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ABSTRACT
In this paper, we introduce a novel method for human activ-
ity recognition that benefits from the structure and sequen-
tial properties of the test data as well as the training data.

Experimental results shows that the proposed method
consistently outperforms the existing state of the art semi-
supervised methods.
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is on using
data from However, the process of data
annotation still requires the use of cameras and microphones
which imposes excessive cost and effort.

hence it can not be considered as
a practical solution.

These probabilities are used to train an HMM in a
way that each of its hidden states corresponds to one class
of activity. We use these probabilities to learn the transition

robabilities between hidden states of the HMM.

The remaining of the paper is structured as follows. First, an
overall discussion of the similar work is presented in the re-
lated work section, then basics and notations are introduced
to provide the readers with the necessary concepts, followed
by the proposed method section in which we explain our al-
gorithm and justify the theory. Finally, the experimental re-
sults of applying our method on a well-known dataset are
presented.
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RELATED WORK
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However, we extend this work in two ways: first, as the
structure of training and testing data is the same, and the
unlabeled data in the training phase is adequate for captur-
ing this structure properly, we utilize the structure obtained
in the training phase for the test data as well. Second, our
algorithm is aware of the sequential property of the test data,
while the two previous methods allocate labels to each test
data independently.

BASICS AND NOTATIONS
Manifold

Label Propagation

In what follows, we give a formal description of the label
propagation algorithm used in this work. Let X = {z1,
..., 21} be the feature vectors of the labeled data and Y7, =
{y1, ...,y } represent their labels. Also, suppose that Xy =

{141, ..., Ty} be the feature vectors of the unlabeled data.
Our goal is to estimate the labels of Xy named Yy = {441,
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o Yiut Where y; € {1,...,C} and C represents the
number of activity classes. To this aim, we build a graph
on the input data X = X U X with adjacency matrix W
where w; ; € {0,1}. We define the transition probability
matrix T as:

w.
T;,,

= H_+vi7j € {177l+u}

k=1 Wi,k
in this notation, T; ; represents the probability that a label is
conducted from node 7 to node j.

Label propagation works in an iterative manner. In each iter-
ation, labels are transmitted according to the transition prob-
ability matrix. To describe the transition process formally,
we define Zj as a (I + u) x C matrix that represents the
distribution of the estimated labels in iteration k. In other
words, Zj, ; ; represents the probability that x; belongs to
class j in iteration k. Z is initialized as follows: Zy ; ; = 1
if ¢ is a labeled data with class j and Z; ; ; = 0 otherwise.

The propagation process consists of three steps in each iter-
ation.

First, the matrix Z is updated as below:
Ziy1 =T X Zy,

Second, the rows of Z are normalized so that they represent
an accurate distribution:

L1t

Z +1,¢t,5 C
E] 1Zk+],t7j

The labels for the training data should remain constant. Hence,

the third step includes restoring these labels. Fort € 1,...,1
we set Zpy1,; = Lify; = jand Zp414; = O otherwise.
The iteration stops when the class association probabilities
converge. We refer to the final values of these probabilities
as z¢ j.

PROPOSED METHOD

In this section, we present the proposed algorithm for recog-
nizing human activities from labeled and unlabeled activity
data. The approach consists of two phases. In the training
phase we are provided with a training set which includes a
smaller set of labeled data and a larger set of unlabeled data.
In this phase, we build a neighborhood graph on both labeled
and unlabeled inputs to estimate the manifold structure of the
input data as explained in [13].

After that, we train an HMM with hidden and
observable states that represent activities and input features
respectively. The probability of association of each unla-
beled data to a special activity class is used to estimate the
transition probabilities between the hidden states. In the test

e d{l,...l+u}t,je{1,....,C}
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Graph Construction and Label propagation

Several neighborhood graph construction methods are pro-
posed to estimate the structure of the underlying manifold.
In this paper, we employ a modification of the k-nearest
neighbors (k-NN) method, one of the traditional methods for

raph construction.

