Chapter 9
Material Response: Measures of Stress and

Strain

Abstract Amongst the many pillars upon which the FEM solutions stand is the
pillar of material response. This defines the physical behaviour of the material type
under investigation in the FEM problem. It is under this pillar that one distinguishes
between rubbery, elastic, nonlinear, fracture and interface failure mechanisms. It
is a key component of the FEM problem and must be correctly defined if one is
to obtain reliable solutions. A common theme for this pillar of the FEM process
is what is described as predictive modelling, which is the use of computational
methods to determine the material behaviour of a given material. In this chapter, we
have presented the principles of the material response module of an FEM scheme.
The focus here is exploiting the principles of continuum mechanics in defining the
response of a material body. Specifically, this chapter introduces the kinematics
of finite deformation of a material body; measures of strains and stresses: and
concludes with the practical formulations of stresses needed by engineers during
the design process. Such practical stress formulations include: principal stresses,
von Mises stresses, etc. This chapter lays down the theory needed to understand the
material model implementations in the finite element solver.

Keywords Material response * Finite deformation ¢ Deformation gradient
tensor ¢ Strain tensor ¢ Strain tensor ¢ Stress measures

9.1 Introduction

Consider a virtual domain, shown in Fig. 9.1, bounded by e/, Which represents
the boundaries of a given material system before deformation. Let us impose a dis-
tributed load, F, on the left hand side of the structure such that we can identify three
possible deformation profiles. Whilst Materials 1 and 2 are dominated by a form
of compressive deformation, Material 3 shows a dominant shear deformation. The
material system is bounded by a virtual domain after the deformation represented
by Q4fter. This deformed domain is different for all three material types. The answer
to why this is the case lies in an understanding of the material composition of all
three material systems.

The differences in deformation profiles are quantified by constructing a material
model to capture the individual composition of the three materials. It is the goal
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Fig. 9.1 Schematic representations of different material responses under the effect of a distributed
load

of the FEM user to choose the correct material response to capture the expected
material behaviour. The study of material responses here focuses on the numerical
representation of the material behaviours that define how a structure can deform
under the effect of load(s).

To describe the material response, we will seek to provide answers to the
following questions.

* What are the reference frames that are required to describe the observed material
response?

» What are the measures that describe the observed material response?

* What are the constitutive formulations that described the observed material

response?
» How do FEM solvers implement the constitutive formulations into a material

mode?
« What are the in-built material models in a typical FEM solver like ABAQUS?
« How can one extend the material models available in an FEM solver like

ABAQUS?

In this chapter and the next, we will provide answers to these questions. The
current chapter addresses the question of defining parameters needed to describe
the deforming body. In the next chapter, the constitutive material models and their
implementation within an FEM solver will be presented.
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9.2 Chapter Objectives

At the end of this chapter, the reader should be able to:

(a) Define the kinematics of deformation needed in describing material
response within the FEM process.

(b) Understand the different measures of representing the material response
in an FEM scheme.

(c) Explore the different measures of strain needed to describe material
response.

(d) Derive the different measures of stress that describe finite deforming
systems.

(e) Introduce the different practical formulations of stresses needed by design
in engineering to aid the design process for material systems subjected to
multiple load histories.

9.3 Kinematics of Deformation

Continuum mechanics provides the fundamental principles for describing the
material behaviours of different materials. Let us first isolate a material body, shown
in Fig. 9.2, which represents either a form of solid, liquid or gas system. Consider
the material body is bounded by a material domain, £2, such that its microstructure
consists of sets of elements, X, called particles or material points.

On a reference frame of choice, XYZ, each of the material points can be related
to a coordinate position on defined regions of the physical space. Each of these
coordinate positions are measured with respect to the origin of the XYZ reference
frame. The kinematics of deformation introduces the principles for describing the
changes observed in material systems under the effect of loads.

Fig. 9.2 A material body ZA
consisting of material points,
X, at defined coordinate
positions
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Fig. 9.3 A material body VA

subjected to a displacement +
vector, u, displacing it from
its original (material) \
configuration, X, to a new 252 oTo 1o 1)
spatial configuration, x

s ¥

undeformed

9.3.1 Material Configuration and Displacement

If we consider the material body of Fig.9.3 to be a rigid body, the material
points remain [ocked in their original coordinate positions during the deformation.
However, for the purposes of defining material behaviour, we consider the material
body to be deformable, i.e. it changes shape and size under the effect of loads. For a
deformable body, the coordinate positions of the material points in Fig. 9.2 change in
space and in time. At any given time, under the effect of external loads, the assembly
of material points of the material body defines the material configuration of the
body.

If the new configuration is defined by a new set of material points, x, distinct
from the initial reference configuration, X, it is possible to mathematically relate the
X material points to the original X material points according to the equations:

x = k(X) and X=«r"'(x) 9.1)

where k is the vector function that maps the x positions to the X positions. The
above assumes that the mapping function is invertible. The above equation implies
that the material points on a deformed material body can be related to their original
positions and vice versa. It is this principle that drives the formulation of stress and
strain measures that will be presented later.

Consider the material body experiences a change from its reference position, X,
to a new configuration, x, as shown in Fig. 9.3. The change in configuration is caused
by a displacement vector, u, which consists of simultaneous franslation and rotation
of the material points relative to the origin of the fixed reference frame.

For a given displacement vector, u, as shown in Fig. 9.3, the map of the material
points at both original and deformed configurations becomes:

x=kX)+u 9.2)
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We will now extend the above discussion to account for the fact that the material
points in the new configuration are a function not only of coordinate positions, but
also time. Thus, Eq.9.1 of the material body can be extended to incorporate time-
dependence of the deformation, such that we write:

x=ux{X, 1) and X=x""(x1 (9.3)

9.3.2 Material and Spatial Reference Frames

In Continuum mechanics, two material configurations are essential in describing
the kinematics of deformation of a material body. The first is the original con-
figuration of the body before applying a displacement vector, called the reference
configuration. It is a baseline set of material points of the material body from which
subsequent measures of deformation are taken. From Eq.9.3, this configuration
coincides with time, t = 0. It is also the reference at which # = 0, from Eq.9.2,in
which case: x = X.

