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ABSTRACT
In this paper, we introduce a novel method for human activ-
ity recognition that benefits from the structure and sequen-
tial properties of the test data as well as the training data.
In the training phase, we obtain a fraction of data labels at
constant time intervals and use them in a semi-supervised
graph-based method for recognizing the user’s activities. We
use label propagation on a k-nearest neighbor graph to cal-
culate the probability of association of the unlabeled data to
each class in this phase. Then we use these probabilities to
train an HMM in a way that each of its hidden states corre-
sponds to one class of activity. These probabilities are used
to learn the transition probabilities between hidden states of
the HMM which is used to predict the classes of the test
data. Experimental results shows that the proposed method
consistently outperforms the existing state of the art semi-
supervised methods.
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INTRODUCTION
Recognizing patterns of human activities is an essential build-
ing block for providing context-aware services in many ap-
plications, including intelligent environments [3], automated
visual surveillance [5], human robot interaction [2], and as-
sistive technology for the disabled [11]. Moreover, activity
recognition has attained considerable interest in recent years
due to its applications in elderly care. In health care, activity
recognition can be used to automatically monitor the activ-
ities of daily living (ADLs) of old people, and offer just-in-
time assistance. A wide range of sensors have been used for
various applications of activity recognition. Using cameras
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to capture videos and pictures as input data violates the sense
of privacy for users and can not be used widely (specially in
house settings). Therefore, the focus of our work is on using
data from wearable sensors. However, the process of data
annotation still requires the use of cameras and microphones
which imposes excessive cost and effort. An alternative way
to label the sensor data is to ask users to constantly report
their activities in the training phase. This process can be
exhaustive for the users, hence it can not be considered as
a practical solution. One solution is achieved by using ex-
perience sampling [1], which is a method based on asking
users to provide information about their activities in certain
time intervals. This method is fast and easy to use, and does
not bother users as far as the sampling rate is low enough.
Consequently, in this setting only a fraction of data in the
training phase is labeled. To decrease the level of experience
sampling, the Multi-Graph based method introduced in [13]
is used to estimate the underlying structure of data with the
use of both labeled and unlabeled data in hand. In this paper,
we propose an activity recognition method that utilizes the
structure and sequential properties of the test data as well
as the manifold structure of the training data. Our contri-
bution is improving the previous Semi-Supervised Learning
(SSL) graph-based activity recognition method [13] in two
ways. First, by utilizing label propagation on the graph con-
structed on both labeled and unlabeled training data, we gain
the association probabilities of data points to each class of
activity. These probabilities are used to train an HMM in a
way that each of its hidden states corresponds to one class
of activity. We use these probabilities to learn the transition
probabilities between hidden states of the HMM. Second,
the manifold structure of the training data is used to esti-
mate the probability distribution of test data in each of the
states. Practically, using the manifold structure enables us to
obtain observation probabilities of the HMM. Finally, with
the aid of Viterbi algorithm we find the maximum likelihood
sequence of hidden states or labels for test data.

The remaining of the paper is structured as follows. First, an
overall discussion of the similar work is presented in the re-
lated work section, then basics and notations are introduced
to provide the readers with the necessary concepts, followed
by the proposed method section in which we explain our al-
gorithm and justify the theory. Finally, the experimental re-
sults of applying our method on a well-known dataset are
presented.
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RELATED WORK
For many years, supervised algorithms have been the main
stream in activity recognition applications. Several proba-
bilistic models have been proposed to model the sequence
classification problem of activity recognition. These models
include naive Bayes [15], decision trees [10], Support Vec-
tor Machines [8], boosting [12], Conditional Random Fields
[16] and most common of all Hidden Markov Models [18]
[4] [6].

In spite of their promising results in different applications of
activity recognition, the usability of supervised algorithms
in real-world cases remains in question due to the difficult
and costly process of manually labeling the activity data.

In order to reduce the cost by precluding the need for la-
beled data, help in adaptation to non-stationary patterns, and
for providing early exploratory tools , several unsupervised
algorithms have been proposed [9]. Despite the aforemen-
tioned advantages of these methods, they fail to achieve ac-
ceptable accuracy levels. Fully unsupervised techniques lack
a proper assumption over target activities in the system. There-
fore, there is a risk of grouping data into clusters that do not
correspond to the activity patterns required for the applica-
tion.