In addition, as we expect condi-
tional dependencies in sequences of data points, we connect
each data point to its preceding and succeeding data in the
sequence.

As mentioned above, the probability that the data point ¢
belongs to the class j (i.e. z;;) can be calculated by label
propagation on the constructed neighborhood graph. These
probabilities will be used in the HMM.

training the HMM

As we aim to make use of the temporal sequence of the test
data, we have to utilize a sequential probabilistic model. We
selected HMM due to its well-developed and simple appli-
cation. Each HMM has a set of hidden states {s1, s2,...sc }
each of which corresponds to one activity. Here, C is the
number of activity classes in our problem.

To define the Markov model, the following probabilities have
to be specified: transition probabilities between hidden states
a;; = p(sj|s;), observation probabilities b;(y) = p(yls;),
and the initial probabilities of hidden states m; = p(s;).

In the training phase, we estimate the transition probabilities
between hidden states and initial probabilities. The observa-
tion probabilities will be estimated in the test phase, as soon
as the test data y arrives.

Traditionally, when we exactly know the hidden states cor-
responding to the training data, we can use the Baum-Welch
algorithm to estimate the transition probabilities of the HMM.
In such situation, maximum likelihood helps us to estimate
the parameters. We set :

Expected number of transitions from state s; to s

@i = Expected number of transitions out of state s;

In our case, the exact hidden states of the observations are
not available. The proposed method utilizes the manifold
structure of input data to calculate the probability of being in
each hidden state. This way, we generalize the Baum-Welch
algorithm to estimate the transition probabilities.

Let z;; = p(s;|z) denote the probability of association of
data x; to activity class jforall 1 <t <Tand1 < j <C
where T is the number of training data. We have already
calculated z; ; in the label propagation step for the training
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data. Hence we get:

T . .
_ D=1 i
Zt,i

In the next subsection, we will explain how to calculate ob-
servation probabilities for each test data (i.e. p(y|s;)). More-
over, we will show how to convert the classification problem
in activity recognition into the decoding problem in HMM.

aij

Classifying Test Data
We use the Bayes rule to calculate the observation probabil-
ity of test data y

o) A p(sily)
p(ylsi) (1)

The value of p(s;) is computed in the previous section. To
estimate p(s;|y) we benefit from our knowledge about the
structure of the underlying manifold of training data to im-
prove the classification performance. We estimate p(s;|y) in
a manner similar to the label propagation used in the training
phase. To this goal, we add the arriving test data to the graph
and connect it to k of its nearest neighbors. Finally, p(s;|y)
is estimated by performing one iteration of label propagation
with the initial values equal to z; ; (calculated in the training
phase) for every ¢ and j.

Now that we have calculated all the parameters of HMM,
we can utilize the Viterbi algorithm to find the maximum
likelihood sequence of hidden states for the test sequence
and classify the test data.

EXPERIMENTAL RESULTS

To evaluate the proposed method and compare the results
with other activity recognition algorithms,

To (ESMpate) our work with the we
used the same set of!

in this dataset is evalu-

The accuracy

of this labeling is shown in Table 1

Table 1. Experimental Results: The accuracy of label propagation on
the unlabeled training data

Time interval | Accuracy
10 min 92.6
30 min 90.2
60 min 87.5
90 min 84.9
120 min 81.8

To test the proposed algorithm, we conducted all experi-
ments in a“nanner and performed 7 ex-
periments. We compared the results of the proposed method
with the algorithm in [13]. The results are presented in Ta-
ble 2. The first column of this table shows the results for

[13] and the second column presents our results.

Table 2. Experimental Results: The accuracy of proposed algorithm on
the test data

Time Accuracy of Accuracy of
interval | SVM+graph based | HMM-+graph based
10 min 77.8 79.6
30 min 74.3 77.9
60 min 73.1 76.1
90 min 72.8 75.9
120 min 70.6 74.2

This table shows that the idea proposed in this paper results
in a significant improvement in the accuracy of classifica-
tion.

CONCLUSION
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