Once time has elapsed, we define a new material configuration called the current
configuration. From Fig. 9.3, the reference and current configurations are bounded
by the $2undeformed and $24eformes boundary domains. It is customary in continuum
mechanics to associate two coordinate systems to the two material configurations to
quantitatively describe the kinematics of motion of the material body.

In the reference or original configuration, the material reference frame is used to
describe the positions of the material points within the physical space. It is denoted
by upper case letters. For example, for a Cartesian representation, the material
reference frame is the X¥Z—axes. The set of positions that describe a material body
is represented in this frame by the vector, X. Since the material coordinate is static
and does not follow changing material configurations of the material body, it is said
to be time-independent.

On the other hand, the spatial or current reference frame is a coordinate system
that describes the current coordinate positions of a material body under the effect
of external or internal loads. It is the cumulative location of the particles that
make up the material body after each of the particles has been acted upon by a
displacement vector, u. It is represented by lower case letters. For the Cartesian
coordinate representation, the spatial reference frame for a set of particles, x, is the
xyz—axes. The spatial coordinates are time-dependent as their values change with
changing configurations of the material body.

We can illustrate these two reference frames by considering the fixed axis rotation
of the bar shown in Fig.9.4, rotating with angular velocity, . The bar is kept
rotating by a perpendicular force vector, F. The material reference frame is the
XY-axes attached to the bar such that at all stages during the rotation, the axes rotate
with the material. The material points of the body, with respect to the XY-axes, will
remain the same at all three states of motion. The spatial reference frame is the
xy-axes. It is similar to the global reference frame. With changing positions during
motion of the bar, the material points coordinate positions will be changing with
respect to this spatial (xy-axes) coordinate system.
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State 1 State 2 o State 3
> X

Fig. 9.4 Anillustration of material (XY-) and spatial (xy-) reference frames for a fixed axis rotation
of a slender bar during three states of the motion

When a physical property of a material body is expressed in terms of material
coordinates, X, and time, 1, it is said to be given by material, or Lagrangian,
description. In this description, the observer follows the material point as
it moves along space and time. On the other hand, the Eulerian, or spatial,
description describes the physical property in terms of the spatial coordinate
system. This means the observer sits at a fixed point and assesses/observes the
changes in configuration of the material body in space and time.

9.3.3 Deformation Gradient

Consider the material body of Fig.9.2 being subjected to a displacement vector,
u. The material will experience deformation that comprises a change in shape and
size. To quantify the deformation, let us isolate a line segment, AB of length, dX in
the material reference frame and A’B’ of length dx in the spatial reference frame,
as shown in Fig.9.5. The line AB is deformed, resulting in line A’B’ such that all
the material points that make up the material body will deform according to the
equation: x = X + u.

We introduce the deformation gradient tensor (or, for short, deformation gra-
dient), F, to represent the mapping function that links the deformation of the
material reference frame to that of the spatial reference frame. This implies that any
infinitesimal deformation, dX on the material reference frame is transformed to its

equivalent spatial reference frame deformed state, dx, by the deformation gradient,
and defined according to the equation:

dx 00X +u) ou
dx = FdX = = — . =] — 04
. = F=n="= x99
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Fig. 9.5 An illustration of Z A

the deformation of a line deformed
segment, AB from material to '
spatial reference frames X

undeformed

where [ is an identity matrix. The deformation gradient, F, is the key parameter
that defines the deformation of a material body. In its most general form (for a
3D system), F consists of nine components defined in terms of time, 7. It is a
second-order tensor and according to Eq. 9.4, the mapping function, F, is a linear
transformation function that maps dX deformation to dx.

Using the left-hand side expression of Eq. 9.4, we can re-write it in component

form for a Cartesian coordinate system representation in 3D of the material
body thus:

& [Fe Fy Fo|[dx
dy | = |Fy Fyy Fy dY (9.5)
_dz_ | F Fp  Fy _dZ_

The deformation gradient represents the behaviour of a material point with
respect to another neighbourhood point, hence some authors describe it as a fwo-
point tensor that links material points in two separate material configurations [5].
The deformation gradient can also be expressed in terms of the partial derivatives of
the terms of the material points in the spatial reference frame thus:

dx
F=_— = F = Vx 9.6
X (9.6)
J . : :
where V = — is the transpose of the vector differential operator. The component-

wise expansion of Eq. 9.5 thus becomes:
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Based on Eq. 9.3, let us assume mapping function, k, exists apd also is. invertible.
The same philosophy will also hold for the mapping deformation gradient tensor,
the material points have been displaced by a displacement vector, u. :i}s a rt?suit, we
would expect there to exist an inverse deformation gradient ter.:sor, F~", which maps
material points at the material reference frame, X, to the spatial reference frz'lme,. x:
In other words, the inverse deformation gradient tensor transforms the spatial line

segment, A’B’ of Fig.9.5 into the material line segment, AB. Hence, the tensorial
expression of the inverse deformation gradient is:

F—lzi? — F'=v'x o dX=F'dx (9.8)
X

9.3.4 Rotation and Stretch Tensors

Its important at this point to introduce two new terms associated with kinematics
of deformation of a material body: rotation and stretch. Rotation is a measure of
rigid body deformation of the body such that only angular changes occur during
the deformation of the body without any change in size or shape. Stretch on the
other hand refers to a change in size of the body independent of any changes in
orientation. Generally, when a body deforms, both stretch and rotation measures are
required to describe comprehensively the deformation of the body. These two terms
arise due to a local motion of material points within a material body.

Consider a material body bounded by the £2 c 9" such that in its undeformed
state, the boundary domain is bounded bY Qundeformea; While in the deformed
state, the boundary domain is bounded by Sdeformed, as shown in Fig.9.6. If the
undeformed material body is subjected to a deformation gradient, F, the resulting
deformed configuration is given as a cumulative effect of rotation and stretch. The
principle of polar decomposition is introduced to separate the contributions of the
stretch and rotation tensors. The mapping deformation gradient, F(X, ), can be
decomposed into pure stretch, U or V, and pure rotation, R, components.

