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&, denotes those strains over and above the mechanically induced elastic
strains.

g =8, +e e+

¢, = instantaneous plastic strain

&, = creep strain

&r = thermal strain
The plastic and creep strain components may be derived from suitable

constitutive laws of the types discussed in Chapter 2, while thermal strains
are simply related to the temperature distribution in the structure.

The first example known to us of the use of this method is due to Goodey
[4], who examined the case of stress redistribution resulting from creep in
a beam, subjected to a constant bending moment. This case is dealt with first,
but it is extended here to the more interesting case of a beam loaded by an axial
force, together with a bending moment. The results of such an analysis have
been used to investigate the effects of nonaxial loading during the tensile creep
test [17] (Appendix 1).

3.2.1 The one-dimensional case of beam bending

The analysis is developed for a section having symmetry about one principal
axis of bending (Fig. 3.3).
The total strain

e=¢g,+¢&
% + ¢, (from the use of Hooke’s law) (3.1)
where ¢ = 0(z) is the normal stress at height z from the centroidal plane

(Fig. 3.2).
From the fact that originally plane sections remain plane after bending

e=Kz+¢ (3.2)
where x is the curvature change and ¢ the strain at the centroidal plane.
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Fig. 3.3 Geometry of a beam section subjected to end load and bending moment.
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Eliminating ¢ from (3.1) and (3.2) and solving for o gives
o=Exz+ E((—¢,) (3.3)

Equilibrium of the section requires

dy dy
P=J obdz M=J obzdz
—da —dz
and substituting for ¢ from (3.3) into the equilibrium equations gives
dy
P=EA§—J Ee,bdz
—ds

(3.4)

dy
M =Elk —J Ee bzdz
—dy
A and I are the séction area and second moment of area respectively.

Equations (3.4) are seen to differ from the usual elastic ones, by the inclusion
of the extra terms involving the inelastic strain terms ¢, on their right-hand
sides. This is a feature of solving creep problems, which will be consistently
apparent in this chapter; the governing equations for the creep case are
precisely the same in form as for the elastic problem.

As well as forming equations (3.4), it is necessary to derive their rate versions
in order to gain complete solution. This is achieved by straight-forward
differentiation of equation (3.4) with respect to time — a procedure which is
admissible, provided that the deflections are small. The rate versions of
equations (3.2), (3.3) and (3.4) become

g=Kz+¢
3.5
o' =Exz+E@- 8'1)} (3.5)

dy
P =EA¢- J Eebdz
—d>
a4 (3.6)
M’ =EIx' — J Ee',bzdz
—a
where (..) = d(..)/dt denotes differentiation with respect to time.
Enough equations are now available for complete solution, provided
knowledge of the strain component ¢, is available.
To simplify the discussion at this stage, the following conditions are chosen
as appropriate to a creeping material following instantaneous elastic response

g,=0att=0
c;stc = ¢/ = creep strain rate = f, (a)% fort=0

and, taking the particular case f,(6)=0¢™ as advocated in Chapter 2 as
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a particularly useful form, this becomes

e, =0™f(t)

Analysis for constant loading and temperature conditions

Further, in accordance with our initial assumptions regarding the history of

loading, P'=M' =0.

We then have from (3.2), (3.3), (3.4), (3.5) and (3.6)

e=Kz+¢&
o=Exz+ E¢
P

f=— t=0
*“Ea
K_M

T EI

g=Kkz+¢

o =Ex'z+ E(¢ —¢)

1[a
é’=—j e.bdz

IR
K =—J e.bzdz
1 —d2

\

>t>0

/

(3.7)

(3‘8)‘

Equations (3.7) are immediately recognizable as the usual elastic results. All
are conveniently nondimensionalized in the following way for efficient compu-

tation

where o, is a reference stress to be chosen from convenience, e.g.

&
- A=E_, O'o = an,

Then (3.7) and (3.8) become

=TT
A=Z
p yt=0
T=¢(4—
6+Aao
A=Z43"

d2/dy dy/dy
OCJ "nd¢ + B¢
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(3.9)

(3.10)
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where
d3 d3
a_—:4-; ﬂ_T
a0
()= e
and
p=t
T=EU'6"1J fo(p)dp=Eag™'f,(0), (3.11)
p=0

is a nondimensional time parameter which will appear in all other problems to
be discussed.

Enough equations have now been assembled to attempt solution to the
problem. For a given geometry of beam section (b(£),d,, d,) and values of the
loading (M, P), equations (3.9) enable the elastic stresses and strains at any
section (£) to be calculated at time (z) zero. Knowing the stresses at zero time
the integrals in (3.10) can be evaluated so that the stress and strain rates at time
zero are also determinate. Assuming that these rates hold over a small time
interval At, then the stresses and strains at the end of the time intervals can be
determined from

Y =20+ 2. X AT+ O(E,_,, At? etc)

and likewise

Aicne=Aemo+ Ao X AT+ O(A,_,, AT? etc)

The errors in these equations could be reduced by including terms in higher
derivatives of the stresses and strains, but experience has shown this to be
unnecessary, provided that a sensible choice of the time interval At is made;
guidance on this choice is given later. Once the decision has been made on the
size of A1, the now-known stresses at the new time At permit calculation of new
stress and strain rates at that time. Forward integration (in time) gives the new
values of stresses and strains. This process is continued until the stresses
change by no more than a specified limit (nominally zero), at which time the
strain rates will be nominally constant. This state we call the stationary state at
which time stress redistribution is complete. Computed values of the stress
distribution at various times after elastic loading and up to the stationary state
are illustrated in Fig. 3.4, for a rectangular section beam and the stress
exponent m = 3. Appendix 4 contains a complete step-by-step description of
this analysis.