The cost of data labeling and the amount of relatively inex-
pensive unlabeled data in hand, are two main reasons for the
recent interest in semi-supervised learning (SSL) methods
for activity recognition. SSL methods have eliminated the
need for a large amount of labeled data in contrast to super-
vised methods. It has been shown that these methods can get
acceptable accuracy compared to supervised methods which
benefit from the labels of all the data. In this setting, it suf-
fices to ask users to provide labels about their current activity
on fixed time intervals and use these labels and other unla-
beled sensor data to learn the activity pattern.

Some recent works use procedures such as self-training, co-
Training [14], and En-Co-Training [7]. However they can
not use unlabeled data in a proper manner and their results
is not acceptable. Authors in [1] use multi-instance learning
method for activity recognition and represent activity data
as bags-of-activities. This representation enables them to re-
quire labels only on bag leve l. However this method does
not use the information about underlying structure of data in
a proper manner .

Although Graph-based techniques have been proven to be
successful in different areas of machine learning, they have
not yet been explored much in activity recognition applica-
tions. There are a few works that use this framework for
activity recognition [13] [17]. However these works do not
benefit from this structure in predicting the labels of test
data. This structure is just used to estimate the labels of
unlabeled data in the training phase. For instance, [13] con-
structs a graph on both labeled and unlabeled data that are
provided in training phase. And then uses label propagation
to estimate the labels for unlabeled data. Once all labels are

obtained, a Support Vector Machine (SVM) is trained to be
used for classification.

Our proposed method uses the base idea introduced in [13].
However, we extend this work in two ways: first, as the
structure of training and testing data is the same, and the
unlabeled data in the training phase is adequate for captur-
ing this structure properly, we utilize the structure obtained
in the training phase for the test data as well. Second, our
algorithm is aware of the sequential property of the test data,
while the two previous methods allocate labels to each test
data independently.

BASICS AND NOTATIONS

Manifold
Semi supervised methods surpass the supervised ones due to
their stronger assumptions over the problem. In general, ev-
ery learning algorithm needs some kind of prior knowledge
(or assumption) over the problem to obtain generalization.
However, if an assumption is not satisfied in a problem, it
might mislead the algorithm and result in a low performance.
Hence, there is a trade off between generality and strength
of the assumption. One of the most common assumptions
in SSL, which is both general and strong, is the manifold as-
sumption. Manifold assumption is based on the intuition that
label of the data in the dense areas of the feature space has to
be similar. In an equivalent notation, manifold assumption
assumes the input data to lie on a low dimensional manifold
and requires the labels of the data to change smoothly over
this manifold.

In activity recognition with the use of wearable sensor data,
the first requirement is satisfied due to low degree of freedom
in most of human activities. The second condition is also
met because small variations in our inputs rarely affect the
activity class.

As we do not know the exact structure of the manifold, we
estimate it with a weighted graph. A manifold can be rep-
resented by sampling a finite number of points as the graph
nodes, and drawing undirected edges between the nodes which
are close on the manifold. In this paper we use k-nearest
neighbors method, one of the classical methods in graph
construction .

Label Propagation
One of the most common methods for employing manifold
assumption in predicting the labels of the unlabeled data is
label propagation. In label propagation, we employ some
fixed sources of label (the vertices corresponding to the la-
beled data) along with some varying sources (the unlabeled
data) which propagate their labels through the edges of the
graph that models the structure of the data.

In what follows, we give a formal description of the label
propagation algorithm used in this work. Let XL = {x1,
. . . , xl} be the feature vectors of the labeled data and YL =
{y1, . . . , yl} represent their labels. Also, suppose thatXU =
{xl+1, . . . , xl+u} be the feature vectors of the unlabeled data.
Our goal is to estimate the labels of XU named YU = {yl+1,
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. . . , yl+u} where yi ∈ {1, . . . , C} and C represents the
number of activity classes. To this aim, we build a graph
on the input data X = XL ∪XU with adjacency matrix W
where wi,j ∈ {0, 1}. We define the transition probability
matrix T as:

Ti,j =
wi,j

∑l+u
k=1 wi,k

, i, j ∈ {1, . . . , l + u}

in this notation, Ti,j represents the probability that a label is
conducted from node i to node j.

Label propagation works in an iterative manner. In each iter-
ation, labels are transmitted according to the transition prob-
ability matrix. To describe the transition process formally,
we define Zk as a (l + u) × C matrix that represents the
distribution of the estimated labels in iteration k. In other
words, Zk,t,j represents the probability that xt belongs to
class j in iteration k. Z1 is initialized as follows: Z1,t,j = 1
if t is a labeled data with class j and Z1,t,j = 0 otherwise.