The first form of polar decomposition requires that the undeformed material body
is first subjected to an orthogonal rotation tensor, R,
change of local orientation. R is a measure of

operating on the material body with the rotat

so that there is a resultant
this local change in orientation. After
ion tensor, the intermediate deformed
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Fig. 9.6 An illustration of + § snsermediate

polar decomposition of the
deformation gradient, F, into
rotation, R, and stretch, U or
V, tensors

e i
—
¥
§
'J\..;:.
\

Q

undeformed

e,

X Q

intermediate

domain, Qiuermediare, is further operated by a right (or material) stretch tensor, U k
which introduces a local stretch (elongation or contraction) of $2iemediate along its
main axial direction. This results in a local change in size without any change in
orientation. Mathematically, the first form of polar decomposition is written as:

F=RU such that R'R=1, U=U" and detR)=1 (9.9

Similar to the first form of polar decomposition, we can also achieve the
deformed configuration by first operating on Q2,deformea With a left (or spatial)
stretch tensor, V, which causes a change in size of the material body resulting
into the 2iusermediare domain, as shown in Fig. 9.6. After that, the rotation tensor is
operated on the intermediate domain, $2iusermediate, to achieve the deformed domain,
Qdeformea- The mathematical expression on this second form of polar decomposition
becomes:

F=VR such that R'R=I and V=V (9.10)

9.3.5 Velocity Gradient

We established previously that the deformation of a material body is a function
of not only displacement, but also time. The previous discussions of deformation
gradient, stretch, rotation and strain measures considered a time-independent
material body. It is important that for exhaustive an understanding of material
responses within finite element modelling, the considerations of effect of time on
the deformation need to be made. Plasticity formulations and viscoelasticity are
ready examples to time-dependent material responses, hence need to be defined
as rate quantities. The constitutive laws that describe material behaviour are often
implemented within finite element modelling in their rate forms, hence the necessity

of this section. We will now define time-dependent kinematics of deformation
quantities.
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Fig. 9.7 An illustration of a
material body with spatial
varying velocity field

Consider a material body, £2 C 9", bounded by 2undeformed and Ldeformed ?n
the undeformed and deformed material configurations respectively and shown in
Fig.9.7. Let us assume that material point located at position X within Qm,deﬁfm,gd
has a velocity field, v;. If the material body is subjected to a deformation gradient,
F, for duration of At, the body rotates and elongates and the original material point
now occupies a new position, x, and the velocity field becomes v; + dv.

Across the change of position, dx, of the material points in the deformed domain,
the velocity field has changed by dv. The velocity gradient, 1, is the spatial rate of
change of velocity field over the length, dx. The velocity gradient is derived by:

v,  du,  Ov
ax dy 0z
dv dv dvy  dvy  dvy
dv = dx where 1 ™ o 3y o ( )
dv, dv, O,
| Ox dy 0z |

Let us also relate the velocity gradient, [, to the deformation gradient, F, that
caused the deformation of the material domain. Here, we consider the rate of change
of deformation gradient, F.

. F ; d [ ox . dv dv dx .
At or (ax) 7 X wxox - F=FF
We can re-write the above thus:
F=IF — l=FF! (9.12)

which suggests that the velocity gradient is the mapping function between the

deformation gradient and the rate of change term of F. It is acting on the current
configuration of the material domain.
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Just like the deformation gradient can be multiplicatively decomposed into its

stretch and rotation tensors, the velocity gradient can likewise be decomposed
additively according to Eq.9.13:

I=dx,t0)+wkx, 1) — I=sym()+ asym([), (9.13)
where:

* d = rate of deformation tensor, which is a stretch-related symmetric part of the
velocity gradient. It is also commonly described as the rate of strain tensor or
strain rate; and,

* W = continuum spin, which is a rotation-related antisymmetric/skew part of

the velocity gradient. It is also commonly called the rate of rotation tensor or
vorticity tensor.

Mathematically, the d and w tensors can be written as:

Rate of deformation tensor:  d = = (I + lT) =d’

0O | =

(9.14)

i

Continuum spin tensor: w=7> (-1 = —wt

9.4 Measures of Strain

In this section, we present the different measures of strain used in computational
mechanics. The discussion considers the classic expressions of normal and shear
strain as usually presented in engineering mechanics before discussing the less
common strain measures used in finite deformation literature such as the Cauchy-
Green deformation tensors, and such like.

9.4.1 Normal and Shear Strain Measures

An important measure of material response is strain. Strain, in undergraduate
textbooks, is defined as a measure of the relative change in size or shape of a body
with respect to a reference configuration. For a material body shown in Fig. 9.8, we
recall the following strain measures:

AL
Normal strain EN = — (9.15)

Ly
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Fig. 9.8 Schematics of tensile and shear deformations

i "4 1 (AL
Shear strain Viy==—10 tan”~! (AI:) (9.16)

where L is original length, and AL is the extension of the tensile test specimen.
F; and Fg are tensile and shear forces respectively. However, for a finite element
process, the measures of strain adopted is based on the deformation gradient
tensor derived previously. This way, not only small strain, but also finite strain,
deformations can be accounted for within the FEM process.

9.4.2 Right Cauchy-Green Deformation Tensor

Consider again the material body of Fig. 9.5 and now let us define ds as the length
of the line segment, A’B’, in the deformed state. Therefore:
ds? = dx - dx — ds® = (FdX) - (FdX)
ds? = dX"F"Fax
ds? = dX”cdX.

In the above, we defined C, called the right Cauchy-Green deformation tensor, as:
C=F'F (9.17)

It is the first measure of strain that we can deduce based on the deformation
gradient tensor. It is described as right, because the deformation gradient, F, is on
the right hand side of the transpose of F equation. It is also sometimes referred to as
the Green deformation tensor. As shown above, the physical meaning of C is that

it gives a measure of the square of the distances (ds*) due to the deformation of a
material body in the material reference frame.
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9.4.3 Left Cauchy-Green Deformation Tensor

Similar to the approach taken above, we can also determine the length, dS. of the
material body in the spatial reference frame. Recall that in the spatial reference
frame, dX = F~'dx. The distance dS can be determined according to the following:

ds? =dX"-dX —  ds?= (Fldx)" (F ')
ds? = dx7 (F') F'ax
ds? = &'Bdx

Notice that we have determined another type of strain measure, the left Cauchy-
Green deformation tensor, which is represented by B thus:

B'=(F"Y'F' orsimply B=FF (9.18)

The deformation gradient tensor, F, is on the left hand side of the transpose of

F hence the left Cauchy-green tensor. B is also called the Finger deformation
tensor. Physically, the B tensor represents the square of the distances (dS?) due
to deformation of a material body in the spatial coordinates system.

