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Output-Feedback Tracking Control for Polynomial
Fuzzy-Model-Based Control Systems

H. K. Lam, Senior Member, IEEE, and Hongyi Li

Abstract—This paper presents the output-feedback tracking
control of the polynomial fuzzy-model-based control system which
consists of a polynomial fuzzy model representing the nonlinear
plant and an output-feedback polynomial fuzzy controller con-
nected in a closed loop. The output-feedback polynomial fuzzy
controller is employed to drive the system states of the nonlin-
ear plant to follow those of a stable reference model subject to
an H∞ performance. Based on the Lyapunov stability theory,
sum-of-squares-based stability conditions are obtained to deter-
mine the system stability and facilitate the control synthesis. A
feasible solution can be found numerically using the third-party
Matlab toolbox SOSTOOLS. Simulation results are provided to
demonstrate the merits of the proposed control approach.

Index Terms—Fuzzy tracking control, output feedback, polyno-
mial fuzzy systems, stability analysis, sum of squares.

NONLINEAR control is a challenging task due to the
system nonlinearity is not easily handled in a systematic

way. Many control design methods have been proposed for
nonlinear systems, such as fuzzy control [1]–[11] and neural
network control. Fuzzy-model-based (FMB) control offers an
effectively approach to control the nonlinear plant. With the
T-S fuzzy model [12], [13], a nonlinear plant can be represented
in a general from as a weighted sum of linear sub-systems
which locally describe the system dynamics [14]–[16]. By the
FMB approach, the fault-tolerant control problems have been
investigated in [8], [9]. Based on the local linear sub-system,
a linear sub-controller can be designed. A set of fuzzy rules is
then employed to combine these linear sub-controllers to form
a fuzzy controller [17]. An FMB control system is formed by
connecting the nonlinear plant represented by the T-S fuzzy
model and a fuzzy controller connected in a closed loop. Other
control design results for the T-S fuzzy systems were developed
in [18]–[26].

System stability is one of the essential issues considered in
the FMB control problems. Lyapunov-based approach is the
most popular one to investigate the system stability of the
FMB control systems. In [17], the parallel distributed com-
pensation (PDC) design concept was proposed to design the
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fuzzy controller. Based on the Lyapunov stability theory, the
FMB control system is guaranteed to be asymptotically stable
if there exists a common solution to a set of linear matrix
inequalities (LMIs) [27]. A feasible solution to the LMIs can
be found numerically using convex programming techniques.
By introducing some slack matrix variables [28], the stability
conditions can be relaxed subject to the PDC design approach.
Further relaxation can be achieved with the introduction of
more slack variables in different ways [29], [30]. However,
computational demand for finding the solution will increase.

Sum-of-squares (SOS) decomposition for multivariate poly-
nomials plays an important role to determine positivity of a
polynomial function [31]. If a polynomial function can be
represented in a form of SOS, the polynomial function can be
shown to be positive. This concept is widely used in the stability
analysis using the Lyapunov stability theory. Based on the SOS
decomposition techniques, construction of polynomial Lya-
punov function was formulated as semi-definite programming
[32], which is shown to be an effective technique investigating
the stability analysis and control synthesis problems for control
systems.

Recently, the T-S fuzzy model has been extended to polyno-
mial fuzzy model which allows polynomial variables appearing
in the sub-systems to represent a wider class of nonlinear
plants. Because of the existence of the polynomial variables,
the LMI-based approach is not suitable for stability analysis as
the existing LMI solvers cannot deal with polynomial variables
directly in the LMI-based stability conditions. Instead, SOS-
based analysis approach [32] can be employed. SOS-based
stability conditions were obtained to guarantee the the stability
of the polynomial FMB (PFMB) control systems [33]–[35].
More relaxed SOS-based stability conditions can be found in
[36]. A feasible solution to the SOS-based stability conditions
can be found numerically using the third-party Matlab toolbox
SOSTOOLS [37].

In [33]–[36, 38], [39], only the stabilization control problem
was considered that the system states of the nonlinear plant
are driven to the origin. Compared to the stabilization control
problem, the tracking control problem [40] is more challenging
that a controller is employed to drive the system states of the
nonlinear plant to follow a reference or the system states of a
stable reference model. Adaptive and/or observer-based fuzzy
tracking control were proposed in [41]–[44]. With the adaptive
rules, the parameters of the controller are updated to cope with
the parameter uncertainties. Compared with the fuzzy controller
without adaptive capability, the adaptive fuzzy controller ex-
hibits enhanced robustness property. With the fuzzy observer,
the system output can be used to estimate the system states
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for feedback compensation. Consequently, the tracking control
strategy can be extended to a wider class of nonlinear systems.

In this paper, the output-feedback tracking control problem
for PFMB control systems is considered under the SOS-based
framework. Unlike the full-state feedback control approach
[40], [43], [45], [46], tracking control is realized using the
system output only. The system stability is investigated based
on the Lyapunov stability theory under the SOS-based analysis
approach. SOS-based stability conditions are derived to guar-
antee the system stability subject to an H∞ performance and
facilitate the controller synthesis. In [33]–[35], the membership
functions were not considered in the stability analysis which
lead to conservative stability conditions. It was shown in our
preliminary result [36], [38], [39], [47] that the SOS-based
stability conditions including the membership functions are
able to relax the stability analysis result. In this paper, to
obtain relaxed stability conditions, the membership functions
are considered in the stability analysis.

The organization of this paper is as follows. In Section I,
the PFMB system, stable reference model, and output-feedback
polynomial fuzzy controller are introduced. In Section II, the
stability analysis is carried out based on the Lyapunov stability
theory. SOS-based stability conditions are derived to guarantee
the system stability of the PFMB control systems and aid the
design of the output-feedback polynomial fuzzy controllers. In
Section III, simulation examples are given to show the merits
of the proposed approach. In Section IV, a conclusion is drawn.

