.

For nonlinear systems, the problem of estimating both the states and the unknown
inputs of the system is motivated in part by machine tool and manipulator applica-
tions. There are many situations when an observer is required to estimate the cutting
force of a machine tool or the exerting force/torque of a robotic manipulator. This
problem has been addressed by Corless and Tu (1998), where the nonlinear part, a
state-dependent and time-varying function, is also the unknown input.

Corless and Tu (1998) considered systems described by

ẋ =Ax + Bf (t, x)
y =Cx

where f(t, x) is considered an unknown input, i.e., d � f(t, x), and rank(CB) =
rank(B), i.e., the number of measurements is necessarily greater than or equal to the
number of inputs. Moreover, an initial estimate f0(t, x) of f(t, x) is assumed to be
available. The goal is to estimate both the state vector x and the unknown input d.

Under the condition that rank(B) = nd, i.e., B has full column rank, where nd

denotes the number of unknown inputs, and d is such that

‖d − f0(t, x̂)‖ ≤ β1 + κ1‖x − x̂‖
∥∥∥

dd

dt
− ∂f0

∂t
(t, x̂) − ∂f0

∂t
(t, x̂) ˙̂x

∥∥∥ ≤ β2 + κ21‖x − x̂‖ + κ22‖ẋ − ˙̂x‖

holds, ∀t, x, ẋ, where β1, β2, κ1, κ21, and κ22 are known non-negative constants,
Corless and Tu (1998) proposed the observer

˙̂x =Ax̂ + Bd̂ + L(Cx̂ − y)

d̂ =f0(t, x̂) − γG(Cx̂ − y)

where the matrices L, G, and P = P T > 0 are determined such that

H(P (A + LC)) < 0

BT P = GC

hold.
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The estimator proposed by Corless and Tu (1998) is actually a high-gain ob-
server, and it exists only under very strict conditions. Although it does not achieve
asymptotic stability, the unknown inputs can be estimated to any degree of accuracy,
by increasing γ. Moreover, this estimator does not require differentiation of the mea-
sured output, which would be problematic when the measurements are corrupted by
noise.

The result of Corless and Tu (1998) has been extended and the conditions relaxed
by Xiong and Saif (2003), by showing that the bound on the derivative of the un-
known input is not necessary. Xiong and Saif (2003) consider the dynamic system

ẋ =Ax + Bu + Gd

y =Cx

with theG and C matrices having full (column) rank, where u is a known input and
d is an unknown input. The proposed observer is

ż =Fz + Ly + TBu + TGd̂

d̂ =γ(Wy − Nz)

and guarantees that limt→∞(z − Tx) ≤ ε, for an arbitrary ε > 0, under the condi-
tions, that

FT − TA + LC = 0

N = (TG)T P

NT = GT T T PT = WC

rank(TG) = rank(G) = nd

where F is a stable matrix, and PF + FT P = −Q, Q = QT > 0. Moreover, if d
is constant, then the estimates converge asymptotically to the true values.

A class of systems that has been extensively investigated comprises systems of
the form

ẋ =Ax + φ(x, u) + Bf (x, u)θ
y =Cx

where B ∈ R
nx×nd , and θ are unknown parameters to be estimated.

For such systems, under the conditions that there exists a matrix P = P T > 0
such that BT P = C1, with C1 being a linear combination of the rows of C, that the
nonlinear functions φ and f are Lipschitz continuous in the states, i.e., there exist
γ1 and γ2 such that

‖φ(x, u) − φ(x̂, u)‖ ≤ γ1‖x − x̂‖
‖f(x, u) − f(x̂, u)‖ ≤ γ2‖x− x̂‖

that the parameter vector θ is bounded, i.e., ‖θ‖ ≤ γ3, for some γ3 > 0,
Rajamani and Hedrick (1995) proposed the observer
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˙̂x =Ax̂ + φ(x̂, u) + Bf (x̂, u)θ̂ + L(y − Cx̂)
˙̂
θ =ϕf (x̂, u)T (y − Cx̂)

Then, the estimated states converge asymptotically to the true values, if the gain L
is chosen such that

γ1 + γ2γ3‖B‖ ≤ λmin(Q)
2λmax(P )

H(P (A − LC)) = −Q

where Q = QT > 0 and ϕ > 0 are arbitrarily chosen, and λmin and λmax denote
the smallest and largest eigenvalue, respectively.

A consequence of the results of Rajamani and Hedrick (1995) is, that in a similar
way, adaptive observers can be designed for systems of the form

ẋ =Ax + φ(y, u) + Bf (y, u)θ
y =Cx

a type of systems that have been extensively investigated by Marino
(1990); Marino and Tomei (1995); Zhang and Xu (2001). For such systems,
Marino and Tomei (1995) proposed an observer that guarantees an arbitrary rate
of exponential convergence provided that the system is persistently excited, while
Zhang and Xu (2001) proposed high-gain observers.

Ha and Trinh (2004) considered the dynamic system

ẋ =Ax + Bd + f(x, d, y)
y =Cx + Dd

where d is an unknown input (of dimension nd) and the vector function f is com-
posed of an unknown vector function fu and a known vector function fL, i.e., it
can be written as

f(x, d, y) = fL(x, d, y) + Wfu(x, d, y)

where W has full column rank nf that is the dimension of fu. It is assumed that 1)
the function fL is Lipschitz in x and d, i.e., there exists γ > 0 so that

‖fL(x, d, y) − fL(x̂, d̂, y)‖ ≤ γ
∥∥∥
x − x̂

d − d̂

∥∥∥

∀x, x̂ ∈ R
nx and ∀d, d̂ ∈ R

nd , and furthermore, 2)

rank(D CW ) = nd + nf

In order to design the observer, the system is written as

Eξ̇ =Mξ + fL(ξ, y) + Wfu(ξ, y)
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with ξ = (xT dT )T , E = (I 0),M = (A B), H = (C D). The observer proposed
is

χ̇ = Nχ + Ly + RfL(ξ̂, y)

ξ̂ = χ + Uy
(7.1)

For this observer, Ha and Trinh (2004) formulated the following result.

Theorem 7.1. (Ha and Trinh, 2004) The estimation error dynamics obtained by us-
ing the observer (7.1) are asymptotically stable, if there exist P = PT > 0, X , Y ,
δ1 > 0, and δ2 > 0 such that

⎛

⎝
H(Pφ + Y Ψ − XH) + γ2(δ1 + δ2)I PJ Y G

JT P −δ1I 0
GT Y T 0 −δ2I

⎞

⎠ < 0 (7.2)

where
R = J + ZG Z = P−1Y

U = V + ZK

N = φ + ZΨ − FH F = P−1X

L = F + NU

φ = JM J = [I 0]S†[I 0]T

S =
(

E W
H 0

)
φ = GM

G = (I − S†S)[I 0]T V = [I 0]S†[0 I]T

K = (I − S†S)[0 I]T S† = (ST S)−1ST

where the superscript † denotes the Moore-Penrose pseudoinverse.
To increase the possibility that (7.2) is feasible, the Lipschitz constant γ should be
as small as possible.

For TS fuzzy systems, unknown input observers have been developed for sys-
tems in descriptor form. One of these, developed by Marx et al. (2007), involves the
estimation of the states by decoupling or when decoupling is not possible, attenuat-
ing the unknown inputs. However, this observer is not able to estimate the unknown
input, and therefore is not presented here.

An unknown input observer that is able to estimate both the states and the
unknown input for TS fuzzy systems in descriptor form has been developed by
Guelton et al. (2008b). Consider the TS system in the descriptor form

me∑

k=1

νk(z)Ekẋ =
m∑

i=1

wi(z)(Aix + Mid)

y =
m∑

i=1

wi(z)Cix

(7.3)
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where d is the vector of unknown inputs, Ek are regular matrices, and νk, k =
1, 2, . . . , me, are normalized membership functions.

By considering the unknown inputs as states, and under the assumption that ḋ =
0, the system (7.3) can be reformulated as

me∑

k=1

νk(z)Ee
kẋe =

m∑

i=1

wi(z)Ae
ix

e

y =
m∑

i=1

wi(z)Ce
i x

e

(7.4)

with xe = (x d)T , Ee
k =

(
Ek 0
0 I

)
, Ae

k =
(

Ai Mi

0 0

)
, and Ce

i =
(
Ci 0

)
. Now, (7.4)

can be written as

E∗ẋ∗ =
me∑

k=1

m∑

i=1

νk(z)wi(z)(A∗
ikx∗)

y =
m∑

i=1

wi(z)C∗
i x∗

(7.5)

with x∗ = (xe ẋe)T , E∗ =
(

I 0
0 0

)
, A∗

ik =
(

0 I
Ae

i −Ee
k

)
, and C∗

i =
(
Ce

i 0
)
.

