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Automated heart sound signal quality assessment is a necessary step for reliable analysis of heart sound signal. An unavoidable
processing step for this objective is the heart sound segmentation, which is still a challenging task from a technical viewpoint. In
this study, ten features are defined to evaluate the quality of heart sound signal without segmentation. The ten features come
from kurtosis, energy ratio, frequency-smoothed envelope, and degree of sound periodicity, where five of them are novel in
signal quality assessment. We have collected a total of 7893 recordings from open public heart sound databases and performed
manual annotation for each recording as gold standard quality label. The signal quality is classified based on two schemes:
binary classification (“unacceptable” and “acceptable”) and triple classification (“unacceptable”, “good,” and “excellent”).
Sequential forward feature selection shows that the feature “the degree of periodicity” gives an accuracy rate of 73.1% in binary
SVM classification. The top five features dominate the classification performance and give an accuracy rate of 92%. The binary
classifier has excellent generalization ability since the accuracy rate reaches to (90:4 ± 0:5) % even if 10% of the data is used to
train the classifier. The rate increases to (94:3 ± 0:7) % in 10-fold validation. The triple classification has an accuracy rate of
(85:7 ± 0:6) % in 10-fold validation. The results verify the effectiveness of the signal quality assessment, which could serve as a
potential candidate as a preprocessing in future automatic heart sound analysis in clinical application.

1. Background

Heart sounds are acoustic vibrations generated due to the
beating of the heart and blood flow therein. Specifically, the
sounds reflect the hemodynamic changes associated with
heart valves snapping shut [1, 2]. There is a natural link exits
between the heart sound and the condition of the heart, and
it was established after the invention of the stethoscope by
Rene Laennec in 1816. Physicians usually prefer cardiac aus-
cultation to diagnose cardiovascular diseases [3]. Computer-
aided algorithms are necessary to avoid the limitations of the
human listening system and manual work in screening car-
diovascular diseases using digital heart sound signal. A recent
review on this topic showed that more than 1,300 research
articles are available from 1963 to 2018 [4, 5]. Although a
lot of research work has been done on segmentation, feature
extraction, and classification, it is still an open area for

researchers to develop automatic and robust algorithms for
the identification and classification of various events in car-
diac sound signals. The key problem associated with this
approach is the recording of less informative heart sounds
by an unskilled people. The quality of heart sound signal
has an obvious impact on the output of the automatic diag-
nostic system. Hence, we need a high quality heart sound
signal to avoid misinterpretation of heart diseases and for
more accurate classification of heart sounds.

There are generally two ways available to obtain high qual-
ity signals: hardware- and software-based protocols. In the
first approach, a very sensitive sensor is designed to detect
heart sound for better identification of turbulent blood flow
(e.g., a very light-weight, dual accelerometer has been devel-
oped by Semmlow to collect high quality heart sound on the
chest surface) [6]. Recently, Roy et al. aimed to design an elec-
tronic stethoscope which would assist doctors to analyze the
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heart sound and identify a disease condition of the heart [7].
On the other hand, the software-based approach estimates
the signal quality and selects high quality components for fur-
ther processing based on computer analysis. Previous
researchers have proposed some methods for quality assess-
ment of heart sound signals. Beritelli et al. proposed a selection
algorithm in 2009 to determine the best subsequence from a
signal based on cepstral distance measurement [8]. Another
best subsequence selection algorithm was proposed by Li
et al. based on the degree of heart sound periodicity [9–12].
Abdollahpur et al. proposed a cycle quality assessment method
to select those cycles with little noise or spikes [13]. The first
binary signal quality classification algorithm was proposed
by Nazeri et al. using energy-based and noise level-based qual-
ity measurement [14] in 2012. Zabihi et al. detected abnormal-
ities, and quality used 40 features extracted from linear
predictive coefficients, entropy, mel frequency, cepstral coeffi-
cient, discrete wavelet coefficients, and power spectral density
[15]. An ensemble neural network was trained and tested for
binary quality classification. Springer et al. proposed an excel-
lent algorithm using nine features, and a linear discrimination
classification was used to perform binary classification [16,
17]. Mubarak et al. proposed the latest algorithm in 2018,
where three features in the time domain were used to assess
signal quality [18].

Previous algorithms [16–18] considered the segmenta-
tion of heart sounds as a preprocessing step. Therefore,
the performance of quality assessment technique would
depend on the accuracy of segmentation. On the other
hand, the segmentation operation also increases the com-
putational complexity of the algorithm. A common prob-
lem associated with these existing algorithms is that they
were seldom validated widely in various environments.
They were usually validated solely by recordings collected
by one type of heart sound sensor or recordings collected
in one scenario.

This study is aimed at extracting effective features for
automatic signal quality assessment. The authors assume that
the signal quality can be reflected by kurtosis, energy ratio in
frequency bands, signal envelope, envelope of signal autocor-
relation, and sound periodicity. The features could have dif-
ferent contributions for quality assessment. Furthermore,
signal quality could be classified by an SVM network based
on these features.

2. Methods

2.1. Dataset. In this study, data for signal quality assessment
were collected from four sources. They are listed in the
following.

(i) Physionet/CinC Challenge (CinCHS) 2016 HS
Database [19, 20]: these recordings were collected
from various positions on the chest surface at differ-
ent environments including home, hospital, and
uncontrolled surroundings. It consists of 3153
recordings collected from 765 subjects. The detail
description is given in [19].