9.4.4 Change in Length, AL Measure

Another common measure needed to determine the strain in a material body is the
change in length. Having previously determined the distances in material (ds*) and
spatial (dS?) reference frames, we will now go ahead and use them to determine the
relative change in length for the material body.

Mathematically the change in length of a material body can be expressed as:
AL’ =ds* —dS* — AL’ =dr-dv—dX-dX
AL’ = dr-dr—dx-B 'dx
AL* = dx- (I—B7")dx,
where I is the identity tensor. The above demonstrates how the change in length

L.e. stretch of a material body can be determined with respect to both material

configurations. Under rigid body rotation, there is change in length (AL = 0),
therefore we note that:

dx-I-B")d&x=0 — B-=1I (9.19)
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The above rigid-body motion condition implies that the mapping function

between the material and spatial configuration (i.e. deformation gradient, F)

contains terms that do not cause a change in length of the material but rather a
change in orientation.

9.4.5 Green Strain Tensor

It is vital that any strain measure used within a finite element scheme must

the same strain irrespective of orientation of the material body. This is a
requirement for formulation of strain in finite deformation systems. In parti
the rotations arising from deformation of a material body grows, so does the errors
arising in the strain formulation. It is a requirement therefore that an objective strain
measure must not be polluted by rigid body rotations [3]. Hereafter, we introduce
the next measure of strain which obeys these requirements.

Consider the material body of Fig.9.5, we can derive the change of length in
terms of material reference frame thus:

return
crucial
cular, if

AL = ds? — ds2 — AL* = dx -dx — dX - dX
—> AL* = (FdX) - (FdX) — dX - dX
AL* = dX - (F"F)dX — dX - (I)dX
AL’ =dX - (F'F - 1) dX

In the above, we notice that we have defined a new term: F'F —1I , which we will
now equate to 2E such that:

1

E=l@r_n = E=

(C-D (9.20)
2

where the new term, E, is called the Green-Lagrange strain tensor or Green strain
tensor for short. Based on Eq. 9.20, we can observe that:

1
2

1 AL?

E= T 2dX-dX

(FFF-1I) — E

(9.21)

Notice that Eq.9.21 is similar to the engineering norma:’ :strain mcasur;: of
Eq.9.15 being a ratio of a change in length (AL?) to the original 1}:ngth, .LU =
|dX - dX|, in the material reference frame. It is commonly rcgfirded in continuum
mechanics that this expression of normal strain (Eq.9.20) is a more accurate
measure of strain than that of Eq. 9.15.
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Since any error due to rigid body rotation must be removed for a finite element
strain measure, we will now assess if the strain, E, is independent of rigid body
motion. Recall the polar decomposition of the deformation gradient, F = RU, thus
we will now substitute these into Eq. 9.20.

C=FF — C=RU'RU=U"(R'R)U
=UT(HU=U"U = U? (9.22)
Since R is orthogonal (i.e. R"R = I) and U is symmetric (i.e. U'U = U?), it can be
seen that:

|
E=3(C-]) — E=%(U2—I) (9.23)

which establishes that the Green-Lagrange strain tensor is independent of rigid
body rotation as it is solely a function of the stretch tensor. It gives a reliable

strain measure for use in describing the material response within a finite element
modelling scheme.

9.4.6 Almansi Strain Tensor

Similar to the Green-Lagrange strain tensor, we will also introduce another strain
measure whose definition is independent of the rigid body rotation associated with
a material body subjected to a deformation gradient, F. Consider again the material
body of Fig. 9.5, we can derive the change of length in terms of spatial reference
frame thus:

AL* =ds* —d$* — A’ =dr-dr—dX-dX
AL* = dx - dx — (F'dx) - (F'dx)
AL? = dx - (Ddx —dx- (F"F ") dx
AP =dx-(I-F"F ") dx

We have now introduced another alternative strain measure called the Almansi
strain tensor, e such that:

g= %(I—F‘TF") — e= %(I—B") (9.24)

This equation shares a similar definition as to the Green-Lagrange strain tensor
except that the derivation is based on spatial material reference frame. It is the strain
measure of a material body that is being subjected to a deformation gradient with
the observer sat at a static location and observing the deformation of the body.
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We will also assess if this strain is not affected by rigid body rotation. Again,
recall the polar decomposition of F in the spatial reference frame thus: F = VR. If
we substitute this into Eq. 9.24, we will obtain:

% - [ove Ry

e =

B =) -

S

- % :1 - [V(RTR)VT]"}
1 1

= {.r— [VVT]“} =3 {1— [VZ]"}

which establishes that the Almansi strain tensor is solely a function of the left stretch

tensor, V, and so not affected by any rigid body rotation of the material body under
the effect of F. We can also observe that:

B'=[v]" — B'=[7T (9.25)

9.4.7 Logarithmic Strain Tensor

Another commonly used strain measure, especially in reporting experimental work
is the logarithmic strain. Let us consider an infinitesimally small line element of
initial length, Lo, in its undeformed configuration. If it is subjected to a deformation
gradient, F, resulting in a final deformed length, /, having experienced a change in
length, AL, we can define the stretch or extension ratio, A thus:

[ Ly + AL AL
)L—g — )L—T—1+L—G—I+SN (926)

where ey is normal engineering strain defined in Eq.9.15. The above definition
considers strain changes to be uniform over the line segment. However, it is common
in plasticity for any strain increment to be nonlinear, in which case, the path of strain
increment becomes important. We use the logarithmic strain to capture this type of
strain increment.