I. POLYNOMIAL FUZZY MODEL, REFERENCE MODEL,
AND POLYNOMIAL FUZZY CONTROLLER

Throughout the paper, the following notations are adopted
[32]. The monomial in x(t) = [x1(t), x2(t), . . . , xn(t)]

T is
defined as xd1

1 (t)xd2
2 (t) . . . xdn

n (t), di is a nonnegative integer,
i = 1, 2, . . . , n. The degree of a monomial is defined as d =∑n

i=1 di. A polynomial p(x(t)) is defined as a finite linear
combination of monomials with real coefficients. A polynomial
p(x(t)) is a sum of squares if it can be written as p(x(t)) =∑m

j=1 qj(x(t))
2 where qj(x(t)) is a polynomial and m is a

non-zero integer. Hence, it can be seen that p(x(t)) ≥ 0 if it is
an SOS. It is stated in [48] that the polynomial p(x(t)) being
an SOS can be represented in the form of x̂(t)TQx̂(t) where Q
is a positive semi-definite matrix. The problem of finding a Q
can be formulated as a semi-definite program. SOSTOOLS is
a third-party Matlab toolbox to find numerically the matrix Q
to solve the solution to SOS programs. The technical details of
SOSTOOLS can be found in [31]. The expressions of M > 0,
M ≥ 0, M < 0 and M ≤ 0 denote a positive, semi-positive,
negative, semi-negative definite matrix M, respectively.

In this section, we consider a PFMB control system con-
sisting of a nonlinear plant represented by a polynomial fuzzy
model [33], [34] and an output-feedback polynomial fuzzy
controller connected in a closed loop. The output-feedback
polynomial fuzzy controller is employed to drive the system
states of the nonlinear plant to follow those of a stable reference
model. Based on the Lyapunov stability theory, the system
stability of the PFMB control systems is investigated using the
SOS-based approach.

A. Polynomial Fuzzy Model

Let p be the number of fuzzy rules describing the behavior of
the nonlinear plant. The i-th rule is of the following format:

Rule i : IF f1(y(t)) is M i
1 AND . . . AND fΨ(y(t)) isM i

Ψ

THEN ẋ(t)=Ai(x(t)) x̂ (x(t))+Bi(x(t))u(t) (1)

where M i
α is a fuzzy term of rule i corresponding to the func-

tion fα(x(t)), α = 1, 2, . . . ,Ψ; i = 1, 2, . . . , p; Ψ is a positive
integer; x(t) ∈ �n is the system state vector; y(t) ∈ �l is the
output vector; Ai(x(t)) ∈ �n×N and Bi(x(t)) ∈ �n×m are
the known polynomial system and input matrices, respectively;
x̂(x(t)) ∈ �N is a vector of monomials in x(t); u(t) ∈ �m is
the input vector. It is assumed that x̂(x(t)) = 0 if and only if
x(t) = 0. The system dynamics and output are defined as

ẋ(t)=

p∑
i=1

wi (y(t)) (Ai (x(t)) x̂ (x(t))+Bi (x(t))u(t)) (2)

y(t) =Cx̂ (x(t)) (3)

where C ∈ �l×N is a constant output matrix

p∑
i=1

wi (y(t)) = 1, wi (y(t)) ≥ 1∀i (4)

wi (y(t)) =

Ψ∏
l=1

μMi
l
(fl (y(t)))

p∑
k=1

Ψ∏
l=1

μMk
l
(fl (y(t)))

∀i (5)

wi(y(t)) is the normalized grade of membership,
μMi

α
(fα(y(t))), α = 1, 2, . . . ,Ψ, is the grade of membership

corresponding to the fuzzy term of M i
α.

Remark 1: The polynomial fuzzy model (2) is reduced to the
traditional T-S fuzzy model [28] when Ai(x(t)) and Bi(x(t))
are constant matrices for all i and x̂(x(t)) = x(t).

B. Reference Model

A stable reference model is defined as follows:

ẋr(t) =Arx̂r (xr(t)) +Brr(t) (6)

yr(t) =Cx̂r (xr(t)) (7)

where xr(t) ∈ �N is the state vector of the reference model,
x̂r(xr(t)) ∈ �N is a vector of monomials in xr(t) as the
entries, Ar ∈ �n×N and Br ∈ �n×m are the constant system
and input matrices, respectively, r(t) ∈ �m is the reference
input vector, yr(t) ∈ �l is the output vector of the reference
model.

Remark 2: The system and input matrices Ar and Br are
not limited to be constant matrices. If they are function of
the system states, we have polynomial matrices Ar(xr(t))
and Br(xr(t)). However, it is required to make sure that the
reference model is stable.
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C. Output-Feedback Polynomial Fuzzy Controller

An output-feedback polynomial fuzzy controller is proposed
to drive the system states of the nonlinear plant in the form of
(2) to follow those of the stable reference model (6). Define the
state error as

ê(t) = x̂ (x(t))− x̂r (xr(t)) . (8)

From (3), (7) and (8), the output error is defined as follows:

ey(t) = y(t)− yr(t) = Cê(t). (9)

Define h(t) = (y(t),yr(t)). The output-feedback polyno-
mial fuzzy controller is described by the following p rules:

Rule j : IF f1(y(t)) is M j
1 AND . . .AND fΨ(y(t)) is M j

Ψ

THEN u(t)=Fj (h(t)) ey(t)+Gj (h(t))yr(t) (10)

where Fj(h(t)) ∈ �m×N and Gj(h(t)) ∈ �m×N , j = 1,
2, . . . , p, are the polynomial feedback gains to be determined.
The output-feedback polynomial fuzzy controller is defined as

u(t) =

p∑
j=1

wj (y(t)) (Fj (h(t))Cê(t)

+Gj (h(t))Cx̂r (xr(t))) . (11)

Remark 3: The feedback gains Fj(h(t)) and Gj(h(t)) are
reduced to scalar matrices. That is, Fj and Gj , when the degree
of polynomial is chosen to be 0.