(ii) Pascal Classifying Heart Sound Challenge (PAS-
CAL) Database [21]: the data were collected from
two sources. One was from an iPhone app, and
another was from a clinic trial in a hospital using a
digital stethoscope. There are 859 recordings
available.

(iii) Heart Sounds Catania (CTHS) Database 2011 [22,
23]: this database was a collection of heart sounds
used for biometry by the University of Catania, Italy.
It contained heart sounds acquired from 206 people
using a digital stethoscope. There are 412 recordings
available. The data can be downloaded at [22].

(iv) Cardiac disease heart sound (CDHS) Database: It
included 3875 recordings acquired by the authors’
group from 76 patients in the second attached hospi-
tal of Dalian Medical University since 2015.

The sampling frequencies in the four datasets are differ-
ent. They are 2000Hz, 11025Hz, 44100Hz, and 2000Hz in
CinCHS, CTHS, PASCAL, and CDHS, respectively. The four
databases provide 8299 recordings available. However, to
ensure that the signal quality can be reliably assessed, those
recordings with time length less than 6 s are excluded. It is
found that the noise to cause low signal quality is mainly
respiratory sounds, environment noise, and skin contact.

2.2. Signal Annotations. To develop an automatic signal qual-
ity classification algorithm, gold standard annotations for the
signal quality of each recording are needed. These gold anno-
tations were done by one skilled physician and two senior
researchers with 10 years of experience in the field of heart
sound signal processing. Each annotator did these annota-
tions in quiet environments using both headphone listening
and visual examination. Each recording was assigned a
quality label rating of “1” to “5” according to the label scheme
given in Table 1.

It is necessary to combine the annotations into a single
annotation for each recording. The round-off operation to
the average of the annotations produces the final label. The
number of annotated recordings is summarized in Table 2.
The distribution of signal length is analyzed by histogram
and shown in Figure 1. Most of the recordings have a time
length around 16 s. Finally, 7893 recordings are remained
for signal quality assessment. It shows that 319 recordings
are “very bad,” 2187 recordings are “bad,” 1880 recordings
are borderline quality, 1950 recordings are “good,” and
1557 recordings are “excellent.” The typical examples of
“very band,” “bad,” “borderline,” “good,” and “excellent”
are illustrated in Figure 2. It can be seen from these figures
that high-quality signals exhibit large amplitude and cyclic
in nature. However, low-quality signals show heavy random
noise or spikes. The heart sound data and labels are open
for free public access at Baidu Netdisk.

2.3. Framework of the Proposed Algorithm. Figure 3 shows
the work flow of the supervised classification scheme. Signals
are separated into two subsets. One is for training and the
other is for testing. In the training stage, each signal passes
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through an antialiasing filter and then is down sampled to
1000Hz. Baseline wandering is removed by a high-pass 3-
order Butterworth filter with cut-off frequency of 2Hz. After
that, all heart sound signals were preprocessed to be zero
mean and standard deviation before any further analysis.
Then, quality labels and features are used to train the SVM
classifier. In the testing stage, features are extracted as the
same as those in the testing stage and input to the classifier
to get quality prediction labels.

2.4. Feature Extraction

2.4.1. Features Related to Heart Sound Signal

(1) Kurtosis of Heart Sound Signal. Suppose that xðnÞ is a real
digital sequence of a heart sound recording after preprocess-

ing. It has zero average and standard deviation. The kurtosis
is defined as

Kx = E xð Þ4� �
/ E xð Þ2� �� �2, ð1Þ

where Eð·Þ is the expectation operator. Kurtosis is a fourth-
order statistical moment and used to measure how much a
random process is close to a Gaussian process [24–27]. If a
random process is Gaussian, the kurtosis is equal to 3. The
kurtosis is less than 3 for a sub-Gaussian process and greater
than 3 for super-Gaussian process. A basic acceptable
assumption for heart sound signals and noise is that the noise
is always stochastic; however, heart sounds and murmurs (if
any) are somewhat periodic. The noise is somewhat like a
Gaussian process because of the central limit theorem.

Table 2: Summary of heart sound recordings.

Database
Original
number

Range of
recording
length (s)

Num.
excluding
those less
than 6 s

Num. of
very bad
quality

Num. of
bad

quality

Num. of
borderline
quality

Num. of
good
quality

Num. of
excellent
quality

CinCHS 3153 5.3-121.9 3152 196 471 659 948 878

CTHS 412 17.9-71.1 412 0 135 149 62 66

PASCAL 859 0.7-27.8 454 52 24 124 139 115

CDHS 3875 15.0-34.1 3875 71 1557 948 801 498

Sum 8299 5.3-121.9 7893 319 2187 1880 1950 1557
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Figure 1: Histogram statistics of recording length.

Table 1: Labeling scheme for heart sound signal quality annotation.

Quality label Quality name Quality description

1 Very bad No heart sound can be heard. Only noise or only harmonic signal

2 Bad Mostly noise but some heart sounds can be heard and identified by the human eyes

3 Borderline Very weak heart sounds but beating rhythms can be recognized, fairly difficult to interpret

4 Good Heart sounds can be easily heard and interpretable, but some noise presents

5 Excellent
Almost no noise, heart sounds can be clearly heard, identified by visual check,

and interpretable with confidence
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Hence, a heart sound signal with little noise is expected to
have prominent heart sounds or murmurs. The kurtosis of
a low-noise heart sound signal would have a large value in
high possibility.