The observer proposed by Guelton et al. (2008b) for (7.5) is

E∗ ˙̂x
∗

=
me∑

k=1

m∑

i=1

νk(z)wi(z)(A∗
ikx̂∗) +

me∑

k=1

m∑

i=1

νk(z)wi(z)K∗
ik(y − ŷ)

ŷ =
m∑

i=1

wi(z)Cix̂
∗

(7.6)

For this observer, the following result has been formulated:

Theorem 7.2. (Guelton et al., 2008b) The estimation error obtained by using the
observer (7.6) converges to zero, if there exist matrices P3 and P4, P1 = PT

1 > 0,
Kki, k = 1, 2, . . . , me, i = 1, 2, . . . , m, such that

Γ k
ii < 0

Γ k
ij + Γ k

ji < 0

where

Γ k
ij =

(
AT

i P3 + PT
3 Ai − CT

i KT
jkP3 − PT

3 KjkCi XT
ijk

Xijk −ET
k P4 − PT

4 Ek

)

for i = 1, 2, . . . , m, j = i + 1, i + 2, . . . , m, k = 1, 2, . . . , me, with Xijk =
P1 − ET

k P3 + PT
4 Ai − PT

4 KjkCi.
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In (Guelton et al., 2008b), the observer (7.6) has been applied to the estimation of
joint torques in a human stance. However, this observer has two shortcomings. First,
it is assumed that the unknown inputs are constants, or slowly varying, that is, ḋ ≈ 0.
Second, it is implicitly assumed that the scheduling vectors are known (measured),
as they can be used in the observer.

In the sequel, we consider similar adaptive unknown input observers, for un-
known inputs that are polynomial functions of time, for TS fuzzy systems in the
classical (non-descriptor) form. The observers are designed, similarly to the results
presented so far, based on the already identified model, such that, together with an
appropriate update law for estimating the unknown inputs, they ensure the conver-
gence of the estimation error.

The TS fuzzy system considered is of the form

ẋ =
m∑

i=1

wi(z)(Aix + Biu + Mid + ai)

y =
m∑

i=1

wi(z)(Cix + ci)

(7.7)

where Ai, Bi, Mi, ai, Ci, ci, i = 1, 2, . . . , m, are the known matrices and biases
of the ith local model, and the vector d is an unknown input. This input can repre-
sent disturbances acting on the process, effects of uncertain dynamics, or actuator
faults. Two types of unknown inputs are distinguished. The first type of unknown
input considered is an unstructured input that can be approximated by a polyno-
mial function that varies over time. The second type of unknown input considered
is unmodelled dynamics. In both cases, the goal is to design an observer that simul-
taneously estimates both the state vector x and the unknown input d. To ensure the
observability of the unknown inputs from the available measurements, in the sequel,
it is assumed that

Assumption 7.1. The matricesMi, i = 1, 2, . . . , m have full column rank, and
rank(CMi) = rank(Mi), i = 1, 2, . . . , m.

Given that our goal is to estimate both the states and the unknown inputs, this as-
sumption is not restrictive.

The observer considered is of the form:

˙̂x =
m∑

i=1

wi(ẑ)(Aix̂ + Biu + ai + Mid̂ + Li(y − ŷ))

ŷ =
m∑

i=1

wi(ẑ)(Cix̂ + ci)

˙̂
d = f u(d̂, w(ẑ), x̂, y)

(7.8)
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where Li, i = 1, 2, . . . , m, are the gain matrices to be designed for each rule, and
f u, the update law for d, should be determined so that the estimation errors x − x̂

and d − d̂ converge asymptotically to zero, or to a neighborhood of zero.
Next to the two types of unknown inputs considered, two cases, depending on

whether or not the scheduling vector depends on the states to be estimated are dis-
tinguished. The observer design is considered in both cases.

7.3 Estimation of Unknown Polynomial Inputs

In this section we consider the case when the unknown input is or can be approxi-
mated by a polynomial function in time. Such inputs may represent biases in the
model, time-varying disturbances acting on the process, degradation in time, or
even failure of actuators. In what follows, conditions to design a fuzzy observer
and bounds on the estimation error are presented.

To design the observer, consider the TS fuzzy system of the form (7.7), where
d is an unknown input that is a function of time so that there exists p ∈ N so that
d(p) = 0, or ‖d(p)‖ ≤ μd, for some μd > 0, i.e., the unknown input is p−1-th order
polynomial function or can be approximated by a p-th order polynomial function of
time. It is assumed that the states, the unknown input d, and the derivatives of d are
observable from y.

7.3.1 Measured Scheduling Vector

First, consider the case when the scheduling variables are known (measured), and
therefore their values can be directly used in the observer. Moreover, assume that
the unknown input is indeed a (p − 1)th order polynomial function of time, i.e.,
d(p) = 0. For this case, the following result holds.

Theorem 7.3. The estimation error e = x − x̂ obtained by using the observer

˙̂x =
m∑

i=1

wi(z)[Aix̂ + Biu + Li(y − ŷ) + Mid̂ + ai]

ŷ =
m∑

i=1

wi(z)(Cix̂ + ci)

d̂
(p)

=
m∑

i=1

wi(z)Λp
i (y − ŷ)

d̂
(k)

=
m∑

i=1

wi(z)(Λk
i (y − ŷ) + d̂

(k+1)
)

for k = 1, . . . , p − 1

(7.9)

is exponentially stable if there exist P = PT > 0, Li, Λk
i , i = 1, 2, . . . , m,

k = 1, 2, . . . , p, so that
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H

⎛

⎜⎜⎜⎜⎜⎝
P

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiCj + Aj − LjCi Mi + Mj 0 · · · 0
−Λ1

i Cj − Λ1
jCi 0 2I · · · 0

...
...

...
. . .

...
−Λp−1

i Cj − Λp−1
j Ci 0 0 · · · 2I

−Λp
i Cj − Λp

jCi 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎠
< 0 (7.10)

for i = 1, 2, . . . , m, j = i + 1, i + 2, . . . , m, ∀i < j : ∃z : wi(z)wj(z) �= 0.

Proof: An extended error system, containing both the state error and the derivatives
of the input error d = d − d̂, can be expressed as:

ėa =

⎛

⎜⎜⎜⎜⎜⎜⎝

ė
˙̄d
d̈
...

d
(p)

⎞

⎟⎟⎟⎟⎟⎟⎠
=

m∑

i=1

wi(z)wi(z)

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiCi Mi 0 · · · 0
−Λ1

i Ci 0 I · · · 0
...

...
...
. . .

...
−Λp−1

i Ci 0 0 · · · I
−Λp

i Ci 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

e

d
...

d
(p−1)

⎞

⎟⎟⎟⎠

+
m∑

i=1

wi(z)
m∑

j=1
j>i

wj(z)

·

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiCj + Aj − LjCi Mi + Mj 0 · · · 0
−Λ1

i Cj − Λ1
jCi 0 2I · · · 0

...
...

...
. . .

...
−Λp−1

i Cj − Λp−1
j Ci 0 0 · · · 2I

−Λp
i Cj − Λp

jCi 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

e

d
...

d
(p−1)

⎞

⎟⎟⎟⎠

Using a quadratic Lyapunov function V = eT
a Pea for the extended error vector ėa,

its derivative is expressed as:

V̇ =
m∑

i=1

wi(z)wi(z)eT
a H

⎛

⎜⎜⎜⎜⎜⎝
P

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiCi Mi 0 · · · 0
−Λ1

i Ci 0 I · · · 0
...

...
...
. . .

...
−Λp−1

i Ci 0 0 · · · I
−Λp

i Ci 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎠
ea

+
m∑

i=1

wi(z)
m∑

j=1
j>i

wj(z)

· eT
a H

⎛

⎜⎜⎜⎜⎜⎝
P

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiCj + Aj − LjCi Mi + Mj 0 · · · 0
−Λ1

i Cj − Λ1
jCi 0 2I · · · 0

...
...

...
. . .

...
−Λp−1

i Cj − Λp−1
j Ci 0 0 · · · 2I

−Λp
i Cj − Λp

jCi 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎠
ea

which is negative definite if condition (7.10) is satisfied. �
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Note that for simplicity, Theorem 7.3 has been formulated using the conditions of
Wang et al. (1996). More relaxed conditions can be formulated using Lemmas 3.1
and 3.2.