If the infinitesimally small line element experiences a local change in length, 1,
the resulting strain increment with respect to the final length, /, can be expressed:

a1
de = 7 (9.27)

The sum of all strain-path-dependent strain increments becomes the logarithmic
strain, which is the integration of the strain increments from the initial length, Lo, to
the final length, /, thus:
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[oe=[ ()
£ = — — E=1In| —
il Lo

= In (1) (9.28)
=1In(1 + &)

1 > |
=8N—§(8w)"+§(€N)3—“'

For a three-dimensional material body, we can define the same logarithmic strain
in terms of the deformation gradient, F, thus:

&= —% InB~! —_— e = ~% In {F_IF_]) (9.29)
The logarithmic strain tensor is also referred to as the Hencky strain tensor.
named after H Hencky who, in 1928, made this derivation. It is necessary for
finite element modelling studies that the strain tensor must not be affected by rigid
body rotations, we will now show that the logarithmic strain tensor obeys this
requirement.
We established previously in Eq.9.25 that B can be related to the left stretch

tensor, V. We will exploit this relationship to re-define the logarithmic strain tensor
thus:

1
8= —% InB~! — e=——[V'=mv (9.30)

2

which shows that the logarithmic strain tensor is independent of the rotation tensor.
Itis thus a suitable measure of strain for finite element modelling studies.

9.4.8 Seth-Hill Family of Strain Tensors

Although previously, we have presented the different measures of strain, they can
be combined into a single equation, which is generally regarded as the Seth-Hill
family of strain tensors. For a material body, £2 C ", subjected to a deformation
gradient, F, which can be decomposed into F = RU = VR, we can define the Seth-

Hill family of strains in terms of either the right stretch tensor, U, or the left stretch
tensor, V, as:

1 1
e=—-(U"-I or e=-(V"-I (9.31)
n n

where 7 is a real number and not necessarily an integer. The above equation is
also referred to as the generalized strain measures in Lagrangian and Euleri

ian
descriptions. For specific values of n, Eq.9.31 shows any of the earlier strain
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measures as illustrated below.

Forn=-2: Euler-Almansi strain, &= 0.50 (I — ¥)
Forn = —1: “True” strain, e= I-mnU"!
Forn — 0: Logarithmic strain, e= InUor nV
Forn= 1: Engineering strain, e= U-TorV-1I
Forn=2: Green-Lagrange strain, & = 0.50 (U? — I

The Seth-Hill family of strains can be demonstrated for the clongation of a
cylindrical bar of cross-sectional area, A, original length, L, undergoing a tensile
deformation, AL, such that the final length, L = Ly + AL. The resulting stretch ratio
becomes: A = L/L.

The stretch ratio, A, will always be positive, A > 0 since lengths will always be
positive. Therefore, the expressions of different strain measures, adapted from the
Seth-Hill generalized family of strains, are given below while the comparison plots
of the strain measures are shown in Fig.9.9.

Forn=—2: Euler-Almansi strai = l(1 LY (o
orn=—2: fleeAlmansi segin, ®= S| l=gg Ji= 5 =3
I
Forn =—1: “True” strain, e= 1- l = Lo
A L
L
Forn — 0: Logarithmic strain, e= InA =1a (E)
I -
Forn= 1: Engineering strain, e= A-1 = LQLO
: 1 (I*— I3
Forn= 2: Green-Lagrange strain, e = ~(A*—1) = - .
2 2 L3

(9.32)

Example 9.1 A 3 x 2 mm? rectangular plate shown in Fig.9.10 is subjected to a
uniaxial tensile deformation such that the plate undergoes a stretch of 50% along
the x—axis and a contraction of 20% along the y—axis. The material configuration
of the deformed the plate is given by:

x = 1.5X +0.0Y

9.33
y = 0.0X + 0.8Y )

(a) Determine the deformation gradient, F, for the above problem.
(b) Determine the stretch, U and rotation, R, tensors.
(c) Determine the Green-Lagrange strain tensor, E.
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Fig. 9.9 A comparison of all the strain measures for uniaxial deformation of a rod
Fig. 9.10 Uniaxial y | 3 mm 1.5 mm
deformation of a rectangular » Y U b >
plate ! I
3 r 2.0 mm >
e 0.40 mm - FT
W A A
X x

(d) Determine the Engineering strain,
expected strains.

Solution

(a) Deformation gradient tensor: Based on Eq.9.33, we get:

ox
X
F—a—x — F=
X 3y
0X

k
aY |:1-5
ﬁ 0.0
aY

0.0
& 8] ©.

€ engineerings and prove that this yields the

34)

(b) Stretch tensors: We established previously that the stretch, U, can be related to
the left Cauchy-Green tensor, C. We will use this to determine the stretch tensor
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only as given below:
C=FF=U0>? — U=VFF (9.35)
Substituting Eq. 9.34 into Eq. 9.35 becomes:

U=VFF — U:VFE:F since F' =F

U= 1.5 00| _|Uu Uy
00 038 Uy Uy
The above result shows the deformation is dominated by stretch along the X—
and Y—directions, hence the diagonal terms: Uy = A = 4.5/3.0 = 1.5 and
Uy = Ay = 1.6/2.0 = 0.8, where A = L/Ly is the stretch ratio.

(c) Rotation tensors: Similar to the derivation of the stretch tensor, we will also
calculate the rotation tensor based on F and U. Recall,

F_[1.0 00
F=RU = —=
— K U [0.0 1.0]

Assuming the angle of rotation is ¢, we also note that:

cosgp —sing 1.0 0.0
R = — R = 3
[sinfp cosq;-] |:0.0 1.0 (9:36)

The above implies that: cosg = 1.0 —> ¢ = cos™' 1.0 = 0°. Therefore,
in the deformed configurations, the edges have not been rotated, hence rigid
body rotation is excluded, as expected for a uniaxial test.