Remark 4: The polynomial fuzzy controller (11) is an
output-feedback polynomial fuzzy controller and becomes a
full state-feedback polynomial fuzzy controller when C is a full
rank matrix, for example, C = I.

II. STABILITY ANALYSIS

For brevity, in the following analysis, wi(y(t)) is denoted as
wi and the time t associated with the variables is dropped for
the situation without ambiguity, e.g., h(t), x(t), x̂(x(t)), xr(t),
x̂r(xr(t)), y(t), ŷr(t), ê(t), ey(t) and r(t) are denoted as h,
x, x̂(x), xr, x̂r(xr), y, ŷr, ê, ey and r, respectively.

Considering the polynomial fuzzy model (2) and the
output-feedback polynomial fuzzy controller (11), with the
property of the membership functions (4), i.e.,

∑p
i=1 wi =∑p

i=1

∑p
j=1 wiwj = 1, we have

ẋ =

p∑
i=1

p∑
j=1

wiwj (Ai(x) +Bi(x)Fj(h)C) ê

+

p∑
i=1

p∑
j=1

wiwj (Ai(x) +Bi(x)Gj(h)C) x̂r(xr). (12)

Denote x = [x1, x2, . . . , xn]
T and x̂(x) = [x̂1(x),

x̂2(x), . . . , x̂N (x)]T . From (12), we have

˙̂x(x) =

p∑
i=1

p∑
j=1

wiwj

(
Ãi(x) + B̃i(x)Fj(h)C

)
ê

+

p∑
i=1

p∑
j=1

wiwj

(
Ãi(x) + B̃i(x)Gj(h)C

)
x̂r(xr) (13)

where Ãi(x)=T(x)Ai(x), B̃i(x)=T(x)Bi(x) and T(x) ∈
�N×n with its αβ element defined as

Tαβ(x) =
∂x̂α(x)

∂xβ
, α = 1, 2, . . . , N ;β = 1, 2, . . . , n. (14)

Similarly, denote xr = [xr1 , xr2 , . . . , xrn ]
T and x̂r(xr) =

[x̂r1(xr), x̂r2(xr), . . . , x̂rN (xr)]
T . From (6), we have

˙̂xr(xr) =
∂x̂r(xr)

∂xr

dxr

dt
= H(xr)ẋr = Ãrx̂r(xr) + B̃rr

(15)

where Ãr = H(xr)Ar, B̃r = H(xr)Br and H(xr) ∈ �N×n

with its αβ element defined as

Hαβ(xr) =
∂x̂rα(xr)

∂xrβ

, α = 1, 2, . . . , N ;β = 1, 2, . . . , n.

(16)

Considering the state error vector (8), from (13) and (15),
we have

˙̂e = ˙̂x(x)− ˙̂xr(xr)

=

p∑
i=1

p∑
j=1

wiwj

(
Ãi(x) + B̃i(x)Fj(h)C

)
ê

+

p∑
i=1

p∑
j=1

wiwj

(
Ãi(x)− Ãr

+ B̃i(x)Gj(h)C
)
x̂r(xr)− B̃rr. (17)

Define

Γ =
[
CT (CCT )

−1
ortc(CT )

]
(18)

where Γ ∈ �N×N and ortc(CT ) denotes the orthogonal com-
plement of CT [49]. It is assumed that Γ−1 exists in the follow-
ing analysis. From (18), we have

CΓ = [Il 0] (19)

where Il ∈ �l×l is the identity matrix.
Remark 5: To facilitate the stability analysis [32], [33], the

row indices that the entries of the entire row of Bi(x) for all i
are all zeros are denoted by J = {j1, j2, . . . , jq}. Similarly, the
row indices that the entries of the entire row of Br(xr) are all
zeros are denoted by K = {k1, k2, . . . , ks}.

Define 0 < X(x̃) = X(x̃)T ∈ �N×N , x̃ = (xj1 ,
xj2 , . . . , xjq , xrk1

, xrk2
, . . . , xrks

). Inspired by [49], we
choose

X(x̃) =

[
X11 0
0 X22(x̃)

]
(20)

where X11 ∈ �l×l, X22(x̃) ∈ �(N−l)×(N−l).
Remark 6: Assuming that X(x̃) > 0 (a nonsingular matrix),

it can be obtained that X(x̃)−1 = diag{X−1
11 ,X22(x̃)

−1} be-
cause of the inversion of a blockwise matrix. As a result, if
X(x̃) > 0, both X−1

11 and X−1
22 (x̃) exist.