(2) Energy Ratio of Low Frequency Band. Previous studies
show that the dominant frequencies of the first and second
heart sounds are generally greater than 24Hz and less than
144Hz [16, 17]. The random noise in heart sound signal
may have a wide frequency band. The comparison of energy

in the spectral band of heart sound signal and total energy
may provide a measure of noise, and hence equally, a
measure of signal quality. The energy ratio of the low
frequency band is defined as

re low = 〠
144

f=24
Px fð Þ/〠
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Px fð Þ, ð2Þ
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Figure 2: Typical examples of different qualities of heart sound signals: (a) very bad quality, (b) bad quality, (c) borderline quality, (d) good
quality, and (e) excellent quality.
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Figure 3: Flow chart of the proposed signal quality assessment.
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where Pxð f Þ is the power spectral density of the heart sound
signal. It is estimated using Welch’s method where the signal
is divided into the longest possible sections, to get as close as
to but not exceeding 8 segments with 50% overlap. A modi-
fied periodogram is computed for each segment using
Hamming window, and all the resulting periodograms are
averaged to compute the final spectral estimate. This ratio
is expected to be positively correlated to signal quality.

(3) Energy Ratio of High Frequency Band. This feature is
defined similarly as that in (2) except that the frequency
range considered is [200 500] Hz. Based on the analysis
mentioned above, the signal associated with this frequency
band is possibly related to noise or murmurs.

(4) Energy Ratio of Middle Frequency Band. It is calculated
by the energy scale in the middle frequency band within
[144 200] Hz.

2.4.2. Features Related to the New Frequency-Smoothed
Envelope. A heart sound signal is complex and highly nonsta-
tionary in nature. The envelope would give passable informa-
tion in investigating of repeating patterns in noisy
environments. Previous researchers have proposed several
envelope algorithms [28–31]. The first envelope algorithm
may be the Shannon envelope calculated from Shannon
energy by Liang et al. in 1997 for heart sound segmentation
[29]. Hilbert envelope was obtained via moving average of
the analytical signal. Choi et al. proposed a characteristic
waveform where the envelope was defined as the output of
a single-degree-of-freedom model [30]. Gupta et al. carried
out their study based on envelope calculated from Shannon
energy using a continuous time window of 0.02 s with 0.01 s
overlap [31].

It can be seen that the existing envelope algorithms
employ moving average filtering operation in the time
domain to remove high frequency components. In this study,
a new frequency-smoothed envelope is proposed. Conse-
quently, novel features can be defined.

Discrete short-time Fourier transform (STFT) is applied
to a heart sound digital sequence, xðnÞ,

STFTx m, kð Þ = 〠
∞

n=−∞
x nð Þw n −mð Þe−j2π kFð Þ n/f sð Þ, ð3Þ

where wðnÞ is a sliding window, F is the sampling interval in
frequency domain, and f s is the sampling frequency in the
time domain. Integral operation to the magnitude of
STFTxðm, kÞ with respect to the frequency domain produces
an envelope of the heart sound signal and defined as

e mð Þ = 1
K

〠
∞

k=−∞
STFTx m, kð Þj j, ð4Þ

where K is the number of frequency bins. It is seen that the
average filtering is operated in the frequency domain. The

envelope is therefore called frequency-smoothed envelope
and shown in Figure 4. It is found that the envelope matches
the signal very well. In this study, the time-domain sampling
frequency of a digital heart sound signal is 1000Hz, the slid-
ing window is a rectangle with time width 0.03 s (30 samples),
and the overlapping samples is 29.

(1) Standard Deviation of the Envelope. Standard deviation
indicates how much the degree of sample is away from the
mean in a distribution. Hence, the envelope of a noise-free
signal could have greater standard deviation than that with
noise.

(2) Sample Entropy of the Envelope. The sample entropy is a
measure of the complexity of a signal [32]. It can be seen that
the envelope is highly periodic for a high quality heart sound
signal. The sample entropy should be low value due to this
regularity. On the contrary, the sample entropy should
increase with the envelope of a noisy signal. The algorithm
to calculate sample entropy can be found in [32]. To reduce
the computation load, the envelope is down sampled to
30Hz.

2.4.3. Features Related to Autocorrelation of the Envelope.
The normalized autocorrelation function of the envelope is

r lð Þ = 〠
∞

m=−∞
e mð Þe m − lð Þ/ 〠

∞

m=−∞
e2 mð Þ, ð5Þ

where l is the time delay. It is known from the mechanism of
heart sound generation that the heart sound events and mur-
murs are quasiperiodic. The quasiperiodicity can be clearly
reflected by the envelope. The autocorrelation function
emphasizes the repeating patterns of these sounds and mur-
murs [33]. As can be seen in Figure 4(c), a dominant peak,
indicated by the arrow, occurs at a time delay due to the high
correlation between sounds in adjacent cycles. It could be
safely concluded that low peaks would be seen with a bad
quality signal.