There are few problems for which the stresses at the stationary state can be
determined analytically, but the beam is one of them — the results for which
can be derived from the preceding equations. This is given now by way of
illustration, but as a digression from the main theme.
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Fig. 3.4 Transient stress distribution in a rectangular section beam during pure
bending (stress exponent m = 3).

For a beam in pure bending, equation (3.10) gives for the stress rate
. dz/dy
Z=B6J meds -
-1
and this rate is zero at the stationary state (ss). Thus
d>/dy
= B&J Zonddg
-1
In the case of a rectangular section beam d, = d,, f = 3d/2b and then
1
= éj InEde
-1
But since X = Z (&) the integral in this equation is a constant = C, (say)
Therefore
I =(C,§!m =K
But the equilibrium equation requires that

! 2
T Ede=5
Jv—l 556 é 3

Therefore

! 2
j Ky ¢dé=3

-1
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Fig. 3.5 Stationary state stress variations with stress exponent for a rectangular
section beam during pure bending.

Therefore
2m+1
3m

K=

The stationary state stress distribution is then given by

Zss=<2m+ 1)6”’" (3.12)
3m

This distribution of stresses is shown in Fig. 3.5 for various values of m, the
stress exponent. Converted to dimensional form, equation (3.12) becomes

[(2m+1 £ z 1jm
%=\ T3m Jbaz\d

Summary of computational procedure

The method described is clearly well suited to digital computation and most of
the problems which have been dealt with have been organized this way. At this
stage it is worth summarizing the steps in the calculation procedure.

1. Solve the initial problem (elastic), equations (3.9).
2. Use the stresses from step 1 to solve the rate problem, equations (3.10).
3. Evaluate stress rates, etc., using step 2.
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Fig. 3.6 Characteristics of stress redistribution.

4. Over a chosen time interval evaluate new stresses and any other quantities
required from

Toia=2 + 2 x At, and the like.
5. Repeat steps 2—4 to any time required.

The question of choice of At is helped by consideration of Fig. 3.6 which shows
schematically the redistribution of stress at a given position in the beam
section, from its initial elastic value X, at t=0 to the stationary state. At
t=0,%, and Z are known prec1sely sp that the intercept of the line
T=3%,+ 2 w1th the abscissa defines the point t =7, precisely. Clearly, it
would be 1nadv1sable to make At > X,/ Zo( 7o), because this would lead to
absurdly hasty redistribution. A better choice is At = 1,/f where f > 1. Here
fisa number which can be experimented with, in that it could be progressively
changed, if one were uncertain of a correct choice, until solutions no longer
changed with increasing values of f. For most problems f = 5 has been found
to be adequate. The great advantage of choosing Az in this manner, is that it
can be used throughout the calculation by taking local values of £ and % with
the effect of lengthening the time steps as time progresses. Thus, at 7 =0 when
stresses are changing rapidly, small time intervals are needed, but as time
progresses towards the stationary state, such small steps are not necessary.
The simple rule used at all stages of the computation is thus

z()

f’z(é) 1
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In addition to choosing the time interval, it is also necessary to decide when to
stop the computations. The end point in the time integration could be chosen
at will, of course, but generally speaking, the point of most interest is when the
stresses are stationary, i.e. £ = 0. The time at which stationarity is achieved is
difficult to define and indeed complete stationarity may never be achieved. For
the purpose of defining a state of stationarity numerically, tolerances on
> must be specified. The limit |=] <1072 seems to be sufficient for this
purpase, although it would be equally easy to place a limit on the stress level
during relaxation as a definition, or on the constancy of strain rate to within
a given tolerance. The definition given will depend on the context of the
problem under investigation.

These guidelines are just that — guides. Anyone phrasing his own computa-
tions will find them useful and may generate his own criteria for choosing At
and a suitable state of stationarity. The object though is always the same: to
avoid numerical instability and to minimize computing time. Most commer-
cial programs dealing with creep contain effective time integration algorithms
of one sort or another.

In order to illustrate further the numerical solving technique, a common
two-dimensional problem involving a stress raiser will be outlined in the next
section. An additional feature revealed in solving this problem is a demonstra-
tion that in certain circumstances, the stationary state solution gives the same
results as those for time-independent plasticity.

3.2.2 The two-dimensional case of plate stretching [24]

All the usual assumptions of plane-stress are made: the plate is thin enough to
make variations in stresses through the thickness negligible; only two principal
components of stress, g,,0,, are present in the axially symmetric problem
(Fig. 3.7); strains are small (less than about 2%).

The loading is uniformly applied at the outer edge of the plate and, in the
present example, the plate contains a hole at its centre which is free from any
loading.

In common with the elastic problem the radial and circumferential stresses
must satisfy the equilibrium equation

s,
—(ro)—0,=0 3.13
ar( r) ] ( )
and, as with the one-dimensional case, the total strains are considered as being
composed of two parts
&, = ¢, (elastic) + ¢,

_0,— V0,

B + ¢, . from Hooke’s law (3.14)