Although the conditions of Theorem 7.3 are not LMIs, they can be transformed
into LMIs using the change of variables Xi = P

(−Li −Λ1
i . . . −Λp−1

i −Λp
i

)T .
The observer design using the conditions of Theorem 7.3 is illustrated using the
following example.

Example 7.1. Consider the nonlinear dynamic system

ẋ =

⎛

⎝
−x2

1 1 0
0 −1 1
1 x2 −3

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠+

⎛

⎝
1 0
0 1
0 0

⎞

⎠
(

d1

d2

)

y =
(

1 0 0
0 1 0

)⎛

⎝
x1

x2

x3

⎞

⎠

(7.11)

with x1, x2, x3 ∈ [−5, 5], where d =
(
d1 d2

)T is an unknown input.
This system can be exactly represented (using the sector nonlinearity approach)

by a 4-rule fuzzy system with the local matrices

A1 =

⎛

⎝
−25 1 0
0 −1 1
1 −5 −3

⎞

⎠ A2 =

⎛

⎝
−25 1 0
0 −1 1
1 5 −3

⎞

⎠

A3 =

⎛

⎝
0 1 0
0 −1 1
1 −5 −3

⎞

⎠ A4 =

⎛

⎝
0 1 0
0 −1 1
1 5 −3

⎞

⎠

Mi =

⎛

⎝
1 0
0 1
0 0

⎞

⎠ Ci =
(

1 0 0
0 1 0

)
i = 1, 2, 3, 4

and membership functions w1 = η1
0η

2
0 , w2 = η1

0η2
1 , w3 = η1

1η
2
0 , w4 = η1

1η
2
1 , where

η1
0 = x2

1
25 , η2

0 = 5−x2
10 , η1

1 = 1 − η1
0 , and η2

1 = 1 − η2
0 . Note that the scheduling

variables are z1 = x1 and z2 = x2, which are both measured.
For this example the input d is assumed to be a second order polynomial function

of time. To design the observer, the conditions (7.10) are transformed into LMIs
using the change of variablesXi = P

(−Li −Λ1
i . . . −Λp−1

i −Λp
i

)T . Then, taking
into account that the measurement matrix Ci is common for all the rules, the LMIs
to be solved are
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findP = PT > 0,Xi, i = 1, 2, . . . , 4, such that

H

⎛

⎜⎜⎜⎜⎜⎝
P

⎛

⎜⎜⎜⎜⎜⎝

Ai Mi 0 · · · 0
0 0 I · · · 0
...

...
...
. . .

...
0 0 0 · · · I
0 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠
− Xi

(
C 0 · · · 0

)

⎞

⎟⎟⎟⎟⎟⎠
< 0

for i = 1, 2, . . . , 4.
The observer gains are found as1

L1 = 103

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.21 0.03
0.00 0.07
0.00 −0.01
1.60 0.20
−0.01 0.42
4.54 0.51
−0.07 1.13
5.93 0.53
−0.12 1.45
3.01 0.20
−0.05 0.73

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L2 = 103

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.25 0.04
0.017 0.03
−0.00 0.01
1.93 0.26
0.08 0.22
5.46 0.70
0.16 0.60
7.11 0.84
0.16 0.77
3.58 0.39
0.09 0.39

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L3 = 103

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.07 0.03
0.01 0.07
0.00 −0.01
0.49 0.23
0.02 0.42
1.39 0.61
0.05 1.13
1.81 0.67
0.06 1.45
0.91 0.27
0.03 0.73

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L4 = 103

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.08 0.02
0.01 0.03
0.00 0.00
0.55 0.10
0.03 0.19
1.55 0.25
0.08 0.52
2.02 0.26
0.09 0.67
1.02 0.10
0.05 0.34

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

To illustrate the estimation, a trajectory2 of the estimation error using the above
observer gains is presented in Figure 7.1(a). The corresponding true and estimated
unknown inputs are given in Figure 7.1(b). The true input vector is the second order
polynomial

d =
(

0.6t2 + 0.6t + 0.3
0.3t2 + 1.2t + 0.6

)

1 Throughout the chapter, all numerical values are rounded to two decimal places.
2 Throughout this chapter, for numerical integration, the ode45Matlab function was used.
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(a) Estimation error for the states.
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(b) The unknown inputs (thin line) and their
estimate (thick line).

Fig. 7.1 Simulation results for Example 7.1.

The true initial state vector was (0.5 0.1 − 0.3)T , and the estimated initial states
were (0 0 0)T . As can be seen, both the state and the input estimates converge to
the true values. �

Remark: In order to design observers with a desired convergence rate α, Corol-
lary 4.2 can be combined with Theorem 7.3. Then, the following result can be for-
mulated.

Corollary 7.1. The estimation error of the observer (7.9) converges with a rate at
least α if there exists P = P T > 0, Li, Λk

i , i = 1, 2, . . . , m, k = 1, 2, . . . , p, so
that

H

⎛

⎜⎜⎜⎜⎜⎝
P

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiCj + Aj − LjCi Mi + Mj 0 · · · 0
−Λ1

i Cj − Λ1
jCi 0 2I · · · 0

...
...

...
. . .

...
−Λp−1

i Cj − Λp−1
j Ci 0 0 · · · 2I

−Λp
i Cj − Λp

jCi 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎠
+ 4αP < 0

(7.12)
for i = 1, 2, . . . , m, j = i + 1, i + 2, . . . , m, ∀i < j : ∃z : wi(z)wj(z) �= 0.

The design of an observer with a desired error convergence rate is illustrated using
the following example.

Example 7.2. Consider the nonlinear system of Example 7.1. To maximize the con-
vergence rate of the observer, the following general eigenvalue problem has to be
solved:
maximize α, such that the following LMI is feasible: find P = P T > 0, Xi,

i = 1, 2, 3, 4, so that



7.3 Estimation of Unknown Polynomial Inputs 163

H

⎛

⎜⎜⎜⎜⎜⎝
P

⎛

⎜⎜⎜⎜⎜⎝

Ai Mi 0 · · · 0
0 0 I · · · 0
...

...
...
. . .

...
0 0 0 · · · I
0 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠
− Xi

(
C 0 · · · 0

)

⎞

⎟⎟⎟⎟⎟⎠
+ 2αP < 0

for i = 1, 2, 3, 4.
The observer gains are obtained as

L1 = 103

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.09 −0.00
0.00 0.02
−0.01 0.04
2.02 −0.04
0.05 0.32
16.91 −0.38
0.22 3.45
70.85 −1.59
0.49 14.70

118.42 −2.66
−1.15 31.21

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L2 = 103

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.09 −0.00
0.00 0.02
−0.01 0.05
2.01 −0.08
0.04 0.32
16.86 −0.71
0.13 3.45
70.63 −2.98
0.11 14.70

118.06 −4.98
−1.95 31.26

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L3 = 103

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.02 1 − 0.00
0.00 0.02
0.00 0.04
0.35 −0.07
0.02 0.32
3.02 −0.65
0.23 3.44
12.69 −2.72
0.90 14.68
21.26 −4.53
1.52 31.21

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L4 = 103

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.02 −0.00
0.00 0.02
0.00 0.05
0.35 −0.08
0.03 0.32
3.02 −0.72
0.26 3.44
12.71 −3.01
1.05 14.68
21.29 −5.01
1.83 31.21

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and α = 4.02. A trajectory of the estimation error and the true and estimated un-
known inputs, for the same setting as in Example 7.1 is given in Figures 7.2(a)
and 7.2(b). As can be seen, the estimates converge faster than in Example 7.1, but
the overshoot is also larger. �

In many cases, the unknown input acting on the system is not polynomial. However,
the input is in general bounded or it is possible to determine a bound on some deriva-
tive of it. Therefore, assume that there exists p ∈ N so that d(p), the p-th derivative,
is bounded by a known constant, i.e., ‖d(p)‖ < μd, and d(j), j = 1, 2, . . . , p are
observable from y. In this case, although the estimation error does not converge to
zero, it is bounded, and an upper bound can be computed as follows.

In the case when the scheduling vector does not depend on unmeasured states,
the error system can be written as:
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(a) Estimation errors for the states.
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(b) The unknown inputs (thin line) and their
estimate (thick line).

Fig. 7.2 Simulation results for Example 7.2.

ėa =
m∑

i=1

wi(z)wi(z)

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiCi Mi 0 · · · 0
−Λ1

i Ci 0 I · · · 0
...

...
...
. . .