(1) Maximum Peak in the Normalized Autocorrelation Func-
tion of the Envelope between Delay Times of 0.3 S to 2.5 S. The
maximum peak between 0.3 s and 2.5 s is used, as indicated
by an arrow in Figure 4(c), and the noise signal contains a
higher magnitude peak in the specified range. In this reason-
ing, the peak value is able to reflect the signal quality in some
degree. The delay time generally corresponds to the cardiac
period. A very wide range of the cardiac periods is considered
in this study. The minimum cycle period in consideration is
0.3 s corresponding to 200 beats per minute, and the maxi-
mum cycle period is 2.0 s corresponding to 30 beats per min-
ute [34]. Formula (6) was the feature of the maximum peak
in the normalized autocorrelation function of the envelope
between 0.3 s and 2.0 s. The authors got this feature by
searching the maximum of rðlÞ (the normalized autocorrela-
tion function of the envelope) where the time delay l is
between 0:3 ∗ f s and 2 ∗ f s, where f s = 1000. This feature
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reflects the degree of correlation between sounds in adjacent
cycles. This feature is defined as

Ar =max r lð Þ½ �, 0:3 ∗ f s ≤ l ≤ 2 ∗ f s, ð6Þ

wheremax ð·Þ is to get the maximummagnitude. For the rea-
son to reduce the amount of data to be analyzed, the first 6 s
of autocorrelation is used in this study.

(2) Kurtosis of the Normalized Autocorrelation Function. In
the authors’ reasoning, the autocorrelation function of a high
quality signal would be far away from the Gaussian distribu-
tion. Hence, the kurtosis of the autocorrelation function
could have a high value. The calculation for this kurtosis is
given in (1).

(3) Sample Entropy of the Normalized Autocorrelation Func-
tion. Similarly, the autocorrelation function of a high quality
signal is expected to have high regularity. Thus, the sample
entropy could have a low value. The algorithm calculates
the sample entropy that can be found in [32]. To reduce the
computation load, the autocorrelation function is down sam-
pled to 30Hz.

2.4.4. Features Extracted from the Cycle Frequency Domain.A
heart sound signal is safely believed to be quasiperiodic [9–
11, 35], and an indicator to evaluate quantitively the degree
of periodicity has been proposed in [9–11] in the cycle fre-

quency domain. If the cycle duration of a heart sound signal
is T , the time-varying autocorrelation is

Rx t, τð Þ=Δ lim
N→∞

1
2N + 1 〠

N

n=−N
x t + τ/2 + nTð Þx∗ t − τ/2 + nTð Þ:

ð7Þ

Rxðt, τÞ is a periodic function. N is the number of cycles
involved in analysis. Rxðt, τÞ can be rewritten using the Fou-
rier series as

Rx t, τð Þ = 〠
+∞

α=−∞
Rx α, τð Þej 2π α t , ð8Þ

where α is a real number. It is called the cycle frequency.
The coefficient of the Fourier series is

Rx α, τð Þ = x t + τ/2ð Þx∗ t − τ/2ð Þe−j2π α t� �
t
, ð9Þ

where the operator <⋅ >t denotes the time average. Rxðα, τÞ is
called the cyclic correlation function. It degenerates into a
traditional correlation when the cycle frequency α becomes
zero. In the extreme case, the basic cycle frequency of the
heart sound signal is α=1/T . Rxðα, τÞ≠0 only if cycle fre-
quency is kα and Rxðα, τÞ=0 elsewhere, where k is an integer.
However, the cycle duration of a normal heart sound signal is
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Figure 4: A typical example of frequency-smoothed envelope with excellent quality: (a) a heart sound signal with excellent quality, (b)
frequency-smoothed envelope, and (c) normalized autocorrelation function of the envelope.
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not fixed, and it varies with time. This is known as heart rate
variability. Thus, in practice, Rxðα, τÞ≠0 if α is any real
number. Rxðα, τÞ can be transformed into the frequency
domain via the Fourier transform. That is,

Sx α, fð Þ =
ð∞
−∞

Rx α, τð Þe−j2π f τdτ: ð10Þ

Sxðα, f Þ is called the cyclic spectral density. In any stochastic
process for which Rxðα, τÞ≠0 or Sxðα, f Þ≠0, the process
exhibits a certain degree of periodicity at cycle frequency α.
The analysis in the cycle frequency domain is of primary
interest. An integral is operated over the frequency domain
to get the cycle frequency spectral density (CFSD)

γx αð Þ =
ð∞
−∞

∣Sαx fð Þ∣df : ð11Þ

(1) Degree of Sound Periodicity. A quality indicator is then
defined to reflect the degree of sound periodicity. It is some-
what equal to consider the dominant peak of CFSD

dpx =
max γx αð Þð Þ

median γx αð Þð Þ , ð12Þ

where max ð⋅Þ is the operator to get the maximum, and
medianð⋅Þ operator is the median of CFSD. Therefore, a high
quality signal would have an outstanding peak in CFSD.
Consequently, the quality indication would have a high
value. An example is given in Figure 5 to show the value of
the indicator corresponding to the degree of periodicity. It
can be seen that, for an “unacceptable” signal, there is much
more random noise than that in the “acceptable” signal. The
CFSD of the “unacceptable” signal has no dominant peak,
and the indicator has a small value, as shown in
Figures 5(a) and 5(b). However, the CFSD of the “acceptable”
signal has a dominant peak due to a higher degree of period-
icity, shown in Figure 5(c) and 5(d). Hence, the indicator has
a larger value.

