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Abstract

(ngidata) The

learning and uses
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is based on semi-supervised

The experiments are conducted using
one of the largest and richest currently available datasets.

1. Introduction

Activity recognition is an important and active research
area of wearable computing due to its potential to enable
novel context-aware applications for elderly care, educa-
tion, sports, and entertainment.

Most approaches for human activity recognition are
based on state-of-the-art machine learning techniques.
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most of the annotation techniques are time-consuming and
error-prone. And-to obtain reliable annotations one
has essentially two choices. Either one may rely on invasive
sensors such as cameras and microphones [12] which are of-
ten not acceptable due to privacy reasons. Or, one uses an-
notation techniques such as experience sampling [19] which
is tedious or disrupting for users in particular for annotation
of short term activities.

—
g

The primary goal of this paper is to explore and com-
pare two different types of techniques that require far less
labeled training data than traditional supervised techniques.
First, we apply and analyze the merits of two of the most
fundamental semi-supervised learning techniques, namely
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self-training and co-training. And second, we also explore
another way to reduce the required amount of labeled train-
ing data.

We make a first step towards active learning for phys-
ical activity recognition.
we present a comparative evaluation of the applicability of
self-training [4] and co-training [3] for data from motion
Sensors.

we suggest two functions to actively probe users for

labels that enable active learning.

we enhance the efficiency
of the proposed activity recognition system by utilizing a
multi-class boosting procedure, namely joint boosting [21].
Additionally, the typical researchers’ bias on the evaluation
is avoided by using (@IPUDICINavAllADICIdAASCINIZ) that
was neither recorded nor annotated by the authors of the
paper. By using only a limited amount of labeled training
data, we achieve performance comparable to and sometimes
even better than fully supervised learning approaches on a
challenging and realistic dataset.
The rest of the paper is organized as follows. In Section
2 we introduce the dataset and sensors used in the experi-
ment as well as our evaluation procedure. Section 3 presents
the initial supervised analysis of the dataset followed by our
semi-supervised and active learning approaches in Section
4 and Section 5, respectively. Finally, in Section 6 we sum-
marize our results and give an outlook on future work.

2. Experimental Setup

In this section, we present the goals of our experiment,
motivate the choice of the used dataset and describe the
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evaluation procedure. In the field of activity recognition, the
state-of-the-art has advanced significantly in recent years
and a wide range of sophisticated approaches and sensors
has been developed.

We obtained access to the subset of the (BECOUpICH

(@EESSHI2 ccorded at the PlaceLab [7], a highly instru-
mented home environment,

An audio-visual recording system was used
for capturing the ground truth and an expert annotated 104
hours of the male’s activities, comprising data collected on
15 separate days. In our experiment we use a publicly avail-
able subset of 68 hours of annotated data collected on 9 sep-
arate days. Despite a substantial amount of data collected
and annotated, there is still a lack of data for many fine-
grained activities, which led to 9 activities to be studied in
[12]. Here we focus on the same set of activities: actively
watching tv or movies, dishwashing, eating, grooming, hy-
giene, meal preparation, reading paper/book/magazine, us-
ing computer, and using phone.

In our experiment, we use the data from two differ-
ent types of motion sensors [20], namely body-worn ac-
celerometers and infra-red sensors. In [12], these two sen-
sor modalities outperformed other sensors (i.e., RFID and
environmental built-in sensors). The male subject wore 3
3D accelerometers on the dominant wrist, the dominant hip,
and the non-dominant thigh. Ten infra-red sensors were in-
stalled around the apartment to detect motion in each room.

Unlike in [12] where the mean value of the acceleration
signal and binary occurrences of the infra-red readings were
used as features, we extract the following features to ex-
ploit the full richness of information in the data: 1) From
the raw acceleration signal we compute mean, variance,
energy, spectral entropy, area under curve, pairwise cor-
relation between the three axes, and the first ten FFT coeffi-
cients, which sums up to 48 features per acceleration sensor
channel. 2) For each of the ten infra-red sensors we calcu-
late the number of their activations as features. As in [12],
each feature is computed over a sliding window of 30 sec-
onds shifted in increments of 15 seconds. We experimented
with different window lengths as well, but that did not sig-
nificantly change performance.

As suggested in [12], we use
In each

cross validation round of supervised learning, we train the
algorithms on 8 days of data. In case of semi-supervised
and active learning, only a subset of 2 days of data is used
as an initial labeled training set. The algorithms are always
tested on the left out day’s data.
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3. Supervised Approach

As we use the publicly available subset of the PLCou-
plel dataset, we first reproduce the experiments from [12]
based on two supervised machine learning algorithms (i.e.,
naive Bayes and decision tree). Additionally, we compare
their performance to the joint boosting classifier [21]. These
results are used as a baseline for comparison with semi-
supervised and active learning approaches in Section 4 and
Section 5, respectively.