...
−Λp−1

i Ci 0 0 · · · I
−Λp

i Ci 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠
ea +

⎛

⎜⎜⎜⎜⎜⎝

0
0
0
...

d(p)

⎞

⎟⎟⎟⎟⎟⎠

+
m∑

i=1

wi(z)
m∑

j=1
j>i

wj(z)

·

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiCj + Aj − LjCi Mi + Mj 0 · · · 0
−Λ1

i Cj − Λ1
jCi 0 2I · · · 0

...
...

...
. . .

...
−Λp−1

i Cj − Λp−1
j Ci 0 0 · · · 2I

−Λp
i Cj − Λp

jCi 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠
ea

(7.13)

For the error dynamics above, the following result can be stated.

Theorem 7.4. The error described by (7.13), with ‖d(p)‖ < μd, where μd > 0 is a
known constant, is ultimately bounded by a ball with radius

γ =

√
λmax(P )
λmin(P )

λmax(P )μd

σλmin(Q)
(7.14)

where σ ∈ (0, 1), if there exist P = P T > 0, Q = QT > 0, Li, and Λk
i , i =

1, 2, . . . , m, k = 1, 2, . . . , p, so that
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H

⎛

⎜⎜⎜⎜⎜⎝
P

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiCj + Aj − LjCi Mi + Mj 0 · · · 0
−Λ1

i Cj − Λ1
jCi 0 2I · · · 0

...
...

...
. . .

...
−Λp−1

i Cj − Λp−1
j Ci 0 0 · · · 2I

−Λp
i Cj − Λp

jCi 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎠
< −4Q (7.15)

for i = 1, 2, . . . , m, j = i + 1, i + 2, . . . , m, ∀i < j : ∃z : wi(z)wj(z) �= 0,
where λmin and λmax denote the eigenvalues with the smallest and largest absolute
magnitude, respectively.

Proof: Consider a quadratic Lyapunov function V = eT
a Pea for the extended error

vector, and Q = QT is a positive definite matrix such that (7.15) is satisfied. We
have

V̇ =
m∑

i=1

wi(z)wi(z)eT
a H

⎛

⎜⎜⎜⎜⎜⎝
P

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiCi Mi 0 · · · 0
−Λ1

i Ci 0 I · · · 0
...

...
...
. . .

...
−Λp−1

i Ci 0 0 · · · I
−Λp

i Ci 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎠
ea

+
m∑

i=1

wi(z)
m∑

j=1
j>i

wj(z)

eT
a H

⎛

⎜⎜⎜⎜⎜⎝
P

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiCj + Aj − LjCi Mi + Mj 0 · · · 0
−Λ1

i Cj − Λ1
jCi 0 2I · · · 0

...
...

...
. . .

...
−Λp−1

i Cj − Λp−1
j Ci 0 0 · · · 2I

−Λp
i Cj − Λp

jCi 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎠
ea

+
m∑

i=1

wi(z)2eT
a P

(
0 0 0 · · · d(p)T

)T

≤− 2λmin(Q)‖ea‖2 + 2λmax(P )‖ea‖μd

≤− 2(1 − σ)λmin(Q)‖ea‖2 − 2(σλmin(Q)‖ea‖2 − λmax(P )‖ea‖μd)

where σ ∈ (0, 1) is arbitrarily chosen. Then, V̇ is negative definite if

σλmin(Q)‖ea‖2 − λmax(P )‖ea‖μd > 0

or
‖ea‖ >

λmax(P )μd

σλmin(Q)

Since λmin(P )‖ea‖2 ≤ V ≤ λmax(P )‖ea‖2, using Theorem 4.18 of (Khalil, 2002)
it can be concluded that ‖ea‖ converges exponentially to a ball with radius
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γ =

√
λmax(P )
λmin(P )

λmax(P )μd

σλmin(Q)
(7.16)

which is a global uniform ultimate bound on the estimation error (Khalil, 2002). �
Remark: The bound (7.16) can be minimized by using the relaxation in (Tuan et al.,
2001) and solving the following optimization problem:
maximize α1, α2, α3 so that there exist P = P T > 0, Li, Λk

i , i = 1, 2, . . . , m,
k = 1, 2, . . . , p, subject to

Γij = H

⎛

⎜⎜⎜⎜⎜⎝
P

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiCj Mi 0 · · · 0
−Λ1

i Cj 0 I · · · 0
...

...
...
. . .

...
−Λp−1

i Cj 0 0 · · · I
−Λp

i Cj 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎠

Γii > 0
2

m − 1
Γii + Γij + Γji < −α3I

− P > −α2I

P > α1I

(7.17)

for i = 1, 2, . . . , m, j = 1, 2, . . . , m, i �= j.
Note however, that the obtained bound is only an upper bound on the estimation

error, and in general it is very conservative. The observer design when the unknown
input is approximated by a polynomial function of time is illustrated on the follow-
ing example.

Example 7.3. Consider the nonlinear system in Example 7.1, and let the unknown
input be given by d = (sin(0.5t) cos(0.5t))T . This input is not polynomial, but it
is bounded, and its derivatives are bounded. For instance, ‖d(2)‖ ≤ 0.35.

To design the observer, the unknown input is approximated by a first order (linear
in time) polynomial. Solving (7.17), the ultimate bound is obtained as γ = 63.02. A
trajectory of the estimation error and the true and estimated unknown inputs, for the
same setting as in Example 7.1 are given in Figures 7.2(a) and 7.2(b). As can be seen
in the figures, the computed bound on the estimation errors is very conservative. �

The results presented so far can be considered a generalization of the design pro-
posed by Guelton et al. (2008b) to higher order inputs for classical TS fuzzymodels.
In the next section, this result is extended to the case when the scheduling vector de-
pends on states that are not measured.

7.3.2 Estimated Scheduling Vector

In this section, we consider the case when the scheduling vector depends on states
that are not measured, and therefore an estimate of the scheduling vector has to be
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(a) Estimation errors for the states.
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(b) The unknown input (thin line) and its es-
timate (thick line).

Fig. 7.3 Simulation results for Example 7.3.

used in the observer. For simplicity of notation, only the case when the measurement
matrix is common for all rules is presented. Note, however, that if the measurement
matrices are different, the observer can be designed similarly, although the condi-
tions become more conservative.

The observer considered now is of the form

˙̂x =
m∑

i=1

wi(ẑ)
(
Aix̂ + Biu + Li(y − ŷ) + Mid̂ + ai

)

ŷ = Cx̂

d̂
(p)

=
m∑

i=1

wi(ẑ)Λp
i (y − ŷ)

d̂
(j)

=
m∑

i=1

wi(ẑ)(Λj
i (y − ŷ) + d̂

(j+1)
)

for j = 1, . . . , p − 1

(7.18)

The extended error system becomes:

ėa =
m∑

i=1

wi(ẑ)

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiC Mi 0 · · · 0
−Λ1

i C 0 I · · · 0
...

...
...
. . .

...
−Λp−1

i C 0 0 · · · I
−Λp

i C 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

e

d
...

d
(p−1)

⎞

⎟⎟⎟⎠

+
m∑

i=1

(wi(z) − wi(ẑ))(I 0 . . . 0)T · (Aix + Biu + Mid + ai)

(7.19)

If the condition ‖∑m
i=1(wi(z) − wi(ẑ))(Aix + Biu + Mid + ai)‖ ≤ μ‖e‖, for

some μ > 0 is satisfied, then ‖∑m
i=1(wi(z) − wi(ẑ))(Aix + Biu + Mid + ai)‖
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is also Lipschitz continuous in ea, with the same Lipschitz constant μ. In this
case, combining Theorem 7.3 and Theorem 4.5, the following conditions can be
formulated.

Corollary 7.2. The error system (7.19), under the assumption that

∥∥∥
m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + Mid + ai)
∥∥∥ ≤ μ‖e‖

where μ > 0 is a known constant, is asymptotically stable, if there exist P = PT >
0, Q = QT > 0, Li, and Λj

i , i = 1, 2, . . . , m, j = 1, 2, . . . , p, so that

H

⎛

⎜⎜⎜⎜⎜⎝
P

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiC Mi 0 · · · 0
−Λ1

i C 0 I · · · 0
...

...
...
. . .

...
−Λp−1

i C 0 0 · · · I
−Λp

i C 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎠
< −Q

(
Q − μ2I P

P I

)
> 0

(7.20)

for i = 1, 2, . . . , m.

The conditions (7.20) are not LMIs, but they can easily be transformed into LMIs
using the change of variables Xi = P

(−Li −Λ1
i . . . −Λp−1

i −Λp
i

)T . The design
of an observer when the scheduling vector has to be estimated is illustrated on the
following example.