(d) Green-Lagrange strain tensor: This is determined as follows:

0.625 0.000
0.000 —0.180

E=1(F"‘"F—f) — E=[

> ] (9.37)

(e) Engineering strain tensor: This is determined using Eq. 9.32 thus:

& 1 =0 =1 — e : : . 1.5 0.0 . 1.0 0.0
engineering engineering — 00 0.8 00 10

0.5 0. : 5
Therefore,  &engineering = [ 00 —0 g:l = I:Zu z"-‘] (9.38)
: : w o Ey
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Z’_,Z.

Z, Z Front view Side view

Fig. 9.11 Deformation of a PTFE plate subjected to two shear forces

Notice that along the x-axis, &x, = 0.5, whichis a 50% increase in the X—edge
and &,, = —0.2 is a 20% contraction of the Y—edge. This is the same load
imposed on the plate thus demonstrating the calculations are correct.

Example 9.2 A PTFE sheet of dimensions 60 x 40 x 10 mm® shown in Fig.9.11 is

pinned securely at A and constrained along the z—axis. The plate is subjected to two

shear forces, Fy and F,, leading to edge deformations of 8y = 12 mm and 6, = 24

mm respectively. Assume that the deformation in the through-thickness direction

(z—axis) is minimal.

(a) Determine the mapping function that relates material points in the material
reference frame to those of the spatial reference frame.

(b) Determine the deformation gradient, F, for the above problem.

(c) Determine the stretch, U and V, and rotation, R, tensors.

(d) Determine the Euler-Almansi strain tensor, e.

Solution

(a) Mapping function in spatial reference frame: We develop the relationship
between material and spatial configurations. Let us identify the material
reference frame as: XYZ—axes and the spatial reference frame as: xyz—axes.
Consider that the origin of both coordinate systems coincide as shown in
Fig. 9.11. The mapping function along the x—axis should take the form:

x= X+ Y+ +x2 (9.39)

where ., xy and ; are the coefficients/weighting terms that describe the axis-
specific mapping functions for X—, ¥— and Z—axes respectively. We will now
attempt to define what these coefficient/weighting terms are.

Recall that the deformation gradient tensor, F, that caused the observed

deformation is defined as:



320 9 Material Response: Measures of Stress and Strain

[ dx ax x|
X aY 9z
x dy dy dy
. F=|2 9 9% 9.40)
F=x — X aY oz (
dz dz %
X Y 9z

Considering the first row of the matrix of Eq.9.39 and the coefficients of
Eq.9.40, we can conclude that for the x—axis:

ox dy

0z

Xx ﬁ Xz = 5}

(9.41)
This implies that the first weighting term that describes the mapping function
(i.e. xy) is essentially the ratio of the lengths: dx and dX. Based on Fig.9.11,
along the x—axis, we notice that:

ox dx

Ix = 52 = Xx dx

For the PTFE plate under shear loading, along the x—axis, material and
spatial positions are coincident hence dx = 40 and dX = 40, so Tz =dx/dX =

d dx 12
40/40 = 1.0. Also, in the y—axis, y, = 2 = 5=z = %0 <ol 0.40.
% mm

There is no deformation in the z—axis, hence: dz = dZ (i.e. material and spatial
reference frames are coincident).

Using this approach, we can determine all the weighting terms and the
resulting mapping functions for the problem are:

3 (‘:'J‘))c.wr(d"E v+ ()2 10X + 0.4Y + 0.0Z
—_— — _ _— —_ = 1. # al
X dy iz 5 TR

[ dy dy dy

"'“(dX)“(dY)”(@)Z = 8
dz dz dz

=1 —1X _— — Z
(dX) +(dy)Y+(dZ)z e

(b) Deformation gradient tensor: Based on the mapping functions and Eq. 9.40,
F becomes:

Il

0.3X + 1.0Y + 0.0Z

0.0X + 0.0Y + 1.0z

1.0 04 0.0
F=103 10 00 (9.42)
00 00 1.0
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(c) Stretch and rotation tensors: The right stretch tensor, U is determined using
the deformation gradient tensor.

1.0440 0.8367  0.0000
U=VF'F — U=|0837 1.0770 0.0000

0.0000  0.0000  1.0000

Similarly, the left stretch tensor, V is given below.

1.0770  0.8367  0.0000
V=+VFF' — V=108367 1.0440 0.0000
0.0000  0.0000  1.0000

The are two possible rotation tensors. Here, R; can be determined from U
while R, is determined using V thus:

1.7490 —0.9873  0.0000
Rh = FU! — R = —1.2099 1.8684  0.0000
0.0000  0.0000 1.0000

1.8684 —0.9873  0.0000
R, = VF — R, = —1.2099 1.7490  0.0000
0.0000  0.0000 1.0000

(d) Euler-Almansi strain tensor: This is derived using the left stretch tensor, V:

: —4.4677  4.9250  0.0000
g = {l- (V)™'} —  e=| 49250 —4.6620 0.0000
0.0000  0.0000  0.0000

9.5 Measures of Stress

The previous section introduced the kinematics of motion and deformation of a
material body when subjected to a deforming stimulus. The deformation experi-
enced can be quantified using the measures introduced previously. The consequence
of a deforming body is the notion of stress. It can be also simply described as the
Jorce per unit area. The concept of internal forces is central to the discussion of
stresses. This section discusses the formulation of fraction vectors, stress tensors

and diverse stress measures used in describing the state of stress of a material body
undergoing finite deformation.
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Section Plane 4

(b)

Fig. 9.12 An illustration of action of internal forces: (a) a material body under effect of external
loads; (b) resulting internal forces acting on section plane: and, (¢) resultant internal forces under
static equilibrium conditions

9.5.1 The Concept of Internal Forces

In this section, we introduce the concept of internal forces, highlighting how
crucial they are in describing the stress acting within a material body. Consider the
material body shown in Fig. 9.12a under the effect of three external loads namely:
concentrated force, F, surface forces, F; and torque, T, acting about the longitudinal
z—axis of the body.

The effect of the external forces is to excite an internal material response within
the material body. To visualize this internal response, a section plane is introduced
to ‘cut through’ the material body at a pre-defined location with respect to a chosen
xyz reference frame.