LAM AND LI: OUTPUT-FEEDBACK TRACKING CONTROL FOR POLYNOMIAL FUZZY-MODEL-BASED CONTROL SYSTEMS 5833

The polynomial feedback gains are defined as

Fj(h) = Mj(h)X
−1
11 ,Gj(h) = Nj(h)X

−1
11 (21)

where Mj(h) ∈ �m×l and Nj(h) ∈ �m×l.
Denoting v̂ = Γ−1ê, (17) can be written as follows:

˙̂v=Γ−1 ˙̂e

=

p∑
i=1

p∑
j=1

wiwj

(
Γ−1Ãi(x)ΓX(x̃)

+ Γ−1B̃i(x)Fj(h)CΓX(x̃)
)
X(x̃)−1Γ−1ê

+

p∑
i=1

p∑
j=1

wiwj

(
Γ−1

(
Ãi(x)−Ãr

)
ΓX(x̃)

+ Γ−1B̃i(x)Gj(h)CΓX(x̃)
)

×X(x̃)−1Γ−1x̂r(xr)−Γ−1B̃rr. (22)

Referring to (22), with (18)–(21), we have

Fj(h)CΓX(x̃) = [Mj(h) 0] (23)

Gj(h)CΓX(x̃) = [Nj(h) 0] . (24)

With (23) and (24), (22) becomes

˙̂v =

p∑
i=1

p∑
j=1

wiwj

(
Γ−1Ãi(x)ΓX(x̃) + Γ−1B̃i(x)

× [Mj(h) 0]
)
X(x̃)−1v̂

+

p∑
i=1

p∑
j=1

wiwj

(
Γ−1

(
Ãi(x)− Ãr

)
ΓX(x̃)

+Γ−1B̃i(x) [Nj(h) 0]
)

×X(x̃)−1Γ−1x̂r(xr)− Γ−1B̃rr

=

p∑
i=1

p∑
j=1

wiwjΦij(x,xr)z (25)

where Φij(x,xr) = [Φ
(1)
ij (x,xr) Φ

(2)
ij (x,xr) Φ

(3)
ij (x,xr)],

Φ
(1)
ij (x,xr) = Γ−1Ãi(x)ΓX(x̃) + Γ−1B̃i(x)[Mj(h) 0],

Φ
(2)
ij (x,xr)=Γ−1(Ãi(x)−Ãr)ΓX(x̃)+Γ−1B̃i(x)[Nj(h) 0],

Φ
(3)
ij (x,xr) = −Γ−1B̃r, z =

⎡
⎣ z1
z2
z3

⎤
⎦ =

⎡
⎣ X(x̃)−1v̂
X(x̃)−1Γ−1xr

r

⎤
⎦ =

⎡
⎣ X(x̃)−1Γ−1ê
X(x̃)−1Γ−1xr

r

⎤
⎦.

Remark 7: It can be seen from (23) and (24) that
Fj(h)CΓX(x̃) and Gj(h)CΓX(x̃) can be reduced to
[Mj(h) 0] and [Nj(h) 0], respectively, by choosing Γ defined

in (18) leading to property (19), i.e., CΓ = [Il 0] and X(x̃)
defined in (20). As a result, the terms Γ−1B̃i(x)[Mj(h) 0]

and Γ−1B̃i(x)[Nj(h) 0] in Φ
(1)
ij (x,xr) and Φ

(2)
ij (x,xr), re-

spectively, depend only on Nj(h) or Mj(h) such that convex
programming techniques can be employed to find their values
numerically.

In the following, the system stability of the error system
of (25) is investigated. Consider the following polynomial
Lyapunov function candidate:

V (t) = v̂TX(x̃)−1v̂. (26)

From (26), we have

V̇ (t) = ˙̂v
T
X(x̃)−1v̂ + v̂TX(x̃)−1 ˙̂v + v̂T dX(x̃)−1

dt
v̂. (27)

To deal with the term dX(x̃)−1/dt in (27) on the right hand
side, the following Lemma [32], [33], is introduced.

Lemma 1: For any invertible polynomial matrix X(x̃), the
following equality holds:

∂X(x̃)−1

∂xk
= −X(x̃)−1 ∂X(x̃)

∂xk
X(x̃)−1.

Remark 8: Denote A
(k)
i (x) ∈ �N , B(k)

i (x) ∈ �m, A(k)
r ∈

�N and B
(k)
r ∈ �m, i = 1, 2, . . . , p, k = 1, 2, . . . , n, as the

kth row of Ai(x), Bi(x), Ar and Br, respectively. It
should be noted that A

(k)
i (x)x̂(x) and A

(k)
r (xr)x̂r(xr)

are scalar polynomials for all k. Furthermore, from (2)
and (6), we have ẋk =

∑p
i=1 wi(A

(k)
i (x)x̂(x) +B

(k)
i (x)u)

and ẋrk = A
(k)
r x̂r(xr) +B

(k)
r r. From Remark 5, we have

∂X(x̃)−1/∂xk = 0 for k �∈ J and ∂X(x̃)−1/∂xrk = 0 for k �∈
K. Consequently, we have ẋk =

∑p
i=1 wiA

(k)
i (x)x̂(x) for k ∈

J and ẋrk = A
(k)
r x̂r(xr) for k ∈ K which will be used in the

following analysis.
Recalling that x̃ = (xj1 , xj2 , . . . , xjq , xrk1

, xrk2
, . . . , xrks

)

and considering the term of dX(x̃)−1/dt in (27), from Lemma
1, Remark 5, and Remark 8, we have

dX(x̃)−1

dt

=
n∑

k=1

(
∂X(x̃)−1

∂xk
ẋk +

∂X(x̃)−1

∂xrk

ẋrk

)

= −
∑
k∈J

X(x̃)−1

(
∂X(x̃)

∂xk

p∑
i=1

wiA
(k)
i (x)x̂(x)

)
X(x̃)−1

−
∑
k∈K

X(x̃)−1

(
∂X(x̃)

∂xrk

A(k)
r x̂r(xr)

)
X(x̃)−1. (28)

From (25), (27) and (28), we have

V̇ (t)=

p∑
i=1

p∑
j=1

wiwjz
TΞij(x,xr)z−zT1 z1+σ2

1z
T
2 z2+σ2

2z
T
3 z3

(29)
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where Ξij(x,xr) =

⎡
⎢⎣
Ξ

(11)
ij (x,xr) ∗ ∗

Φ
(2)
ij (x,xr)

T −σ2
1I ∗

Φ
(3)
ij (x,xr)

T 0 −σ2
2I

⎤
⎥⎦ ,

Ξ
(11)
ij =Φ

(1)
ij (x,xr)+Φ

(1)
ij (x,xr)

T +I−
∑

k∈J(∂X(x̃)/∂xk)

A
(k)
i (x)x̂(x) −

∑
k∈K(∂X(x̃)/∂xrk) A

(k)
r x̂r(xr), “∗”

denotes the transposed element at the corresponding position,
σ1 and σ2 are scalars to be determined.