For our
experiments

For infra-red data

‘We use the C4.5 variant of a decision

tree algorithm found in the Weka Machine Learning Algo-
rithms Toolkit [24].

As the dataset contains partly (i HEDDIEICHNE h -t

are not mutually exclusive, we use, as in [12], the area un-
der the Receiver Operating Characteristic
s a figure of merit.
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In [12] movement data measured by two accelerometers,
worn on the dominant wrist and on the dominant hip, were
used. We performed the experiments with both two and
three accelerometers since the addition of sensors often im-
proves recognition performance.

3.1. Results

In the following we report the recognition results based
on the supervised algorithms. We experimented with both
binary features and the number of the activations of infra-
red sensors.

We perform the experiments with different num-

bers of joint boosting rounds. The best performance is
achieved after 50 iterations for acceleration data and after
10 iterations for infra-red data. Since the acceleration fea-
ture vector has 144 components it requires more boosting
rounds to find the best features to be shared among the ac-
tivities. The infra-red feature vector has only 10 compo-
nents and weak learners from additional rounds could not
contribute to the better performance.

Figures 1(a) and 1(b) show results per activity and aver-
age recognition performance for acceleration and infra-red
Sensors, respectively._- one can
observe that joint boosting yields better results for 7 out of
9 activities when using acceleration data. On average, joint
boosting improves the results by 11.3% compared to naive
Bayes and by 8.2% compared to the decision tree classi-
fier. - the addition of the third accelerometer does
not improve the results significantly, presumably because
the placement of the sensor at the non-dominant thigh is
not discriminative for the majority of the activities studied.
- naive Bayes on average performs slightly better for
infra-red sensors. As stated in [12], the presence of a sec-
ond subject in the apartment whose activities were not an-
notated definitely introduced noise in the infra-red sensor
data. Thus, naive Bayes, as a generative model, is able to
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(b) Per-activity and average results for infra-red
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Figure 1. Leave-one-day-out cross validation results for supervised classifiers (naive Bayes - NB,

decision tree - DT, and joint boosting - JB)

deal better with the noisy data compared to the joint boost-
ing and decision tree classifiers. Even though, we use only
the publicly available subset of the PLCouplel dataset, the
decision tree results are nearly the same as reported in [12].

As previously mentioned, the dataset contains a certain
amount of overlapping activities. The multi-label data con-
stitutes about 10% of the whole dataset. Table 1 summarizes
the classification results of the joint boosting classifier when
leaving out the multi-label part of the dataset. The results
are consistent with the multi-label case (i.e., joint boosting
again performs better on acceleration data). Additionally,
the table shows accuracy of the classification, i.e., the num-
ber of true positives divided by the number of all samples
to be classified. One can observe that accuracy is relatively
low (53.6% for acceleration data and 41.6% for infra-red
data), but that should be seen in the light of realism of the
used dataset which additionally includes many other activ-
ities that were considered as an unknown class during the
classification procedure. In order to thoroughly explore the
potential of semi-supervised and active learning in activity
recognition we decided to use a clean dataset (i.e., without
multi-label samples) in the remainder of the paper. The re-
sults in Table 1 are used as a baseline for comparison with
semi-supervised and active learning approaches. As a figure
of merit we use accuracy, which we consider more intuitive
and which is more often used than the area under the ROC
curve in the field of activity recognition.

4. Semi-Supervised Approaches

In this section we introduce the two semi-supervised ap-
proaches, self-training and co-training, which we use in our
experiments for learning from both labeled and unlabeled
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Sensor Accuracy | Average ROC Area
Acceleration 53.6% 79.3%
Infra-red 41.6% 68.6%

Table 1. Leave-one-day-out cross validation
results for joint boosting classifier on single-
label subset of the dataset

training data.
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n the following experiments we use accel-
eration and infra-red data for co-training and compare its
performance with self-training.

The experiments are designed to investigate the trade-off
between labeling efforts and recognition performance.

For that purpose,
we use the following evaluation procedure.

In case of the used PLCouplel
dataset, that means that we can use six days of data as unla-
beled training set and the remaining two days of data as an
initial set for subsampling to get the reduced set of labeled
training data. The experiments consist of five different con-
figurations in which we gradually decrease the amount of
labeled training data from 12.5%, over 6.3%, 2.5%, 1.3% to
0.3% of 8 days of training data.! In order to thoroughly an-
alyze the classifiers’ performance we perform multiple ran-

dom subsampling rounds.