Figure 9.12b shows the sectioned view of the material body revealing the set

of internal forces, f; where i = 1,2,---,00. On a given sectioned face, there

can be very large numbers of internal forces, fi, which result from the effect of
the sectioned-off part on the remaining part of the material body. The size and
orientation of these internal forces depend on the cumulative effect of the external
loads. Material response derives from the effect of these internal forces.

If a typical internal force, f;, is oriented with respect to the x—, y—and z—axes by

the angles a;, B; and y; respectively, then the force vector system for this internal
force becomes:

fi=fcosai+ fcos Bij+fcosyk where f = magnitude of f; (9.43)

The description of the material response will rely on a comprehensive analysis
of the complete 3D set of force systems that are active on the sectioned surface. It is
not always analytically convenient to determine this set of force systems hence it is
common in continuum mechanics to make some assumptions about the relationship
between the external loads and the complete set of internal force systems. The
simplest assumption is that the set of internal forces must be in static equilibrium
with the set of external forces. This requires that equations of static equilibrium are
applied on the set on internal forces to reduce their effect to a few forces.
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As shown in Fig. 9.12c, the resulting set of internal forces following application
of equations of static equilibrium include: axial normal force, Fy, two shear forces.
Vsi and V,, and moment, M, about point O. Mathematically:

oo
Sum of forces along the z-axis, Axial force: E fi = Fy

i=1
Sum of forces along y-axis, shear force: E f: = Vg

' (9.44)
Sum of forces along the x-axis, shear force: E fi = Vs

=

Sum of moment with respect to point O, moment : Zr,- Rfi =M,

where r; is the position vector of each internal force, fi. All the terms in Eq. 9.44 are
internal quantities since they were derived by the internal force vector, f,. These
internal forces are the basis upon which stresses, strains. and other continuum
mechanics parameters associated with material response are derived.

Stress is the measure of the intensity of an internal force per unit area where
the force acts. In other words, it is the ratio of the internal force at a point to

the area over which that internal force is acting. High stress over the same unit
implies high internal force and vice versa.

9.5.2 The Cauchy Stress Tensor

Let us now consider the concept of stress tensors and how these relate to the internal
forces. Consider the material body shown in Fig.9.13, but subject to the same
external loads as Fig. 9.12a. Across the sectioned surface, there exist many internal
force system, f. We first isolate a reference configuration with an infinitesimal
surface spatial element, dS, located at position, X, having a surface traction, T. This
surface element has an outward normal, N which coincides with the unit vector at
X. If we impose the equations of static equilibrium on the surface element, we will
obtain an infinitesimal resultant internal force, df as shown in Fig.9.13.

Similarly, the material body of Fig. 9.13 can be isolated in a current configuration
after the reference configuration material points have been transformed using a
time-dependent mapping function, M(f). We can identify the current configuration
surface element, ds which is located at x such that the resultant force, df exists

with an outward normal vector, n, and surface traction vector, f. The infinitesimal
resultant force can be defined analytically thus:

df =TdS or df =uds (9.45)
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time,t=0 "
s N

Reference configuration

Fig. 9.13 An illustration of surface traction vectors on a material body

The surface traction (T and t) is the force per unit surface area. In the context of
Eq.9.45, t is called the Cauchy traction vector, which is the force per unit surface
area, and ds defined on the current configuration. It is also regarded as the true
traction vector.

On the other hand, the surface traction, T, is called the first Piola-Kirchoff
traction vector. It is the force per unit surface area, dS defined in the reference
configuration. It is also called the nominal traction vector and is often described
as a pseudo traction vector [5]. It is a virtual traction vector acting in the reference
configuration, but with orientation coincident with the Cauchy traction vector, hence
its representation by dash lines in Fig. 9.13. Examples of surface traction vectors
include contact forces between contacting surfaces, and friction vectors, as well as
hydrostatic forces. Even the kinetics of wind speed on a turbine blade constitute an
example of a type of surface force.

According to the definitions of the surface traction vectors, i.e. force per unit
surface area defined in a given configuration, one can make the projection that there
must exist a relationship between surface traction vectors and a stress tensor since
both quantities share the same unit. This extrapolation was made by Augustine-
Louis Cauchy in what is now known as the Cauchy stress theorem.

The Cauchy stress theorem postulates that there must exist a second-order tensor
field, o, in the current configuration or P, in the reference configuration, such that:

tx.t.n) = o(x,t)n or T(X,t,N) = PX,)N (9.46)

where o is a symmetric spatial tensor field called the Cauchy stress tensor. It is also
simply called the Cauchy stress or more appropriately, in line with undergraduate
engineering mechanics, the true stress tensor. Also, P is called the first Piola-
Kirchoff stress tensor. 1t is also regarded simply as the Piola stress or the nominal

stress tensor.
In matrix notation, we re-write the current configuration representation of

Eq. 9.46, for the xyz—reference frame, thus:
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Current configuration (o

o

id

General state of stress

Fig. 9.14 The stress components that define the general state of stress within a material body

Ix Oxx Oxy Oxz 1y
[t] = [G] ["] — Iy == Oyx Oyy Oyz ny (9.47)
t z Ozx UZ_}' O n-

In the above, (o] is the Cauchy stress matrix and it is a 3 x 3 matrix where
the diagonal terms represents the normal stress terms and the off-diagonal terms
are measures of shear stresses. The Cauchy stress matrix gives a comprehensive
representation of a general state of stress for a point within a material body, as
shown in Fig. 9.14.

As the material body continues to experience finite deformation, the material
point of interest will change with position, time and orientation (through the
outward normal vector). The Cauchy stress matrix must obey the principles of stress
transformation discussed in undergraduate mechanics textbooks. The graphical
representation of these orientation-dependent changes in magnitude of terms of the
Cauchy stress matrix, is the Mohr’s circle of stress.

Due to the requirement for static equilibrium and conservation of angular
moment to be obeyed for a material body undergoing small deformations, we
conclude that: 0, = 0y, 0y; = 0y, and 0,; = 0. Thus, the Cauchy stress therefore
will have six independcnt terms. Since the Cauchy stress tensor is symmetric, it is
fully defined by these six independent stress components instead of the nine terms
specified in Eq. 9.47.