The propagation process consists of three steps in each iter-
ation.

First, the matrix Z is updated as below:

Zk+1 = T × Zk

Second, the rows of Z are normalized so that they represent
an accurate distribution:

Zk+1,t,j =
Zk+1,t,j

∑C
j=1 Zk+1,t,j

, t ∈ {1, . . . , l+u}, j ∈ {1, . . . , C}

The labels for the training data should remain constant. Hence,
the third step includes restoring these labels. For t ∈ 1, ..., l
we set Zk+1,t,j = 1 if yt = j and Zk+1,t,j = 0 otherwise.
The iteration stops when the class association probabilities
converge. We refer to the final values of these probabilities
as zt,j .

PROPOSED METHOD
In this section, we present the proposed algorithm for recog-
nizing human activities from labeled and unlabeled activity
data. The approach consists of two phases. In the training
phase we are provided with a training set which includes a
smaller set of labeled data and a larger set of unlabeled data.
In this phase, we build a neighborhood graph on both labeled
and unlabeled inputs to estimate the manifold structure of the
input data as explained in [13]. In this procedure, we con-
sider each data point in the training set as a node and con-
nect each node to its k-nearest neighbors in the input space
and two nearest neighbors in the time space (i.e. its preced-
ing and succeeding data). This way, we consider similarity
in the feature space and sequence of data in the time space
in constructing the graph. Next, we use label propagation
on the constructed neighborhood graph to estimate the prob-
ability of association of each unlabeled data to each class
of activity. After that, we train an HMM with hidden and
observable states that represent activities and input features
respectively. The probability of association of each unla-
beled data to a special activity class is used to estimate the
transition probabilities between the hidden states. In the test

phase, we calculate the probability distribution of test data
in each of the states regarding the manifold structure. We
utilize the HMM to classify test data and find the maximum
likelihood sequence of hidden states for the test sequence.

Graph Construction and Label propagation
Several neighborhood graph construction methods are pro-
posed to estimate the structure of the underlying manifold.
In this paper, we employ a modification of the k-nearest
neighbors (k-NN) method, one of the traditional methods for
graph construction. In the proposed method, ”feature simi-
larity”, defined as the Euclidean distance between input fea-
tures, is used to connect input points to their k-nearest neigh-
bors by undirected edges. In addition, as we expect condi-
tional dependencies in sequences of data points, we connect
each data point to its preceding and succeeding data in the
sequence.

As mentioned above, the probability that the data point t
belongs to the class j (i.e. ztj) can be calculated by label
propagation on the constructed neighborhood graph. These
probabilities will be used in the HMM.

training the HMM
As we aim to make use of the temporal sequence of the test
data, we have to utilize a sequential probabilistic model. We
selected HMM due to its well-developed and simple appli-
cation. Each HMM has a set of hidden states {s1, s2, ...sC}
each of which corresponds to one activity. Here, C is the
number of activity classes in our problem.

To define the Markov model, the following probabilities have
to be specified: transition probabilities between hidden states
aij = p(sj |si), observation probabilities bi(y) = p(y|si),
and the initial probabilities of hidden states πi = p(si).

In the training phase, we estimate the transition probabilities
between hidden states and initial probabilities. The observa-
tion probabilities will be estimated in the test phase, as soon
as the test data y arrives.

Traditionally, when we exactly know the hidden states cor-
responding to the training data, we can use the Baum-Welch
algorithm to estimate the transition probabilities of the HMM.
In such situation, maximum likelihood helps us to estimate
the parameters. We set :

aij =
Expected number of transitions from state si to sj

Expected number of transitions out of state si

In our case, the exact hidden states of the observations are
not available. The proposed method utilizes the manifold
structure of input data to calculate the probability of being in
each hidden state. This way, we generalize the Baum-Welch
algorithm to estimate the transition probabilities.

Let zt,j = p(sj |xt) denote the probability of association of
data xt to activity class j for all 1 ≤ t ≤ T and 1 ≤ j ≤ C
where T is the number of training data. We have already
calculated zt,j in the label propagation step for the training
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data. Hence we get:

aij =

∑T
t=1 zt,izt+1,j

zt,i

To estimating the initial probabilities, we can use our prior
knowledge about the problem or simply use p(si) = 1

C if we
lack such an information.