Example 7.4. Consider the nonlinear dynamic system

ẋ =

⎛

⎝
−x2

3 1 2
1 −2 1

0.1 x1 −3

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠+

⎛

⎝
1 0
0 1
0 0

⎞

⎠
(

d1

d2

)

y =
(

1 0 0
0 1 0

)⎛

⎝
x1

x2

x3

⎞

⎠

(7.21)

with x1, x2 ∈ [−1, 1], x3 ∈ [−0.2, 0.2], where d =
(
d1 d2

)T is an unknown input
that is a first order polynomial function of time.

This system can be exactly represented (using the sector nonlinearity approach)
by a 4-rule fuzzy system with the local matrices
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A1 =

⎛

⎝
−0.04 1 2

1 −2 1
0.1 1 −3

⎞

⎠ A2 =

⎛

⎝
−0.04 1 2

1 −2 1
0.1 −1 −3

⎞

⎠

A3 =

⎛

⎝
0 1 2
1 −2 1

0.1 1 −3

⎞

⎠ A4 =

⎛

⎝
0 1 2
1 −2 1

0.1 −1 −3

⎞

⎠

Mi =

⎛

⎝
1 0
0 1
0 0

⎞

⎠ Ci =
(

1 0 0
0 1 0

)
i = 1, 2, 3, 4

The weighting functions (see Section 2.3.1) for the nonlinearities −x2
3 and x1 are

η1
0 = x2

3
0.09 , η1

1 = 1 − η1
0 , and η2

0 = 1−x(1)
2 , η2

1 = 1 − η2
0 , respectively. Note that

the weighting functions for the first nonlinearity depend on x3, a state that has to be
estimated. The condition ‖∑m

i=1(wi(z)−wi(ẑ))(Aix+Mid)‖ ≤ μ‖e‖ is satisfied
with μ = 0.4.

To design the observer, conditions (7.20) are transformed into LMIs using the
change of variables Xi = P

(−Li −Λ1
i . . . −Λp−1

i −Λp
i

)
. Solving the LMIs, the

observer gains are obtained as

L1 = 102

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.23 0.93
0.91 1.83

−16.12 −8.08
226.60 100.82
100.15 76.34
187.97 82.12
81.55 65.58

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

L2 = 102

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.23 0.93
0.92 1.83

−16.12 −8.10
226.64 100.69
100.21 76.30
188.00 82.01
81.60 65.54

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

L3 = 102

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.23 0.92
0.92 1.83

−16.12 −8.07
226.68 100.57
100.27 76.25
188.03 81.91
81.66 65.51

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

L4 = 102

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.23 0.92
0.92 1.83

−16.13 −8.08
226.70 100.50
100.30 76.23
188.05 81.86
81.69 65.49

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

A trajectory of the estimation error of the states using the observer gains above is
presented in Figure 7.4(a). The corresponding true and estimated unknown inputs
are given in Figure 7.4(b). The input vector was the first order polynomial d =(−0.3t + 0.2 0.2t + 0.5

)T . The true initial states were (0.5 0.1 − 0.1)T , and the
estimated initial states were (0 0 0)T . As can be seen, both the states and the input
are correctly estimated. �

Note that the condition
(

Q − μ2I P
P I

)
> 0 is very conservative. In fact, if the

estimated initial states are close enough to the true initial states, the estimates may
converge even if this condition is not satisfied. Such an example is presented next.
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(a) Estimation errors for the states.
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(b) The unknown inputs (thin line) and their
estimates (thick line).

Fig. 7.4 Simulation results for Example 7.4.

Example 7.5. Consider the nonlinear dynamic system

ẋ =

⎛

⎝
−x2

3 1 2
1 −2 1

0.1 x1 −3

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠+

⎛

⎝
1 0
0 1
0 0

⎞

⎠
(

d1

d2

)

y =
(

1 0 0
0 1 0

)⎛

⎝
x1

x2

x3

⎞

⎠

(7.22)

with x1, x2, x3 ∈ [−1, 1], where d =
(
d1 d2

)T is an unknown first order polyno-
mial input.

Similarly to Example 7.4, this system can be exactly represented (using the sector
nonlinearity approach) by a 4-rule fuzzy system with the local matrices

A1 =

⎛

⎝
−1 1 2
1 −2 1

0.1 1 −3

⎞

⎠ A2 =

⎛

⎝
−1 1 2
1 −2 1

0.1 −1 −3

⎞

⎠

A3 =

⎛

⎝
0 1 2
1 −2 1

0.1 1 −3

⎞

⎠ A4 =

⎛

⎝
0 1 2
1 −2 1

0.1 −1 −3

⎞

⎠

Mi =

⎛

⎝
1 0
0 1
0 0

⎞

⎠ Ci =
(

1 0 0
0 1 0

)
i = 1, 2, 3, 4

The weighting functions (see Section 2.3.1) for the nonlinearities −x2
3 and x1 are

η1
0 = x2

3, η1
1 = 1 − η1

0 , and η2
0 = 1−x(1)

2 , η2
1 = 1 − η2

0 , respectively. Note that
the weighting functions for the first nonlinearity depend on x3, a state that has to be
estimated.
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The term
∑m

i=1(wi(z) − wi(ẑ))(Aix + Biu + Mid + ai), is bounded, and

∥∥∥
m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + Mid + ai)
∥∥∥ ≤ ‖e‖

i.e., μ = 1. However, for this value of μ, the conditions (7.20) are not feasible, in

particular, the condition
(

Q − μ2I P
P I

)
> 0 cannot be satisfied.

An observer (which does not guarantee that the estimation error will converge to

zero) has been designed without using the condition
(

Q − μ2I P
P I

)
> 0, and the

observer gains are

L1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

18.65 0.71
1.42 17.46
2.62 2.28

153.74 10.15
14.97 134.11
339.09 43.73
53.88 263.04

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

L2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

18.50 2.64
−0.28 17.60
2.66 0.20

152.45 23.54
3.52 135.40

334.43 73.37
31.24 267.71

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

L3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

19.77 −0.36
2.38 17.41
2.59 2.32

154.78 2.66
21.43 133.65
342.39 27.20
66.69 260.95

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

L4 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

19.63 1.56
0.67 17.56
2.63 0.24

153.49 16.05
9.98 134.94

337.73 56.84
44.06 265.61

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

A trajectory of the estimation error of the states using the observer gains above is
presented in Figure 7.5(a). The corresponding true and estimated unknown inputs
are given in Figure 7.5(b). The input was the first order polynomial vector d =(−0.3t + 0.2 0.2t + 0.5

)T . The true initial states were (0.5 0.1 − 0.1)T , and the
estimated initial states were (0 0 0)T . As can be seen, both the states and the input
are correctly estimated. �

Consider now the case when the unknown input is not a polynomial function, but its
derivative is bounded, that is, ‖d(p)‖ ≤ μd. A bound similar to, although even more
conservative than (7.16) can be computed in this case. For simplicity of notation,
the computation is presented only for the case when the measurement matrices are
common for all the rules. Then, the error dynamics are those in (7.19), and assume
that ∥∥∥

m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + Mid + ai)
∥∥∥ ≤ μ‖e‖

with μ > 0 a known constant. Let the condition
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(a) Estimation errors for the states.
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(b) The unknown inputs (thin line) and their
estimates (thick line).

Fig. 7.5 Simulation results for Example 7.5.

H

⎛

⎜⎜⎜⎜⎜⎝
P

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiC Mi 0 · · · 0
−Λ1

i C 0 I · · · 0
...

...
...
. . .

...
−Λp−1

i C 0 0 · · · I
−Λp

i C 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎠
< −2Q

P = PT > 0

Q = QT > 0
(

Q − μ2I P
P I

)
> 0

(7.23)

for i = 1, 2, . . . , m, hold. Using a quadratic Lyapunov function V = eT
a Pea for

the extended error vector ea, we have

V̇ =
m∑

i=1

wi(z)eT
a H

⎛

⎜⎜⎜⎜⎜⎝
P

⎛

⎜⎜⎜⎜⎜⎝

Ai − LiC Mi 0 · · · 0
−Λ1

i C 0 I · · · 0
...

...
...
. . .