2.4.5. Summary of the Features. Features used in the work to
measure of signal quality are summarized in Table 3. A new
frequency-smoothed envelope was proposed in subsection
2.4.2. Therefore, the envelope-related features indexed by
“5-9” in Table 3 are novel in signal quality assessment.
Degree of periodicity indexed by “10” was an effective feature
proposed by the authors’ team previously.

2.5. SVM-Based Binary Classification. This study tries to per-
form two types of classification. One is to classify signal
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Figure 5: An example to extract the degree of periodicity. (a) An “unacceptable” signal, (b) CFSD of the “unacceptable” signal; there is no
dominant peak. (c) An “acceptable” signal. (d) CFSD of the “acceptable” signal. The dominant peak has a much higher magnitude than
the median.
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quality as “unacceptable” and “acceptable.” The rating labels
for “unacceptable” include“1,” “2,” and“3.” Meanwhile, the
rating indicators for “acceptable” are “4” and “5.” The
scheme for binary classification is shown in Figure 6. This
classification is a typical two-category classification problem.
The well-known SVM-based two-class model is used for this
purpose [36, 37].

2.6. SVM-Based Triple Classification. The other type of classi-
fication is a triple classification as shown in Figure 7. The sig-
nal quality is classified into three classes, i.e., “unacceptable”
(quality labels “1”, “2” and “3”), “good” (quality label“4”),
and “excellent” (quality label 5). The support vector machine
is fundamentally a two-class classifier. Various methods have
been proposed for combining multiple two-class SVMs in
order to build a multiclass classifier [36]. The “one-versus-
one” approach is used here. That is, to train individually
three different two-class SVM classifiers on all possible pairs
of classes. The first is for “unacceptable” and “good,” ignor-
ing “excellent.” The second is for “unacceptable” and “excel-
lent,” ignoring “good.” The third is for “good” and
“excellent,” ignoring “unacceptable.” For each individual
classifier, one target label is taken as the positive class and
another is taken as the negative class, characterized by a cod-

ing matrix. Then, classify a test input according to which
class has the highest number of votes. Therefore, a prede-
signed decoding scheme robust to ambiguity is needed. The
study used a simple way to design the decoding scheme based
on the number of votes of the submodels’ output. For exam-
ple, if the three submodels outputted {“unacceptable”},
{“unacceptable”}, and {“good”}, respectively, the final deci-
sion was {“unacceptable”}, because the number of votes for
{“unacceptable”} was greater. However, if the three submo-
dels outputted {“unacceptable”}, {“excellent”}, and {“good”},
respectively, the final decision was manually set as {“unac-
ceptable”} to resolve the ambiguity and avoid producing a
possible bad results.

3. Results

3.1. Performance Indicators for Binary Classification. In the
first type of classification, signal quality is classified into
two classes, “unacceptable” and “acceptable.” The classifica-
tion performance is calculated from the number of record-
ings classified as “unacceptable” or “acceptable” for each of
the target classes. The confusion matrix of classification out-
put is like Table 4. Therefore, specificity rate and true positive
rate for “unacceptable” and “acceptable” are defined in the
next.

SPb u =
Nuu

Nuu +Nua
,

TPb a =
Naa

Nau +Naa
:

ð13Þ

True negative rate and sensitive rate for “unacceptable”
and “acceptable” are

TNb u =
Nuu

Nuu +Nau
,

SEb a =
Naa

Naa +Nua
:

ð14Þ

Quality labels

1, 2, 3, 4, 5

1, 2, 3 5

Unacceptable Excellent

4

Good

Figure 7: Triple classification for signal quality.

Table 4: Confusion matrix of the binary classification.

Predicted class
Unacceptable Acceptable

True class
Unacceptable Nuu Nua

Acceptable Nau Naa

Quality labels

1, 2, 3, 4, 5

1, 2, 3 4, 5

Unacceptable Acceptable

Figure 6: Binary classification for signal quality.

Table 3: Summary of features used in this study.

Feature index Feature description Feature index Feature description

1 Kurtosis of heart sound signal 6 Sample entropy of the envelope

2 Energy ratio of low frequency band 7 Kurtosis of the autocorrelation function

3 Energy ratio of middle frequency band 8 Maximum peak in the normalized autocorrelation function

4 Energy ratio of high frequency band 9 Sample entropy of the autocorrelation function

5 Standard deviation of the envelope 10 Degree of periodicity

8 BioMed Research International



The accuracy rate for binary classification is

ACCb =
Nuu +Naa

Nuu +Nua +Nau +Naa
: ð15Þ

It is known from Table 2 that the number of “unaccept-
able” records is the sum of the number of labels “1,” “2,”
and “3,” and a total of 4386; meanwhile, the number of
“acceptable” is the sum of the number of labels “4” and “5”
and a total of 3507. Therefore, the number of the two classes
is an imbalance. A fair overall rate to evaluate the perfor-
mance of binary classification gives equal weight to the rates
defined by (13) and (14)