Remark 9: Because the reference model (6) is stable, the
system state xr and the reference input r are bounded. This
property will be employed to construct the following H∞
performance.

Considering

p∑
i=1

p∑
j=1

wiwjΞij(x,xr) < 0 (30)

from (29), we have

V̇ (t) ≤ −zT1 z1 + σ2
1z

T
2 z2 + σ2

2z
T
3 z3. (31)

Considering the termination time of control tf [40] and taking
integration on both sides of (31) with respect to time t, we
obtain the following H∞ performance:

∫ tf
0 zT1 z1 − V (0)∫ tf

0

(
σ2
1z

T
2 z2 + σ2

2z
T
3 z3

)
dt

≤ 1. (32)

It can be seen from (32) that the tracking performance can be
improved with smaller values of σ1 and σ2. In order to guaran-
tee the system stability of (25), the inequality of (30) is needed
to be satisfied. The third-party Matlab toolbox SOSTOOLS
[37] is employed to find a feasible solution numerically. As the
membership functions, wi, are treated as symbolic variables by
SOSTOOLS, it is difficult to set up a set of SOS conditions to
specify that the membership functions are positive functions,
i.e., 0 ≤ wi ≤ 1. To circumvent the problem, we denote the
membership functions of wi as w̄2

i , i = 1, 2, . . . , p[35], [47],
[50], [51]. Consequently, the information of wi ≥ 0 can be
carried to the SOSTOOLS by using the symbolic variable of
w̄2

i which is obviously a positive function. The analysis result
of the output state-feedback tracking control is summarized in
the following theorem.

Theorem 1: The output-feedback polynomial fuzzy con-
troller (11) is able to drive the system states of the nonlinear
plant in the form of (2) to follow those of the stable refer-
ence model (6) subject to the H∞ performance (32) if there
exists pre-defined SOS scalar polynomial functions ε1(x̃) and
ε2(x,xr,w) and decision variables, i.e., polynomial matrices
X(x̃) = X(x̃)T ∈ �N×N in the form of (20), Mj(h) ∈

�m×N , Nj(h) ∈ �m×N , j = 1, 2, . . . , p, such that the follow-
ing SOS conditions are satisfied

νT (X(x̃)− ε1(x̃))ν is SOS,

−ρT

⎛
⎝ p∑

i=1

p∑
j=1

w̄2
i w̄

2
jΞij(x,xr) + ε2(x,xr,w)

⎞
⎠ρ is SOS

where w = [w̄2
1, w̄

2
2, . . . , w̄

2
p], ν ∈ �N and ρ ∈ �2N+m are

arbitrary vectors independent of x and xr, σ1 and σ2 in
Ξij(x,xr) are pre-defined scalars, and the feedback gains are
defined in (21).

It should be noted that the computational demand for finding
the solution of the SOS-based stability conditions in Theorem 1
will increase when the number of decision variables increases.
Consequently, the third-party Matlab toolbox, SOSTOOLS
[37], cannot produce result even though the SOS-based stability
conditions are feasible. In order to reduce the computational de-
mand for finding the solution, the following Corollary reduced
from the SOS-based stability conditions in Theorem 1 can
be used.

Corollary 1: The output-feedback polynomial fuzzy con-
troller (11) is able to drive the system states of the nonlin-
ear plant in the form of (2) to follow those of the stable
reference model (6) subject to the H∞ performance (32) if
there exists pre-defined SOS scalar polynomial functions ε1(x̃)
and ε2(x,xr) and decision variables, i.e., polynomial matri-
ces X(x̃) = X(x̃)T ∈ �N×N in the form of (20), Mj(h) ∈
�m×N , Nj(h) ∈ �m×N , j = 1, 2, . . . , p, such that the follow-
ing SOS conditions are satisfied:

νT (X(x̃)− ε1(x̃))ν is SOS

− ρT (Ξij(x,xr) +Ξji(x,xr) + ε2(x,xr))ρ is SOS

∀j = 1, 2, . . . , p; i < j

where ν ∈ �N , ρ ∈ �2N+m are arbitrary vectors independent
of x and xr, σ1 and σ2 in Ξij(x,xr) are pre-defined scalars,
and the feedback gains are defined in (21).

Corollary 1 can be obtained by considering (29) rewritten as
follows:

V̇ (t) =

p∑
i=1

p∑
j=1

wiwjz
TΞij(x,xr)z

− zT1 z1 + σ2
1z

T
2 z2 + σ2

2z
T
3 z3

=
1

2

p∑
i=1

p∑
j=1

wiwjz
T (Ξij(x,xr) +Ξji(x,xr) z

− zT1 z1 + σ2
1z

T
2 z2 + σ2

2z
T
3 z3. (33)

It can be seen from (31) that if the second SOS-based
condition in Corollary 1 is satisfied, we have the inequal-
ity (31) that the PFMB control system satisfies the H∞
performance (32).
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Fig. 1. (a) System responses of x1(t) (Solid line) and xr1 (t) (Dotted line) with σ1 = 10 and σ2 = 10. (b) System responses of x2(t) (Solid line) and xr2 (t)
(Dotted line) with σ1 = 10 and σ2 = 10. (c) System responses of x1(t) (Solid line) and xr1 (t) (Dotted line) with σ1 = 7.5 and σ2 = 0.1. (d) System responses
of x2(t) (Solid line) and xr2 (t) (Dotted line) with σ1 = 7.5 and σ2 = 0.1.