In the next subsection, we will explain how to calculate ob-
servation probabilities for each test data (i.e. p(y|si)). More-
over, we will show how to convert the classification problem
in activity recognition into the decoding problem in HMM.

Classifying Test Data
We use the Bayes rule to calculate the observation probabil-
ity of test data y

p(y|si) ≈ p(si|y)
p(si)

The value of p(si) is computed in the previous section. To
estimate p(si|y) we benefit from our knowledge about the
structure of the underlying manifold of training data to im-
prove the classification performance. We estimate p(si|y) in
a manner similar to the label propagation used in the training
phase. To this goal, we add the arriving test data to the graph
and connect it to k of its nearest neighbors. Finally, p(si|y)
is estimated by performing one iteration of label propagation
with the initial values equal to zt,j (calculated in the training
phase) for every t and j.

Now that we have calculated all the parameters of HMM,
we can utilize the Viterbi algorithm to find the maximum
likelihood sequence of hidden states for the test sequence
and classify the test data.

EXPERIMENTAL RESULTS
To evaluate the proposed method and compare the results
with other activity recognition algorithms, we used the pub-
lic dataset TU Darmstadt [9]. This dataset includes 164
hours of data recordings in 7 different days of a person’s
daily life in non-laboratory conditions over a sixteen day pe-
riod. The subject wore two wearable accelerate sensors, that
saved the mean and variance of accelerations within 50%
overlapping, 30-second-long intervals, along with the time
of the day. One of the sensors was placed at the right hip,
and the other was on the right wrist.

The TU Darmstadt dataset includes a large set of activities:
having lunch, having dinner, picking up cafeteria food, sit-
ting, having a coffee, washing dishes, washing hands, per-
sonal hygiene, using the toilet, brushing teeth, standing, us-
ing the toilet, walking, walking freely, walking while car-
rying something, driving car, driving bike, sitting, desk ac-
tivities, discussing at whiteboard, lying while reading, using
computer, standing, talking on phone, queuing in line, and
unlabled.

To compare our work with the results reported in [13], we
used the same set of features (mean and variance of acceler-
ation In 30-second time intervals, along with its time stamp).

Like [13] we evaluated our algorithm for different sampling
rates of every 10, 30, 60, 120 and 180 minuets . In con-
structing the features similarity graph , we set the number of
nearest neighbors to 10.

The validity of manifold assumption in this dataset is evalu-
ated by obtaining the labeling accuracy in the training phase.
To do so, we assigned each unlabeled data (in the training
set) to the class with the highest probability. The accuracy
of this labeling is shown in Table 1

Table 1. Experimental Results: The accuracy of label propagation on
the unlabeled training data

Time interval Accuracy

10 min 92.6

30 min 90.2

60 min 87.5

90 min 84.9

120 min 81.8

To test the proposed algorithm, we conducted all experi-
ments in a leave-one-day-out manner and performed 7 ex-
periments. We compared the results of the proposed method
with the algorithm in [13]. The results are presented in Ta-
ble 2. The first column of this table shows the results for
[13] and the second column presents our results.

Table 2. Experimental Results: The accuracy of proposed algorithm on
the test data

Time Accuracy of Accuracy of
interval SVM+graph based HMM+graph based
10 min 77.8 79.6
30 min 74.3 77.9
60 min 73.1 76.1
90 min 72.8 75.9
120 min 70.6 74.2

This table shows that the idea proposed in this paper results
in a significant improvement in the accuracy of classifica-
tion.

CONCLUSION
In this paper, we introduced a novel approach to human ac-
tivity recognition. The problem was divided into training
and test phases. In the training phase, we periodically ob-
tained labels of the data in constant time intervals. Due to
the availability of cheap unlabeled data, we utilized a semi-
supervised graph-based method to benefit from the underly-
ing structure of the data. We used label propagation on a
k-nearest neighbor graph to calculate the probability of as-
sociation of the unlabeled data to each class in the training
phase. These probabilities were used to learn the transition
probabilities of an HMM in order to predict the classes of
the test data. In the test phase, we had to predict the classes
of the test data in an online manner. To achieve this goal,
we used one iteration of label propagation on the graph that
was constructed in the training phase to obtain a primary
estimate of the probabilities of association of the test data
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to each class. Then, by using these probabilities, we uti-
lized the trained HMM to predict the class of the test data.
Experimental results showed that the proposed method sig-
nificantly outperforms the state of the art semi-supervised
method presented in [13].
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