...
−Λp−1

i C 0 0 · · · I
−Λp

i C 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎠
ea

+
m∑

i=1

wi(z)2eT
a P

(
0 0 0 · · · d(p)T

)T

+ 2eT
a P

m∑

i=1

((wi(z) − wi(ẑ)))(I 0 · · · 0)T (Aix + Biu + Mid)

≤ −2λmin(Q)‖ea‖2 + 2λmax(P )μ‖ea‖2 + 2λmax(P )‖ea‖μd

≤ −2(1 − σ)(λmin(Q) − μλmax(P ))‖ea‖2

− 2(σ(λmin(Q) − μλmax(P ))‖ea‖2 − λmax(P )‖ea‖μd)
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where σ ∈ (0, 1) is arbitrarily chosen and Q = QT is a positive definite matrix
such that (7.23) is satisfied. Then, V̇ is negative definite if

σ(λmin(Q) − μλmax(P ))‖ea‖2 − λmax(P )‖ea‖μd > 0

‖ea‖ >
λmax(P )μd

σ(λmin(Q) − μλmax(P ))

Since λmin(P )‖ea‖2 ≤ V ≤ λmax(P )‖ea‖2, using Theorem 4.18 of (Khalil, 2002)
it can be concluded that ‖ea‖ converges exponentially to stay within a ball with
radius

γ =

√
λmax(P )
λmin(P )

λmax(P )μd

σ(λmin(Q) − μλmax(P ))
(7.24)

This bound can also be minimized using the conditions (7.17), together with the
condition λmin(Q) > μλmax(P ).

Example 7.6. Consider the nonlinear system in Example 7.4, with the fuzzy repre-
sentation developed in Example 7.4. For the current example, the true unknown in-
put is d = (− sin(0.1t) cos(0.1t))T . This input is approximated by a second order
polynomial, i.e., in the observer, a second order polynomial function was assumed.
The second order derivative of d is bounded, with ‖d(2)‖ ≤ 0.14.

To design the observer, conditions (7.23) were solved and the bound on the esti-
mation error was obtained as 369.94. Naturally, this bound is extremely conserva-
tive, as it is confirmed by the simulation results. A trajectory of the estimation error
of the states using the observer gains above is presented in Figure 7.6(a). The cor-
responding true and estimated unknown inputs are given in Figure 7.6(b). The true
initial states were (0.5 0.1 − 0.1)T , and the estimated initial states were (0 0 0)T .
As can be seen, both the estimated states and the estimated input converge close to
the true values. �
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(a) Estimation errors for the states.
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(b) The unknown inputs (thin line) and their
estimates (thick line).

Fig. 7.6 Simulation results for Example 7.6.
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7.4 Estimation of Unmodelled Dynamics
In this section, we consider unknown inputs that are not polynomial, but that are due
to unmodelled dynamics. This means that the fuzzy system is of the form

ẋ =
m∑

i=1

wi(z)(Aix + Biu + Mi(Aδix + Bδiu + θi))

y = Cx

(7.25)

where Ai, Bi, i = 1, 2, . . . , m are the known local models, and the matrices Aδi,
Bδi and the vectors θi, i = 1, 2, . . . , m are unknown, but Aδi, i = 1, 2, . . . , m
are bounded by a known bound μmax, max ‖Aδi‖ ≤ μmax. This corresponds to
the situation when part of the true dynamics is unmodeled. The goal is to determine
sufficient conditions and to design an observer that estimates x and also the constant
matrices Aδi, Bδi and the vector θi, i = 1, 2, . . . , m. Therefore, our goal is to
estimate the unknown dynamics.

For the simplicity of the derivations, we present only the case when the mea-
surement matrix is common for all rules of the model. If the measurement matrices
are different, similar results can be derived. In what follows, two cases are distin-
guished: 1) the scheduling vector is known and 2) the scheduling vector depends on
states that have to be estimated.

7.4.1 Measured Scheduling Vector

Consider first the case when the scheduling vector does not depend on states to be
estimated. For system (7.25), the following observer is considered:

˙̂x =
m∑

i=1

wi(z)(Aix̂ + Biu + Li(y − ŷ) + Mi(Âδix̂ + B̂δiu + θ̂i))

ŷ = Cx̂

˙̂
Aδi = f u

i (Âδi, w(z), x̂, y)
˙̂
Bδi = gu

i (B̂δi, w(z), x̂, y, u)
˙̂
θi = hu

i (θ̂i, w(z), x̂, y)

(7.26)

where Li, i = 1, 2, . . . , m are the gain matrices for each rule, and the update laws
f u

i , gui , hu
i , i = 1, 2, . . . , m should be determined so that the estimation errors

x − x̂, Aδi − Âδi, Bδi − B̂δi, and θi − θ̂i converge asymptotically to zero.
The error dynamics when using the observer (7.26) can be expressed as:

ė =
m∑

i=1

wi(z)[(Ai − LiC + MiAδi)e + Mi(Āδix̂ + B̄δiu + θ̄i)]

ey = Ce

(7.27)

with Āδi = Aδi − Âδi, B̄δi = Bδi − B̂δi, θ̄i = θi − θ̂i.
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Consider first the following part of the error expressed in (7.27):

˙̃e =
m∑

i=1

wi(z)(Ai − LiC + MiAδi)ẽ (7.28)

Since a bound onAδi, i = 1, 2, . . . , m is known, i.e.,max ‖Aδi‖ ≤ μmax, stability
conditions for perturbed fuzzy systems (Bergsten, 2001) can be used to render (7.28)
stable and to design the gain matrices Li, i = 1, 2, . . . , m:
findP = PT > 0, Q = QT > 0, and Li, i = 1, 2, . . . , m, so that

‖Mi‖μmax ≤ λmin(Q)
λmax(P )

H(P (Ai − LiC)) ≤ −2Q

(7.29)

for i = 1, 2, . . . , m. Note that this means that the error dynamics is robustly stable.
Consider now a Lyapunov function of the form

V =eT Pe +
m∑

i=1

tr(ĀT
δiĀδi) +

m∑

i=1

tr(B̄T
δiB̄δi) +

m∑

i=1

(θ̄T
i θ̄i)

for the error system (7.27), where P satisfies (7.29). We have

V̇ =
n∑

i=1

wi(z)eT [(Ai − LiC + MiAδi)T P + P (Ai − LiC + MiAδi)]e

+ 2eT P

m∑

i=1

wi(z)MiĀδix̂ + 2eT P

m∑

i=1

wi(z)MiB̄δiu

+ 2eT P
m∑

i=1

wi(z)Miθ̄i − 2
m∑

i=1

tr( ˙̂
A

T

δiĀδi)

− 2
m∑

i=1

tr( ˙̂
B

T

δiB̄δi) − 2
m∑

i=1

( ˙̂θ
T

i θ̄i)

=
n∑

i=1

wi(z)eT Gie + 2
m∑

i=1

(tr(x̂eT PMiwi(z)Āδi) − tr( ˙̂
A

T

δiĀδi))

+ 2
m∑

i=1

(tr(ueT PMiwi(z)B̄δi) − tr( ˙̂
B

T

δiB̄δi))

+ 2
m∑

i=1

(eT PMiwi(z)θ̄i − ˙̂
θ

T

i θ̄i)

=
n∑

i=1

wi(z)eT Gie + 2
m∑

i=1

tr((x̂eT PMiwi(z) − ˙̂
A

T

δi)Āδi)

+ 2
m∑

i=1

tr((ueT PMiwi(z) − ˙̂
B

T

δi)B̄δi) + 2
m∑

i=1

(eT Pwi(z) − ˙̂
θ

T

i )θ̄i

with Gi = H(P (Ai − LiC + MiAδi)), i = 1, 2, . . . , m.
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Since V > 0 and from (7.29) Gi < 0, for i = 1, 2, . . . , m, V̇ < 0 is rendered

negative definite if tr((x̂eT PMiwi(z) − ˙̂
A

T

δi)Āδi) = 0, tr((ueT PMiwi(z) −
˙̂
B

T

δi)B̄δi), and eT PMiwi(z)− ˙̂
θ

T

i = 0, for i = 1, 2, . . . , m. These conditions lead
to the update laws:

˙̂
Aδi = wi(z)MT

i Pex̂T

˙̂
Bδi = wi(z)MT

i PeuT

˙̂
θi = wi(z)MT

i Pe

(7.30)

In general e is not directly available. However, given Assumption 7.1, there exist
matrices Λi, i = 1, 2, . . . , m, so that ΛiC = MT

i P , Λi = MT
i PC†, where C†

denotes the Moore-Penrose pseudoinverse of C.
Therefore, the update laws can be expressed as:

˙̂
Aδi = wi(z)MT

i PC†eyx̂T

˙̂
Bδi = wi(z)MT

i PC†eyuT

˙̂
θi = wi(z)MT

i PC†ey

(7.31)

If all the rules are sufficiently excited, both the error system and the estimation
error of the unknown matrices are asymptotically stable. It can easily be seen that,
assuming nonzero and varyingx, u, the only invariant set of the error system (7.27)
is e = 0, Āδi = 0, B̄δi = 0 and θ̄i = 0. If wi(z), i = 1, 2, . . . , m ,are sufficiently
smooth and the fuzzy model is defined on a compact set of variables, then based on
Barbalat’s lemma and LaSalle’s invariance principle – see Lemma 8.2 and Theorem
4.4 of (Khalil, 2002) –, the dynamics (7.27), together with the update laws above
are asymptotically stable.