4.1. Results

By conducting ex-

periments with different numbers of iterations we observed
that by performing more than 100 iterations the newly la-

IThese five configurations are constructed based on randomly sampled
50%, 25%, 10%, 5%, and finally only 1% of data from the selected two
days. In each cross-validation round another two days of data are used for
subsampling of labeled training set. As the amount of annotated data per
day varies, these five configurations on average sums up to 12.5%, 6.3%,
2.5%, 1.3%, and 0.3% of the complete set of labeled and unlabeled training
data.
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Figure 2. Comparative performance of self-
training, co-training and supervised learning
for different amounts of labeled training data

beled samples do not bring any additional discriminative in-
formation, and at a certain point the labeling accuracy even
starts to decrease. For comparison of self-training and co-
training, in the following, we report on the average recogni-
tion accuracy achieved after 100 iterations.

We also observed that

We performed experiments with fewer accepted
samples per iteration, but in that case the learning phase is
slower, because more iterations are required to achieve high
performance. Additionally, in order to get more represen-
tative samples for the labeling process, as suggested in [3],
we carried out random sampling of unlabeled training data
and performed the labeling on that subset of data, but that
did not improve the results.

Figures 2(a) and 2(b) show the mean and 95% confi-
dence intervals of the classification accuracy of self-training
(red bars) and co-training (green bars) when using different
amounts of labeled training data for acceleration and infra-
red sensors, respectively. The plots also show the compar-
ison to the supervised approach (blue bars) when using the
same decreased number of labeled training data, as well as
the expected upper boundary (pink line) when using 100%
of training data for supervised learning. From the plots one
can

e.g., when using 2.5% labeled training data
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Amount of labeled
training data 100% |12.5%(6.3%(2.5%(1.3%|0.3%
Number of labels | 9613 | 1203 | 604 | 244 | 124 | 29

Table 2. Average number of labels used for
different experiment configurations

For accelera-

tion data, accuracy increases by 9% when using the same
amount of labeled training data, i.e., 2.5%.

eration data there is a consistent improvement compared to
the supervised approach with the same reduced amount of
labeled training data.
(when using 0.3%
labeled training data),
The experi-
ments in Section 3 show

The perfor-
mance is boosted by more accurate acceleration predictions
during co-training. In most of the configurations, it outper-
forms even the supervised approach when using 100% la-
beled training data. For the configuration when we use 2.5%
labeled training data, the performance of co-training is 4%
higher than in the supervised case of 100% labeled training

data.

In
the case of 2.5% labeled training data, the increase of per-
formance is 3% for self-training and 14.6% for co-training.

All the above mentioned results clearly show the poten-
tial of semi-supervised approaches to minimize the labeling
efforts. As can be observed from Table 2, the number of
labels averaged over 9 cross validation rounds is extremely
reduced compared to the average of 9613 labels when us-
ing 100% labeled training data for supervised approach pre-
sented in Section 3. In the configuration when we use 2.5%
labeled training data, as can be seen from Figures 2(a) and
2(b), the achieved results are impressive, considering that
only 244 labels are used. In that case, 6 activity models are
learned with less than 5 labels per activity. When further
decreasing the number of labeled training samples, some of
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the activities are learned from a single label. In the extreme
case, when using 0.3% labeled training data, i.e. only 29
labels, 6 out of 9 activities are learned from a single labeled
sample per activity. In that case the achieved performance
is relatively low due to the very few labels, but by carefully
chosing the data to be labeled the performance can still be
significantly improved. Therefore, in the next section we
utilize active learning for activity recognition.

5. Active Learning Approach

We employ a for active learning

sampling functions are evaluated here. The
is based on the assumption that the most informative sam-
ples are those the classifiers are least confident about. (i)
_is based on the assumption that when the
two classifiers have a high degree of disagreement about a
certain sample, the sample should be labeled by a user.
More formally, let hl(z;) and h2(x;) be the two classi-
fiers’ confidence scores that sample x; belongs to the class
c based on two different sets of features. The first active
sampling function asks for the label of the sample s; with
the lowest prediction score, i.e.,:

€]

s; = argmin(max hi (z;)), j = 1,2
Z; c
The second active sampling function first finds the conflicts
S in the classifiers’ predictions:

S = {wilér(zi) # ea(wi)} @
where ¢ (;) and éo(x;) are predicted classes:
¢j(z;) = argmax bl (z;), j = 1,2 3)

and then chooses for labeling the sample in the set S with
the highest confidence score:

“

argmax(max hl(z;)), j = 1,2
z; €S J

We start with only a few labeled samples,
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Acceleration

Infra-red

Combined

Labeled

Active - Active -

Supervised low scores conflicts

Active - Active -

Supervised low scores conflicts

Active - Active -

Supervised low scores conflicts

1.3%
2.5%
6.3%
12.5%

24.4% £ 5.7% 44.5% + 1.6% 47.1% =+ 3.0%
26.9% £2.9% 52.9% £ 1.9% 51.4% + 3.4%
359% £ 4.3% 55.3% +2.4% 53.8% £ 3.1%
38.9% £ 7.0% 60.6% + 2.3% 55.8% £ 2.0%