ORb =
SPb u + TPb a + TNb u + SEb a

4 : ð16Þ

3.2. Features’ Distribution. The features extracted from a
recording are random variables. They must have difference
over quality categories. One possible way to show the dif-
ference is to analyze the features’ distribution. Figure 8
gives the occurrence rates of the ten features over “unac-
ceptable” and “acceptable” where the red color is for
“acceptable,” and the blue color is for “unacceptable”.
The occurrence rate is calculated based on frequency his-
togram. It is a ratio of number of occurrences in a bin
to the total number of occurrences. It is found from visual

check that some features have big difference over the two
categories, such as the 10th feature (degree of periodicity),
the 8th feature (maximum peak in the normalized autocor-
relation function), and the 4th feature (energy ratio of high
frequency band). However, some features have little differ-
ence where the distributions are almost overlapped, such
as the 1st feature (kurtosis of heart sound signal), the 2nd

feature (energy ratio of low frequency band), and the 9th

feature (sample entropy of the autocorrelation function).
Figure 9 gives the occurrence rates over three categories,
i.e., “unacceptable,” “good,” and “excellent.” It can be seen
that the difference between “good” and “excellent” is much
smaller than that between “unacceptable” and “good.” We
could conclude that the bigger difference a feature distri-
bution has over the quality categories, the greater contri-
bution the feature could have to discriminate signal
quality. Therefore, the performance to discriminate “unac-
ceptable” and “acceptable” must be better than that to
classify “unacceptable,” “good,” and “excellent.” The differ-
ences in features’ distributions prove that the extracted
features are effective in quality classification.

3.3. Results of Binary Classification. The data is divided ran-
domly in nonoverlap into two categories: training set and test
set. To validate the generalization ability of the binary classi-
fier, the ratio of the number of recordings in the training set is
10% and increased by 10% until the rate reaches to 90%. Each
test repeats 100 times. The performance is shown in Table 5.
It can be seen that the performance indicators slightly
increase with the increasing of the percent of data used to
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Figure 8: Occurrence rates of the features over binary classification.

9BioMed Research International



train the network. All indicators have low standard deviation.
It means that the classifier has stable performance regardless
of the training data. Both the accuracy rate and the overall
rate reach to 90%, even 10% of the data are used to train. This
proves that the classifier has excellent generalization ability
from training to testing. As the training data reaches to
90%, both the accuracy rate and overall rate are greater than
94%. On the other hand, the accuracy rate and the overall
rate are comparable regardless of the percentage of train data.
The recording number for “unacceptable” and “acceptable” is
imbalance (One is 4386 and the other is 3507). It seems that
imbalance data has little impact on the classification
performance.

3.4. Performance Indicators for Triple Classification. Simi-
larly, the confusion matrix of the triple classification output
is shown in Table 6. Sensitive rates for “unacceptable,”
“good,” and “excellent” are defined as
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Figure 9: Occurrence rates of the features over Triple classification.

Table 5: Performance of binary classification.

Percent of data to train (%) Percent of data to test (%)
Data

overlap
SPb u(%) TPb a(%)

TNb u
(%)

SEb a(%) ACCb(%) ORb(%)

10 90 No 94:4 ± 0:7 85:7 ± 1:3 89:3 ± 0:8 92:4 ± 0:8 90:5 ± 0:5 90:4 ± 0:5
20 80 No 94:7 ± 0:7 88:2 ± 1:2 91:1 ± 0:8 93:0 ± 0:8 91:9 ± 0:4 91:7 ± 0:4
30 70 No 94:6 ± 0:5 89:8 ± 1:0 92:2 ± 0:7 92:9 ± 0:5 92:4 ± 0:4 92:4 ± 0:4
40 60 No 95:1 ± 0:4 89:9 ± 0:8 92:6 ± 0:6 93:5 ± 0:5 92:8 ± 0:3 92:7 ± 0:3
50 50 No 94:9 ± 0:4 90:4 ± 0:7 92:6 ± 0:5 93:4 ± 0:4 93:0 ± 0:3 92:9 ± 0:3
60 40 No 95:4 ± 0:3 90:3 ± 1:0 93:6 ± 0:7 94:0 ± 0:4 93:2 ± 0:5 93:1 ± 0:5
70 30 No 95:2 ± 0:5 91:3 ± 1:1 93:3 ± 0:8 93:8 ± 0:6 93:5 ± 0:4 93:4 ± 0:4
80 20 No 95:4 ± 0:8 91:4 ± 1:2 93:4 ± 0:8 94:1 ± 1:0 93:7 ± 0:6 93:6 ± 0:6
90 10 No 96:1 ± 1:0 92:2 ± 1:2 94:0 ± 0:9 94:9 ± 1:2 94:3 ± 0:7 94:3 ± 0:7

Table 6: Confusion matrix of the triple classification.

Predicted class
Unacceptable Good Excellent

True class

Unacceptable Nuu Nug Nue

Good Ngu Ngg Nge

Excellent Neu Neg Nee
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SEt u =
Nuu

Nuu +Nug +Nue
,

SEt g =
Ngg

Ngu +Ngg +Nge
,

SEt e =
Nee

Neu +Neg +Nee
:

ð17Þ

Positive predictive rates for “unacceptable,” “good,” and
“excellent” are

PPt u =
Nuu

Nuu +Ngu +Neu
,

PPt g =
Ngg

Nug +Ngg +Neg
,

PPt e =
Nee

Nue +Nge +Nee
:

ð18Þ

Usually, the accuracy rate is the scale of accurate classi-
fied recordings to all recordings

ACCt =
Nuu +Ngg +Nee

Nuu +Nug +Nue +Ngu +Ngg +Nge +Neu +Neg +Nee
:

ð19Þ

Similarly, a fair performance indicator is the overall rate,
which is the average of the rates defined by (17) and (18).