The results can be summarized as follows:

Theorem 7.5. The error dynamics (7.27) are asymptotically stable, if the update
laws (7.31) are used, the membership functions wi, i = 1, 2, . . . , m are smooth,
all rules are sufficiently excited, and, furthermore, there exist P = P T > 0, Q =
QT > 0, and Li, i = 1, 2, . . . , m so that

P > 0
H(P (Ai − LiC)) < −Q

‖Mi‖μmax ≤ λmin(Q)
λmax(P )

(7.32)

for i = 1, 2, . . . , m.
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Example 7.7. Consider the four-rule TS fuzzy system

ẋ =
4∑

i=1

wi(z)Aix

y =Cx

with the local matrices

A1 =

⎛

⎝
−2 −2 1
−1 −4 1
1 1 −2

⎞

⎠ A2 =

⎛

⎝
−2 −2 1
1 −4 1
1 1 −2

⎞

⎠

A3 =

⎛

⎝
2 −2 1
−1 −4 1
1 1 −2

⎞

⎠ A4 =

⎛

⎝
2 −2 1
1 −4 1
1 1 −2

⎞

⎠

C =
(

1 0 0
0 1 0

)

with z = (z1, z2)T measured scheduling vector and membership functions

w1(z) = (2 + z1 − z2)(1 − z1)/8 w2(z) = (2 + z1 − z2)(1 + z1)/8
w3(z) = (−1 − z1 + z2)(1 − z1)/8 w4(z) = (−1 − z1 + z2)(1 + z1)/8

All the variables are assumed to be bounded, zi ∈ [−1, 1], i = 1, 2, xi ∈ [−1, 1],
i = 1, 2, 3.

For this system, a four-rule approximate TS model is available, with the same
scheduling vector and membership functions, but with the local models being

A1 =

⎛

⎝
−3 −2. 1
−1 −3.5 1
1 1 −2

⎞

⎠ A2 =

⎛

⎝
−3 −2 1
1 −3.5 1
1 1 −2

⎞

⎠

A3 =

⎛

⎝
1 −2 1
−1 −3.5 1
1 1 −2

⎞

⎠ A4 =

⎛

⎝
1 −2 1
1 −3.5 1
1 1 −2

⎞

⎠

C =
(

1 0 0
0 1 0

)

that is, the dynamics of the first two states are not modeled correctly. The distribution

matrix of the unmodeled dynamics is Mi =

⎛

⎝
1 0
0 1
0 0

⎞

⎠, i = 1, 2, 3, 4, and the matrix

of the unmodeled dynamics is bounded, with μmax = 1.
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For the approximate system, an observer has been designed by solving the con-
ditions (7.32). The observer gains are

L1 =

⎛

⎝
7.65 0.36
0.38 7.30
3.22 3.36

⎞

⎠ L2 =

⎛

⎝
7.48 1.42
1.33 7.47
3.07 3.51

⎞

⎠

L3 =

⎛

⎝
10.90 −0.03
0.53 6.47
3.15 3.21

⎞

⎠ L4 =

⎛

⎝
10.73 1.02
1.47 6.63
3.00 3.36

⎞

⎠

A trajectory of the estimation error using the observer gains above is presented in
Figure 7.7. The true initial states were (0.5 0.1 − 0.1)T , and the estimated initial
states were (0 0 0)T . The scheduling variables were randomly generated. As can be
seen, the estimated states converge to the true values. �
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Fig. 7.7 Simulation results for Example 7.7.

Remark: Note that if the measurement matrix is different for each rule of the fuzzy
model, the update laws for the matrices of the unknown dynamics can still be ex-
pressed as (7.30). Update laws similar to (7.31) can be derived if (

∑m
i=1 wi(z)Ci)†,

is defined ∀z. In this case, the update laws are

˙̂
Aδi = wi(z)MT

i P
( m∑

i=1

wi(z)Ci

)†
eyx̂T

˙̂
Bδi = wi(z)MT

i P
( m∑

i=1

wi(z)Ci

)†
eyuT

˙̂
θi = wi(z)MT

i P
( m∑

i=1

wi(z)Ci

)†
ey

(7.33)
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and the observer gains are given by (7.32). However, to have a unique solution,
Assumption 7.1 has to be modified to rank(

∑m
j=1 wj(z)CjMi) = rank(Mi), i =

1, 2, . . . , m, ∀z.

Remark: If the unknown matrices are not constant, but slowly varying, such that
Ȧδi 	 0, etc., the results above can still be applied.

7.4.2 Estimated Scheduling Vector

Consider now the case when the scheduling vector depends on state variables to be
estimated, that is, in the observer, the estimated state vector has to be used. Then,
instead of (7.26), the observer

˙̂x =
m∑

i=1

wi(ẑ)(Aix̂ + Biu + Li(y − ŷ) + Mi(Âδix̂ + B̂δiu + θ̂i))

ŷ = Cx̂

˙̂
Aδi = f u

i (Âδi, w(ẑ), x̂, y)
˙̂
Bδi = gu

i (B̂δi, w(ẑ), x̂, y, u)
˙̂
θi = hu

i (θ̂i, w(ẑ), x̂, y)

(7.34)

has to be used, and the error system (7.27) becomes

ė =
m∑

i=1

wi(ẑ)[(Ai − LiC + MiAδi)e + Mi(Āδix̂ + B̄δiu + θ̄i)]

+
m∑

i=1

(wi(z) − wi(ẑ)) · (Aix + Biu + Mi(Aδix + Bδiu + θi))

ey = Ce

(7.35)

Under the assumption that ‖∑m
i=1(wi(z)−wi(ẑ))(Aix+Biu+Mi(Aδix+Bδiu+

θi))‖ ≤ μ‖e‖, and by combining the conditions in Theorems 4.5 and 7.5, the fol-
lowing result is obtained:
Corollary 7.3. Assuming that

∥∥∥
m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + Mi(Aδix + Bδiu + θi))
∥∥∥ ≤ μ‖e‖

holds with μ > 0 a known constant, the error system (7.35), together with the update
laws

˙̂
Aδi = wi(ẑ)MT

i PC†eyx̂T

˙̂
Bδi = wi(ẑ)MT

i PC†eyuT

˙̂
θi = wi(ẑ)MT

i PC†ey

(7.36)
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is asymptotically stable, if the membership functions are smooth, all rules are suf-
ficiently excited, and, furthermore, if there exist P = P T > 0, Q = QT > 0, Li,
i = 1, 2, . . . , m so that

P > 0
H(P (Ai − LiC)) < −Q
(

Q − (μ2 + ‖Mi‖2μ2
max)I P

P I

)
> 0

(7.37)

for i = 1, 2, . . . , m.

Remark: Similarly to the case when the scheduling vector does not depend on the
states, if the measurementmatrix is different for each rule of the fuzzymodel, update
laws for the matrices of the unknown dynamics can be derived if (

∑m
i=1 wi(ẑ)Ci)†,

is defined ∀ẑ. In this case, the update laws become

˙̂
Aδi = wi(ẑ)MT

i P
( m∑

i=1

wi(ẑ)Ci

)†
eyx̂T

˙̂
Bδi = wi(ẑ)MT

i P
( m∑

i=1

wi(ẑ)Ci

)†
eyuT

˙̂
θi = wi(ẑ)MT

i P
( m∑

i=1

wi(ẑ)Ci

)†
ey

(7.38)

and the observer gains are given by (7.37).