32.8% +7.5% 34.5% £ 3.8% 29.5% £ 3.2%
30.5% + 3.9% 39.8% + 6.2% 38.0% + 3.2%
30.1% £ 3.8% 42.2% £+ 1.8% 23.7% £ 4.4%
24.5% £ 1.3% 42.3% £ 2.1% 32.2% £ 5.7%

28.2% =+ 3.4% 50.9% + 1.8% 51.4% + 3.4%
32.3% £ 5.2% 59.7% £ 1.0% 57.0% + 4.4%
39.8% + 4.3% 63.2% £ 1.6% 57.5% £ 2.0%
358% £33% 64.2+1.9% 63.5% + 1.6%

Table 3. Comparison of recognition accuracy + 95% confidence interval using 2 different active learn-
ing sampling functions and supervised learning for acceleration, infra-red, and combined classifier

i.e., with 0.3% labeled training data from the previous sec-

The most informative samples are chosen for
labeling by one of the two proposed active sampling func-
tions and added to the labeled training set. The classifiers
are then re-trained, and the procedure continues until the
size of the labeled training data reaches the size of the four
configurations from the previous section, i.e., 1.3%, 2.5%,
6.3%, and 12.5% of 8 days of training data.

In each iteration, the first active sampling function
(Equation 1) finds two samples for labeling, the one that
is predicted with the lowest confidence level based on the
acceleration classifier, and the one that has the lowest score
based on the infra-red classifier. These two samples are then
labeled and added to the labeled training set. The second
active sampling function (Equation 4) searches the predic-
tion space for conflicts, i.e., samples that are classified dif-
ferently by classifiers based on acceleration and infra-red
data, and chooses for labeling the one that the classifiers
predicted with the highest confidence level. That sample is
then labeled and added to the set of labeled training data.

5.1. Results

Table 3 shows the classification results for acceleration
and infra-red data, as well as for the classifier combined on
these two sensor modalities, after the active sampling label-
ing process. We compare the results for different amounts
of data sampled with the two previously introduced ac-
tive sampling functions. Additionally, the results are com-
pared with the supervised approach when using the same
amount of non-actively (i.e. randomly) sampled labeled
training data. Both active sampling functions outperform
the supervised learning approach. On average, the first ac-
tive sampling function for acceleration data based on the
low confidence predictions’ scores yields 20.6% better ac-
curacy, and the second active sampling function based on
conflicts in classifiers’ predictions achieves 21.5% better
acccuracy compared to the supervised case with the same

amount of labeled training data. _
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The active sampling
function based on the low predictions’ scores after label-
ing 6.3% and 12.5% of training data achieves an accuracy
of 42.2% and 42.3%, respectively, which is slightly better
compared even to the supervised learning by using 100% of
labeled infra-red training data when accuracy is 41.6%.

In order to explore the full potential of the multi-sensor
approach, in Table 3 we also show the performance of the
combined classifier, based on the multiplied outputs from
the acceleration and infra-red classifiers. That way, we
achieve an accuracy of 64.2% when the active sampling
function based on the low prediction scores is used and
63.5% when using the active sampling function based on
the classifiers’ prediction conflicts. In Table 3, the best re-
sults for acceleration, infra-red and combined classifier are
highlighted and

When comparing the three approaches used in this paper,
one can conclude that the most promising approach is the
combined classifier on the actively learned data. Table 4
ranks the best results for sensor modalities separately.

6. Conclusions and Future Work

This paper demonstrated the feasibility of semi-
supervised and active learning for reducing the level of su-
pervision in activity recognition.

The two evaluated semi-supervised techniques, self-
training and co-training, were found to be capable of learn-
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Acceleration Infra-red
Active - low scores | 60.6% Co-training 45.9%
Active - conflicts 55.8% | Active - low scores | 42.3%
Supervised 53.6% Supervised 41.6%
Co-training 40.7% Active - conflicts 38.0%
Self-training 40.6% Self-training 34.4%

Table 4. Comparison of the best recognition
accuracy for all the approaches used

ing activity models from a very limited amount of labeled
training data.

The proposed active learning method is based on a pool-
based setting where in addition to a small set of labeled
training data, there is also a large number of unlabeled train-
ing instances available. From the unlabeled pool of data, the
algorithm selects the most informative samples to be labeled
by user. We introduced two active sampling functions based
on the classifiers’ lowest confidence level and on disagree-
ments between the classifiers’ predictions. Again, exper-
imental results suggest that it is possible to achieve com-
parable, or sometimes even higher accuracy than the fully
supervised approaches with less labeling efforts.
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