ORt = SEt u + SEt g + SEt e + PPt u + PPt g + PPt e

6 : ð20Þ

3.5. Results of Triple Classification. The training scheme for
triple classification is the same as that in binary classification.
The performance is shown in Table 7. It is seen that SEt u has
the highest score. It means that “unacceptable” recordings
are seldom classified as “good” and “excellent” regardless of
training conditions. PPt u has the second highest score. That
is to say, the recognized “unacceptable” recordings are

seldom from “good” and “excellent.” We may conclude that
the classifier has the highest reliable identification for “unac-
ceptable” recordings. SEt g, SEt e, PPt g, and PPt e have
lower score. That is to say, it is hard to classify “excellent”
and “good” recordings. In this study, three experts did man-
ual annotation as gold quality labels for each recording. The
experts generally had common ideas on the classification of
“unacceptable” and “acceptable.” However, they often had
different ideas on “good” and “excellent.” Therefore, the
manual quality label was somewhat not optimal. The authors
believe this was the top reason for the low recognition rate
between “good” and “excellent.” It is not a surprise, as even
the experts who performed annotations usually have differ-
ent ideas on a recording to be classified as “good” or “excel-
lent.” It is seen from Table 7 that the overall rate is lower
than the accuracy rate. This difference may be caused by
the imbalance number (the numbers of “unacceptable,”
“good,” and “excellent” are 4386, 1950, and 1557, respec-
tively). Therefore, the heavy imbalance is obvious.

The authors obtain the results (Table 5 and Table 7)
using Monte Carlo computer simulations. These results are
calculated based on 100 times of random repeat. The num-
bers are presented in mean ± standard deviation to show
the performance stability. It can be seen that the performance

Table 7: performance of triple classification.

Percent of data to
train (%)

Percent of data
to test (%)

Overlap SEt u(%) SEt g(%) SEt e(%) PPt u(%) PPt g(%) PPt e(%) ACCt(%) ORt(%)

10 90 No 95:4 ± 0:9 61:7 ± 3:1 65:4 ± 3:3 88:1 ± 1:1 67:6 ± 1:4 74:6 ± 2:0 81:2 ± 0:5 75:8 ± 0:8
20 80 No 95:6 ± 0:5 66:9 ± 1:8 66:4 ± 2:3 89:9 ± 0:5 69:0 ± 1:3 77:3 ± 1:3 82:7 ± 0:3 77:5 ± 0:5
30 70 No 95:8 ± 0:4 67:5 ± 1:6 69:0 ± 2:0 90:5 ± 0:7 71:0 ± 1:3 77:2 ± 1:1 83:6 ± 0:4 78:5 ± 0:5
40 60 No 95:8 ± 0:4 69:8 ± 1:6 69:4 ± 1:7 91:0 ± 0:5 71:7 ± 1:2 78:7 ± 1:1 84:2 ± 0:4 79:4 ± 0:5
50 50 No 95:9 ± 0:4 69:8 ± 1:5 70:5 ± 1:2 91:6 ± 0:6 72:2 ± 1:0 77:7 ± 1:6 84:4 ± 0:4 79:6 ± 0:6
60 40 No 96:2 ± 0:7 71:0 ± 1:6 72:0 ± 2:3 91:6 ± 0:8 73:5 ± 1:4 79:9 ± 1:1 85:2 ± 0:4 80:7 ± 0:6
70 30 No 95:9 ± 0:6 71:2 ± 2:8 71:4 ± 1:4 92:1 ± 0:7 72:6 ± 1:1 78:5 ± 2:1 84:9 ± 0:6 80:3 ± 0:9
80 20 No 95:9 ± 0:6 71:9 ± 2:6 73:3 ± 2:6 92:6 ± 1:1 73:4 ± 1:8 79:2 ± 1:9 85:5 ± 1:0 81:1 ± 1:2
90 10 No 95:9 ± 0:9 72:9 ± 2:0 72:8 ± 2:5 92:3 ± 1:2 74:1 ± 2:0 80:3 ± 1:7 85:7 ± 0:6 81:4 ± 0:7

Table 8: Sequential forward feature selection in binary
classification.

Trial no.
Sequential order of

feature index
Overall rate of

5-fold validation (%)

1 10 73.1

2 10, 8 84.7

3 10, 8, 4 89.8

4 10, 8, 4, 5 91.0

5 10, 8, 4, 5, 3 92.1

6 10, 8, 4, 5, 3, 7 92.5

7 10, 8, 4, 5, 3, 7, 9 93.0

8 10, 8, 4, 5, 3, 7, 9, 2 93.4

9 10, 8, 4, 5, 3, 7, 9, 2, 1 93.7

10 10, 8, 4, 5, 3, 7, 9, 2, 1, 6 94.0
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increases with the percent of data to train increasing. The
standard deviations are generally not greater than 1%. This
proves that the classifier has a very stable output even in
many times of random repeat.