The Cauchy stress tensor, @, is described as an Eulerian stress formulation
since its derivation is with respect to the current material configuration. It is
very suitable for small deformation problems such as composite mechanics,
viscoelasticity, etc. For problems where finite deformations dominate the
material response, we recommend using other alternative measures of stress.
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9.5.3 First Piola-Kirchoff Stress Tensor

Also, we can obtain the relationship between the Cauchy stress, o, and the first
Piola-Kirchoff stress, P. To do this, we have to map the area, dS defined in the
reference configuration to the area, ds defined in the current configuration. The
Nanson’s formula is a useful relationship that accomplishes the mapping from one
configuration to another. For the current area, ds, the Nanson’s formula states:

ds = JF'dS where J=det[F(X,1)] (9.48)

where F is the deformation gradient tensor and J is the volume ratio. If J = 1,

this suggests that detF = | hence there is no motion of the material body. Such a
deformation is defined as an isochoric or volume-preserving deformation.

Recall Eq.9.45 which establishes that the infinitesimal internal force over an
infinitesimal surface element can be defined equivalently in both reference and
current configurations. Combining Egs. 9.45 and 9.46 gives:

t(x,n,t)ds =T (X,N,1)dS — o (x,f)nds = P (X,r) NdS (9.49)

Introducing the Nanson’s formula of Eq. 9.48 into Eq. 9.49 yields:
o(,nn[JFTdS] = P(X,t)NdS (9.50)

such that we obtain the expression of the first Piola-Kirchoff stress tensor as a
function of the Cauchy stress:

P=JoF T or o=J'PF" (9.51)

The above is described as the Piola transformation with the stress in the current
configuration transformed to its equivalent representation in the original/reference

configuration. Since o is a symmetric matrix, we note that: & = o7, in which case
we see that: PFT = FP”.

9.5.4 Kirchoff Stress Tensor

Apart from the Cauchy and first Piola-Kirchoff stress tensors, there exist other
alternative measures of stress which are also used in continuum mechanics and the
choice of a user depending on the type of problem under investigation. There are
advantages and disadvantages associated with each measure of stress a user chooses
to use. The Kirchoff stress tensor, t is one of such alternative stress tensor measures.
It represents a multiple of the Cauchy stress and the volume ratio thus:

T =Jo. (9.52)
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9.5.5 Second Piola-Kirchoff Stress Tensor

A variant of the first Piola-Kirchoff stress tensor is introduced here, the second
Piola-Kirchoff stress tensor, S. It is obtained via the Kirchoff stress tensor according
to the following equation:

S=F'tFT oraso, S=JFl¢FT=F'p (9.53)

where P is the first Piola-Kirchoff stress tensor, T is the Kirchoff stress tensor and
o is the Cauchy stress tensor. In continuum mechanics, it is widely accepted that S
is the pull-back of T by F and t is the push-forward of S.

The implication of Eq. 9.53 is that the second Piola-Kirchoff stress is symmetric
ie.S = F'P = S". A key relationship is therefore deduced between the first and
second Piola-Kirchoff stress tensors:

P=FS (9.54)

which implies that the mapping function between the two stress measures is defined
by the deformation gradient tensor.

9.5.6 Biot Stress Tensor

We define yet another material stress tensor called the Biof stress tensor, Tz, which

is defined in terms of the rotation tensor, R, and the second Piola-Kirchoff stress
tensor, P, thus:

Te=R"P (9.55)

This is a non-symmetric tensor and not general positive-definite. We can also re-

derive Tg in terms of the right symmetric stretch tensor, U. Recall that: F = RU
and P = FS as derived previously. If we substitute these into Eq.9.55, we obtain:

Ts=R'P — Ty=R'FS=R'URS = US (9.56)

Also R"P = RP", so another expression of the Biot stress tensor becomes:

RT (V‘la + O'V_I)R
2

1
Tpiis (R"P+RP") or Ty= (9.57)

If we multiply both parts of Eq.9.55 by R, we realize that: P = RTp, which implies
that the second Piola-Kirchoff stress tensor, P, is related to the Biot Stress tensor, T'g,
through a mapping function defined by the rotation tensor, R. This stress measure

is particularly suited for deformations in which finite rotations result during the
deformation of the material body like hyperelasticity problems.
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9.5.7 Corotated Cauchy Stress Tensor

We illustrated in Fig. 9.6 that for a material body subjected to a deformation gradient
tensor, F, its deformation comprises stretch tensors i.e. U or V, and a rotation
tensor, R. We showed the polar decomposition of F to be: F = RU = VR. In
order to achieve the polar decomposition of F = RU, the material body was first
rotated using R before it was stretched using U. The result of the first rotation
was a rotated material domain, which we called the intermediate domain. This
intermediate domain is at the heart of a new stress tensor to be defined here.

The Corotated Cauchy stress tensor, o ,, is determined based on an intermediate
domain that is neither the reference nor the current configuration. It is necessary
for material responses in which a history of the immediate prior configuration is
important.

To derive its values, let us consider Eq.9.53 and make the Cauchy stress the
subject of the formula:

S=JF'"oFT=F'P — o =J"'FSFT (9.58)

Equation 9.58 implies that the second Piola-Kirchoff stress, S, has been operated
by a deformation gradient, F. If instead of using F to operate at this intermediate
domain, we go ahead and operate on it using a stretch tensor according to Fig. 9.6,
we end up determining the Corotated Cauchy stress tensor thus:

o, =J'USU" (9.59)

Recall also Eq.9.53, which we now substitute into Eq. 9.60 such that we obtain:
o0,=J "U[JF'eFT|U" — o,=R"oR (9.60)
The above derivation of ¢, indicates that the original Cauchy stress has been
rotated jointed (corotated) using the rotation tensor, R. Therefore, this makes the

formulation of the Cauchy stress now amenable to large deformation problems
where finite deformations exists.

9.5.8 Mandel Stress Tensor

Another stress tensor especially for finite plasticity problems is called the Mandel
stress tensor, E. It is defined in terms of the right Cauchy-Green strain tensor, C,
and the second Piola-Kirchoff stress tensor, $§ according to:

1
E’:E(CS+SC)=CS — E=F'FS (9.61)