III. SIMULATION EXAMPLES

In this section, three simulation examples are presented to
demonstrate the merits of the proposed approach.

A. Simulation Example 1

Consider a three-rule polynomial fuzzy model
in the form of (2) with the following system,
input and output matrices. x̂(x) = x, x̂r(xr) = xr,

A1(x1) =

[
0.59− 0.12x1 −7.29− 1.82x1

0.01 −2.85

]
, A2(x1) =[

0.02+2.25x1 −4.64+0.72x1

0.35 −8.56,

]
, B1(x1)=

[
1+1.35x1+2.33x2

1
0

]
,

B2(x1) =
[
8−0.62x1+0.56x2

1
0

]
, and C = [1 0].

The membership functions of the polynomial fuzzy model
are chosen as w1(x1) = μM1

1
= ex

2
1/(2×0.52) and w2(x1) =

μM2
1
= 1− w1(x1). The stable reference model is in the form

(6) with the following system and input matrices, and reference

input vector, Ar =

[
−1 −1
0.25 −10.5

]
, Br =

[
1
0

]
, and r(t) =

2 sin(5t).
With the chosen C, based on (18), Γ = diag{1, 1} is ob-

tained. Theorem 1 is employed to determine the system stability
and feedback gains. To apply the third-party Matlab toolbox
SOSTOOLS [37] for finding the solution numerically, we
choose X(x̃), Mj(h) and Nj(h) for all j as constant matrices,
ε1 = 0.001 and ε2(w) = 0.001(w̄2

1 + w̄2
2)

2 (please note that
w̄1 and w̄2 are taken as symbolic variables by the SOSTOOLS).

Choosing σ1 = 10, σ2 = 10, the degrees of the feedback
gains and X(x̃) as both 0, the feedback gains are found
as F1 = −21.2611, F2 = −9.6202, G1 = 0.2119× 10−3 and
G2 = −0.1219× 10−3. The proposed fuzzy controller (11)
is employed to control the nonlinear plant subject to the
initial condition x(0) = [2 0]T and xr(0) = [0 0.05]T . The
system state responses are shown in Fig. 1(a) and (b). Choos-
ing σ1 = 7.5 and σ2 = 0.1 to demonstrate how they influ-
ence the H∞ performance, the feedback gains are found
as F1 = −616.2673, F2 = −130.3563, G1 = 0.9833× 10−4

and G2 = −0.5191× 10−4. The system responses subject to
x(0) = [2 0]T and xr(0) = [0 0.05]T are shown in Fig. 1(c)
and (d). It can be seen that both fuzzy controllers with different
values of σ1 and σ2 are able to handle the tracking control
problem. However, the smaller the values of σ1 and σ2, the
better the H∞ tracking performance governed by (32) can be
achieved.

For comparison purposes, we consider the T-S fuzzy
model representing the nonlinear plant. It can be seen
from the simulation results that x1 is within −2 and
2. It is reasonable to consider the operating range of
x1 ∈ [−2, 2] for the construction of T-S fuzzy model.
Based on the sector nonlinearity concept, the T-S fuzzy
model has eight rules with the system and input matrices as

A1 = A3 =

[
0.59− 0.12a1min

−7.29− 1.82a1min

0.01 −2.85

]
, A2 =

A4 =

[
0.02 + 2.25a1min

−4.64 + 0.72a1min

0.35 −8.56

]
, A5 =
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Fig. 2. (a) System responses of x1(t) (Solid line) and xr1 (t) (Dotted line). (b) System responses of x2(t) (Solid line) and xr2 (t) (Dotted line).

A7 =

[
0.59− 0.12a1max

−7.29− 1.82a1max

0.01 −2.85

]
, A6 =

A8 =

[
0.02 + 2.25a1max

−4.64 + 0.72a1max

0.35 −8.56

]
; B1 =[1+1.35a1min

+2.33a2min
0

]
, B2 =

[8−0.62a1min
+0.56a2min

0

]
,

B3=
[1+1.35a1min

+2.33a2max

0

]
, B4=

[8−0.62a1min
+0.56a2max

0

]
, B5=[1+1.35a1max+2.33a2min

0

]
, B6=

[8−0.62a1max+0.56a2min
0

]
, B7=[

1+1.35a1max+2.33a2max
0

]
, B8 =

[
8−0.62a1max+0.56a2max

0

]
, where

a1max
= −a1min

= 2 and a2max
= −a2min

= 4. Based on this
T-S fuzzy model, with the same settings above, no feasible
control design can be found.

Remark 10: It can be seen from this example that the PFMB
control approach demonstrates an enhanced feedback compen-
sation capability with less number of rules. Furthermore, unlike
the T-S fuzzy model, in this example, the polynomial fuzzy
model is a global model without necessarily considering the
operating region of x1.