Example 7.8. Consider the four-rule TS fuzzy system

ẋ =
4∑

i=1

wi(z)Aix

y =Cx

with the local matrices

A1 =

⎛

⎝
1 −2 1
−1 −4 1
1 1 −2

⎞

⎠ A2 =

⎛

⎝
−1 −2 1
1 −4 1
1 1 −2

⎞

⎠

A3 =

⎛

⎝
−1 −2 1
−1 −4 1
1 1 −2

⎞

⎠ A4 =

⎛

⎝
−1 −2 1
1 −4 1
1 1 −2

⎞

⎠

C =
(

1 0 0
0 1 0

)
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with z = (x1, x3)T the scheduling vector, with x1 measured, and membership
functions

w1(z) = (1 − x3)(1 − x1)/4 w2(z) = (1 − x3)(1 + x1)/4
w3(z) = (1 + x3)(1 − x1)/4 w4(z) = (1 + x3)(1 + x1)/8

all variables assumed to be bounded, xi ∈ [−1, 1], i = 1, 2, 3.
For this system, a four-rule approximate TS model is available, with the same

scheduling vector and membership functions, but with the local models being

A1 =

⎛

⎝
3 −2. 1
−1 −3.5 1
1 1 −2

⎞

⎠ A2 =

⎛

⎝
3 −2 1
1 −3.5 1
1 1 −2

⎞

⎠

A3 =

⎛

⎝
1 −2 1
−1 −3.5 1
1 1 −2

⎞

⎠ A4 =

⎛

⎝
1 −2 1
1 −3.5 1
1 1 −2

⎞

⎠

C =
(

1 0 0
0 1 0

)

that is, the dynamics of the first two states are not modeled correctly. The distribution

matrix of the unmodeled dynamics is Mi =

⎛

⎝
1 0
0 1
0 0

⎞

⎠, i = 1, 2, 3, 4, and the matrix

of the unmodeled dynamics is bounded, with μmax = 2.
Note that the membership functions depend on x3, a state that has to be estimated.

The term
∑m

i=1(wi(z) − wi(ẑ)) · (Aix + MiAδix) is bounded, ‖∑m
i=1(wi(z) −

wi(ẑ)) · (Aix + MiAδix)‖ ≤ μ‖e‖, with μ = 2. Moreover ‖MiAδi‖ ≤ 2, i =
1, 2, 3, 4.

For the approximate system, an observer has been designed by solving the con-
ditions (7.37). The observer gains are

L1 =

⎛

⎝
8.05 −1.37
−1.30 1.49
2.19 2.23

⎞

⎠ L2 =

⎛

⎝
8.03 −0.36
−0.31 1.51
2.12 2.30

⎞

⎠

L3 =

⎛

⎝
6.02 −1.36
−1.31 1.49
2.18 2.23

⎞

⎠ L4 =

⎛

⎝
6.01 −0.35
−0.32 1.51
2.12 2.30

⎞

⎠

A trajectory of the estimation error using the observer gains above is presented in
Figure 7.8. The true initial states were (0.5 0.1 − 0.1)T , and the estimated initial
states were (0 0 0)T . The scheduling variables were randomly generated. As can be
seen, the estimated states converge to the true values. �
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Fig. 7.8 Simulation results for Example 7.8.

7.5 Summary

In this chapter a method for designing observers that estimate the state and unknown
inputs of TS fuzzy systems has been presented. The design of unknown input ob-
servers is important in practice, since in many cases not all the inputs are known.
These unknown inputs can represent disturbances acting on the process, effects of
unmodelled dynamics, or actuator faults. The observers presented in this chapter are
designed based on a known part of the dynamic model, and the observer gains are
computed by solving a system of LMIs. When the unknown inputs are represented
or approximated by polynomial functions of time, sufficient conditions that guaran-
tee the exponential convergence of the error and also an ultimate bound on the error
signal have been presented. In the case of estimating unmodelled dynamics, suffi-
cient conditions have been given for the asymptotic convergence of the observer.

Two shortcomings of the presented approach for the estimation of unmodelled
dynamics has to be noted. First, a prerequisite of the approach is that an upper
bound on the state matrix of the unmodelled dynamics is known, and that a robust
observer can be designed. Second, the presented method only guarantees asymptotic
stability, not exponential stability. Moreover, the methods rely on the existence of a
common quadratic Lyapunov function, which introduces conservativeness in itself.



Glossary

Conventions

The following conventions are used throughout the book:

• The standard control-theoretic conventions are used. For instance, the state is
denoted by x, the control action by u, the process dynamics by f , the measure-
ments by y, and the measurement function by h.

• All the vectors used in this thesis are column vectors. The transpose of a vector
is denoted by the superscript T . For instance, the transpose of x is xT .

• Boldface notation is used for vector or matrix functions, e.g., f is a vector
function.

List of Symbols and Notations

General Notations

I Identity matrix.
0 Zero matrix.
H Hermitian of a matrixH(A) = A + AT .
A > 0 A is positive definite matrix.
ŝ Estimated value of the signal s.
ṡ Derivative of the signal s.
Cx Domain where the variable x is defined.
‖ · ‖ Euclidian norm of a vector or induced norm of a matrix.
γ, μ Positive constants used as bounds.
i, j, k, l Indices.

Fuzzy Sets and Systems

zi ith scheduling variable.
Zi

j Fuzzy set corresponding to the jth variable in the ith rule.
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ωij Membership value of zj in the fuzzy set Zi
j .

ϕi (Non-normalized) membership function of rule i.
wi Normalized membership function of rule i.

Dynamic Systems

x State vector.
u Input vector.
y Output vector.
d Disturbance/unknown input.
nx Dimension of the state vector.
nu Dimension of the input vector.
ny Dimension of the output vector.
nd Dimension of the unknown input.
ns Number of subsystems.
f State transition function; general nonlinear vector function.
h Measurement function; general nonlinear vector function.
A State transition matrix (linear systems).
B Input matrix (linear systems).
C Measurement matrix (linear systems).
a Affine term in the state equation (linear systems).
c Affine term in the output equation (linear systems).
t Time.
fm, hm, hmMatrix functions.

TS Fuzzy Systems

ηj
i Weighting function of the jth term obtained by the sector

nonlinearity approach, i ∈ {0, 1}.
i, j Indices for local linear models.
m Number of rules.
z Vector of scheduling variables.
e Error vector.
Ai State matrix of the ith local model.
Bi Input matrix of the ith local model.
Ci Measurement matrix of the ith local model.
ai Affine term in the ith state model.
ci Affine term in the ith measurement model.
P Lyapunov matrix.
V Lyapunov function.
Li Observer gain of the ith local model.
A(x) Matrix function.
Aδi Uncertainty in the state matrix of the ith local model.
Bδi Uncertainty in the input matrix of the ith local model.
f u, hu, hu Update laws (matrix functions).
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Lendek, Zs., Guerra, T.M., Babuška, R.: On non-PDC local observers for TS fuzzy systems.
In: Proceedings of the IEEE World Congress on Computational Intelligence, Barcelona,
Spain, pp. 2436–2442 (2010b)

Li, D.D., Chen, C.: A novel approach to estimate load factor of variable-speed wind turbines.
IEEE Transactions on Power Systems 20(2), 1186–1188 (2005)

Liao, T.L., Huang, N.S.: An observer based approach for chaotic synchronization with ap-
plications to secure communications. IEEE Transactions on Circuits and Systems 46(9),
1144–1150 (1999)

Liu, F., Wu, M., He, Y., Yokoyama, R.: New delay-dependent stability criteria for T–S fuzzy
systems with time-varying delay. Fuzzy Sets and Systems 161(15), 2033–2042 (2010)

Liu, S.-J., Zhang, J.-F., Jiang, Z.-P.: Decentralized adaptive output-feedback stabilization for
large-scale stochastic nonlinear systems. Automatica 43(2), 238–251 (2007)

Liu, X., Zhang, H.: Stability analysis of uncertain fuzzy large-scale system. Chaos, Solitons
& Fractals 25(5), 1107–1122 (2005)

Liu, X., Zhang, H., Liu, G.: Robust and non-fragile H∞ control for affine fuzzy large-scale
systems. In: Proceedings of the 7thWorld Congress on Intelligent Control and Automation,
Chongquing, China, vol. 1, pp. 6107–6112 (2008)

Liu, X., Zhang, Q.: New approaches to H∞ controller designs based on fuzzy observers for
T-S fuzzy systems via LMI. Automatica 39(9), 1571–1582 (2003)

Lo, J.-C., Lin, M.-L.: Robust H∞ nonlinear control via fuzzy static output feedback. IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications 50(11),
1494–1502 (2003)
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Subsystems
Cascaded, 74
Distributed, 104

Taylor series, 17
TS model

Affine, 9, 86, 110
Linear, 9
Uncertain, 38, 112

TS observer, 50, 129, 157
Estimated scheduling, 62, 96, 138,

166, 179
Measured scheduling, 52, 92, 130,

158, 174

Unknown input, 150, 152
Derivative, 152, 157
Polynomial, 158, 166
Unmodelled dynamics, 174

Vanishing disturbance, 85

Weighting function, 12
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