4. Discussions

4.1. Analysis of Feature Effectiveness by Sequential Forward
Feature Selection. In this study, 10 features are used for the
classification of signal quality. It is interesting to know how
much effective a feature is in the quality classification. For-
ward feature selection is an algorithm for this purpose. The
selection criteria involve the minimization of the average of
the classification errors. A sequential search algorithm which
adds or removes features from a candidate subset while eval-
uating the criterion. Since an exhaustive search of all possible
feature combinations is infeasible, the sequential searches
will move in only one direction. Sequence forward feature
selection is that the feature subset starts from an empty set,
and each time one feature is selected to be added to the fea-
ture subset, until the feature function is optimal. Generally
speaking, every time a feature is selected that makes the value
of the evaluation function optimal. Therefore, sequential for-
ward feature selection is a way to evaluate the degree of effec-
tiveness of the features. The sequential order of the selected
features for binary classification is given in Table 8. It can
be seen that the overall rate increases with increasing trial
number. The feature indexed by “10”, i.e., degree of periodic-
ity, gives the highest accuracy of 73.1%, for binary classifica-
tion. It proves that the degree of periodicity is an efficient

indicator for signal quality. The features indexed by “10,”
“8,” “4,” “5,” and “3” were the top five features to yield accu-
racy 92.1%. The other features contribute little to the classifi-
cation. These results of sequential order revealed by
sequential forward feature selection are consisted with those
observations in features’ probability distribution, shown in
Figure 8. We can find that the 10th and 8th features’ probabil-
ity distribution has greater difference over binary classifica-
tion than the other features. It is not surprise that they rank
top two. However, the features indexed by 9, 1, and 6 have
less difference over categories. Therefore, they rank bottom.
We can see that the envelope-related new features (indexed
by 8, 5, 7) have great contribution in signal quality
discrimination.

4.2. Previous Methods and Performance Comparisons. Previ-
ous researchers have proposed several techniques for the
assessment of heart sound signal quality [15–18]. Mubar-
ark et al. introduced three types of time domain features
for the classification of signal quality [18]. The feature
set comprised of root mean square index, zero crossing
ratio, and window ratio. One feature is the root mean
square of successive differences. If a heart sound recording
has high quality and is suitable for further processing, this
feature is expected to be less than a threshold. The zero
crossing ratio is computed as the ratio of zero crossing
number to the recording length. Since a noisy recording
has a greater number of zero crossings than a clean
recording, if the ratio is greater than 0.3, then it refers
to a noisy recording. To calculate the window ratio, a
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Figure 10: Performance comparison to previous methods. (a) Binary classification. (b) Triple classification.
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recording is divided into a number of windows and each
of length 2200ms. A window is assigned a score of “1”
if the number of peaks within the window is in the range
of a specified number. The window ratio is defined as the
ratio of the number of windows having a score “1” to the
total number of windows. In this paper, the optimal value
for the specified number is set as 169 based on the grid
search algorithm.

Springer et al. proposed the systemic method to evaluate
the signal quality in terms of nine indices [17]. The algorithm
was tested on 700 recordings collected from 151 adult indi-
viduals. The classification accuracy was 0.822 for mobile
phone-based acquired data and 0.865 for electronic
stethoscope-based recorded data. The Matlab codes for this
method were downloaded from the website [38].

Zabihi et al. also proposed a quality detection method in
Physionet/Cinc Challenge 2016 [15]. In the approach, they
used 18 types of features from time, frequency, and time-
frequency domains without segmentation. These features
were fed into an ensemble of 20 feed-forward neural net-
works for the quality classification task. The code to extract
these features is available at Physionet website [39].

The performance of our proposed method is compared
with three baseline methods [14, 16, 17] and depicted in
Figure 10. To show the performance difference of the fea-
tures proposed by previous research groups, each method
was implemented separately by feeding the features to an
SVM classifier. Figure 10(a) shows the performance of a
binary classification. The proposed features have the best
performance where the overall rate is greater than 0.9 even
if 10% of the data are used to train the classifier.
Springer’s feature and Zabihi’s feature have similar perfor-
mance where their curves are almost overlapped regardless
of training percent. The overall rates for baseline methods
lie in the range of 81% to 87% in this study. These perfor-
mances are comparable to those of their studies in their
own data. Figure 10(b) shows the performance of triple
classification. It shows that the proposed features give bet-
ter performance for both binary and triple classification.
However, Zabihi’s and Springer’s features give moderate
performance and Mubarak’s features give not good enough
performance, respectively.

Computer experiments show that Springer’s method
takes more CPU time than that of the proposed Zabihi’s
and Mubarak’s method because Springer’s method involves
a heart sound segmentation process, which takes a very large
computation load. Moreover, the performance of the
segmentation process has an impact on quality assessment.

5. Conclusions

This paper has presented a method for the heart sound signal
quality assessment. It used ten types of multidomain features
to evaluate the heart sound quality through 7893 recordings
from the heart sound databases. Experts performed manual
annotations for each recording as gold standard quality
labels. Even 10% of the data were used to train the model,
and the accuracy rate was over 90%. The binary classifier
had good generalization ability indeed. The sequential for-

ward feature selection indicated that the top five features
dominate the binary classification. Besides, the accuracy rate
reached to 85.7% in the triple classification. Signal quality
assessment is a necessary preprocessing step in the automatic
analysis of heart sound signals. A good quality of the heart
sound signal is helpful to obtain reliable analysis results.
The proposed method is widely adaptive to comprehensive
recordings collected by different devices, in different environ-
ments, and in different data lengths. It could serve as a poten-
tial candidate in future automatic heart sound signal analysis
in clinical applications.
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