B. Simulation Example 2

An inverted pendulum on a cart is considered [17]. The
dynamics of the system is described as follows:

θ̈(t) =
g sin (θ(t))− ampLθ̇(t)

2 sin (θ(t)) cos (θ(t))

4L/3− ampL cos2 (θ(t))

− a cos (θ(t))u(t)

4L/3− ampL cos2 (θ(t))
(34)

where θ(t) is the angular displacement of the pendulum, g =
9.8 m/s2 is the acceleration due to gravity, mp = 2 kg is the
mass of the pendulum, Mc = 8 kg is the mass of the cart, a =
1/(m+M), 2L = 1 m is the length of the pendulum, and u(t)
is the force applied to the cart.

Denoting x1(t) and x2(t) as θ(t) and θ̇(t), respectively, the
nonlinear plant can be represented by the following state-space
equations:

ẋ1(t) =x2(t) (35)

ẋ2(t) =
g sin (x1(t))− ampLx2(t)

2 sin (x1(t)) cos (x1(t))

4L/3− ampL cos2 (x1(t))

− a cos (x1(t))u(t)

4L/3− ampL cos2 (x1(t))
. (36)

In order to construct the polynomial fuzzy model for
the inverted pendulum, we consider that the inverted
pendulum is working in the operating domain of
x1(t) ∈ [−(5π/12), (5π/12)] leading to f1(x1(t)) =
(cos(x1(t))/(4L/3− ampL cos2(x1(t))) ∈ [f1min

, f1max
] =

[0.3922, 1.7647]. Approximating sin(x1(t)) and tan(x1(t))
by polynomials sin(x1(t)) ≈ s3x1(t)

3 + s1x1(t) and
tan(x1(t)) ≈ t3x1(t)

3 + t1x1(t), respectively, where
s3 = −0.1460, s1 = 0.9897, t3 = 1.0545 and t1 = 0.6469,
the inverted pendulum (35) is described by a two-rule
polynomial fuzzy model with the following system,
input and output matrices, x̂(x) = x, x̂r(xr) = xr,

A1(x) =

[
0 1
a1 0

]
, A2(x) =

[
0 1
a2 0

]
, B1(x) =

[
0

−f1min
a

]
, B2(x) =

[
0

−f1maxa

]
and C =

[
1 0
0 1

]
, a1 =

f1min
(g(t3x1(t)

2 + t1)− ampLx2(t)
2(s3x1(t)

2 + s1)), a2 =
f1max

(g(t3x1(t)
2 + t1)− ampLx2(t)

2(s3x1(t)
2 + s1)). With

the chosen C, the polynomial fuzzy controller is a full-state
feedback polynomial fuzzy controller.

The membership functions are defined as μM1
1
(x1(t)) =

w1(x1(t)) = (f1(x1(t))− f1max
)/(f1min

− f1max
) and

μM1
2
(x1(t)) = w2(x1(t)) = 1− μM1

1
(x1(t)), which can be

obtained based on the sector nonlinearity concept [17] and
[35]. The stable reference model is chosen as a linear system

with Ar =

[
0 1
−4 −4

]
, Br =

[
0
1

]
and r(t) = 5 sin(5). With

the chosen C, based on (18), it gives Γ = diag{1, 1}.
To lower the computational demand, Corollary 1 is

employed to determine the system stability and feedback
gains. Choosing X(x̃) as a constant matrix, Mj(h) and Nj(h)
for all j as polynomial matrices with degree 4; ε1 = 0.001
and ε2 = 0.001; σ1 = 0.1 and σ2 = 0.5, the feedback
gains are obtained as follows, F1(x(t)) = [1950.3226 +
1218.8707x1(t)

2 + 726.3429x2(t)
2 + 730.9874x1(t)

2x2(t)
2

1871.2828 + 1115.4328x1(t)
2 + 727.2748x2(t)

2 +
730.7731x1(t)

2x2(t)
2], F2(x(t)) = [774.1495 +

507.4451x1(t)
2 + 361.6092x2(t)

2 + 363.5183x1(t)
2x2(t)

2

705.2619 + 404.0699x1(t)
2 + 362.5726x2(t)

2 +
363.3356x1(t)

2x2(t)
2], G1(x(t)) = [134.3825 +

103.3143x1(t)
2 − 0.9941x2(t)

2 + 0.1514x1(t)
2x2(t)

2

70.9777−0.0275x1(t)
2+0.0005x2(t)

2−0.0001x1(t)
2x2(t)

2],
G2(x(t)) = [85.4324+103.3445x1(t)

2 − 0.9943x2(t)
2+
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Fig. 3. (a) x1(t) (Solid line) and xr1 (t) (Dotted line) for 0 ≤ t ≤ 100 s. (b) x1(t) (Solid line) and xr1 (t) (Dotted line) 80 ≤ t ≤ 100 s. (c) x2(t) and xr2 (t)
for 0 ≤ t ≤ 100 s. (d) Solid line) and xr2 (t) (Dotted line) 80 ≤ t ≤ 100 s.

0.1514x1(t)
2x2(t)

2 22.0503+0.0041x1(t)
2+0.0002x2(t)

2 −
0.0001x1(t)

2x2(t)
2].

The polynomial fuzzy controller is employed to control
the nonlinear plant subject to the initial condition x(0) =
[5π/12 0]T and xr(0) = [5π/24 0.05]T . The system responses
are shown in Fig. 2(a) and (b). It can be seen from the figures
that the system states of the inverted pendulum are able to
follow those of the stable reference model.

Remark 11: In this example, it demonstrates the way con-
structing the polynomial fuzzy model based on a given non-
linear mathematical model. Also, by choosing the matrix C as
the identify matrix, the proposed output-feedback polynomial
fuzzy controller becomes a full-state feedback one.

C. Simulation Example 3

A single-link flexible joint manipulator operating on a verti-
cal plane [52] is considered. The system dynamics of the system
is described by the following state-space equations:

ẋ1(t) =x3(t) (37)
ẋ2(t) =x4(t) (38)

ẋ3(t) =
Ks

Jh
x2(t)−

K2
mK2

g

RmJh
x3(t) +

KmKg

RmJh
u(t) (39)

ẋ4(t) = − Ks

Jh
x2(t) +

K2
mK2

g

RmJh
x3(t)−

KmKg

RmJh
u(t)

− Ks

Jl
x2(t) +

mlgh

Jl
sin (x1(t) + x2(t)) (40)

where x1(t) denotes the angular position of the motor, x2(t)
denotes the angular displacement of the flexible joint, x3(t)

denotes the angular velocity of the motor and x4(t) denotes
the angular velocity of the flexible joint; Ks = 1.61 (N/m) is
the spring stiffness, Jh = 0.0021 (Kgm2) is the inertia of hub,
ml = 0.403 (Kg) is the link mass, g = −9.81 (N/m) is the
gravity constant, h = 0.06 (m) is the height of center of gravity,
Km = 0.00767 (N/rad/s) is the motor constant, Kg = 100 is
the gear ratio, Jl = 0.0059 (Kgm2) is the load inertia, and
Rm = 0.1 (Ω) is the motor resistance.

Considering x1(t) + x2(t) ∈ [−(π/2), (π/2)] leading
to f1(x1(t)) = ((sin(x1(t) + x2(t)))/(x1(t) + x2(t))) ∈
[f1min

, f1max
] = [0, 1], the single-link flexible joint

manipulator can be represented by a two-rule T-S fuzzy
model with the following system, input and output matrices:

x̂(x) =x, x̂r(xr) = xr

A1 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 Ks

Jh
−K2

mK2
g

RmJh
0

f1min

mlgh
Jl

a1
K2

mK2
g

RmJh
0

⎤
⎥⎥⎦

A2 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 Ks

Jh
−K2

mK2
g

RmJh
0

f1max

mlgh
Jl

a2
K2

mK2
g

RmJh
0

⎤
⎥⎥⎦

B1 =

⎡
⎢⎢⎣

0
0

KmKg

RmJh

−KmKg

RmJh

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

0
0

KmKg

RmJh

−KmKg

RmJh

⎤
⎥⎥⎦

C =

[
1 0 0 0
0 1 0 0

]
.
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Fig. 4. (a) x3(t) and xr3 (t) for 0 ≤ t ≤ 100 s. (b) x3(t) (Solid line) and xr3 (t) (Dotted line) 80 ≤ t ≤ 100 s (c) x4(t) and xr4 (t) for 0 ≤ t ≤ 100 s.
(d)System responses of x4(t) (Solid line) and xr4 (t).

with

a1 = −
(
Ks

Jh
+

Ks

Jl

)
+ f1min

mlgh

Jl

a2 = −
(
Ks

Jh
+

Ks

Jl

)
+ f1max

mlgh

Jl
.

The membership functions are defined as μM1
1
(x1(t)) =

w1(x1(t)) = ((f1(x1(t))− f1max
)/f1min

− f1max
)) and

μM1
2
(x1(t)) = w2(x1(t)) = 1− μM1

1
(x1(t)), which can be

obtained based on the sector nonlinearity concept [17] and
[35]. The stable reference model is chosen as a linear system
with

Ar=

⎡
⎢⎣

0 0 1 0
0 0 0 1

−4134.2746 145.7871 −2761.0653 40.4646
4114.1724 −438.7707 2761.0653 −40.4647

⎤
⎥⎦

(with eigenvalues of −0.0150 + 17i, −0.0150− 17i, −1.5,
and −2800)

Br =

⎡
⎢⎢⎣

0
0

KmKg

RmJh

−KmKg

RmJh

⎤
⎥⎥⎦

r(t) = sin(t).

With the chosen C, based on (18), Γ = diag{1, 1, 1, 1}
is obtained. Choosing X(x̃), Mj(h) and Nj(h) for all j

as constant matrices; ε1 = 0.001 and ε2 = 0.001; σ1 = 0.1
and σ2 = 10, with Corollary 1, the feedback gains are found
as F1 = [−15.3296 2.1752], F2 = [−15.3368 2.1694], G1 =
[−1.1285 − 0.1672] and G2 = [−1.1359 − 0.1730].

The fuzzy controller is employed to control the single-link
flexible joint manipulator subject to the initial condition x(0) =
[1 0 0 0]T and xr(0) = [0.5 0 0 0]T . The system state responses
are shown in Figs. 3 and 4. It can be seen that the fuzzy
controller is able to drive the system states to following those
of the stable reference model.

Remark 12: In this example, all system and input matrices,
and feedback gains are constant. The PFMB control system
becomes a traditional FMB control system consisting of the T-S
fuzzy model and fuzzy controller. It can be seen that the SOS-
based stability conditions can also be applied to the traditional
T-S fuzzy model.

IV. CONCLUSION

The tracking control problem of PFMB control systems has
been investigated. An output-feedback polynomial fuzzy con-
troller has been proposed to drive the system states of the non-
linear plant to follow those of the stable reference model subject
to an H∞ performance. The stability of the PFMB control
system has been investigated based on the Lyapunov stability
theory. SOS-based stability conditions have been derived to
guarantee the system stability and facilitate the stable design
of the output-feedback polynomial fuzzy controller. By using
the third-party Matlab toolbox, SOSTOOLS, a feasible solution
to the SOS-based stability conditions can be found numerically.
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Simulation examples have been given to demonstrate the merits
of the proposed approach. In the future, the proposed output-
feedback PFMB control approach can be extended to different
classes of nonlinear systems, e.g., sampled-data and time-delay
systems.
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