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In order to simulate the rubbing dynamics of the multi-blades/flexible casing, the finite element 
model (FEM) of the blisk-oval casing system with elastic supports is established using the self-
programmed beam-shell-spring hybrid elements in combination with two types of self-programmed 
interfacial coupling elements (ICEs). The rotating effects such as centrifugal stiffening, spin softening 
and Coriolis effects for the blade and gyroscopic effect for the disk are all included in the system. For 
improving the computational efficiency, a two-step hybrid Craig-Bampton method is utilized to build 
the reduced blisk model and one step reduction for the casing is sufficient. Corresponding accuracy 
is verified via the frequency convergence analysis. Then the central difference method in combination 
with the Lagrange multiplier method is applied to solve the rubbing dynamic responses of the reduced 
system under different rotating speeds and supporting stiffness. The results show that (1) the Craig-
Bampton method is appropriate for reducing the number of dimensions and improving the computational 
efficiency under the premise of ensuring model accuracy; (2) the fundamental frequency in the vibration 
responses of the casing is the product of the rotating frequency of the blisk and the number of 
contact zone on the casing, and period-1 motion/chaotic motion indicates the equal/unequal and radially 
symmetric contact zones on the casing, respectively; (3) the effects of the casing supporting stiffness on 
the rubbing characteristics of the system are more significant than those of the blisk supporting stiffness, 
and the vibration responses of the casing relative to the blisk are more sensitive to the system state 
variations like the occurrence of the resonance.

© 2019 Elsevier Masson SAS. All rights reserved.

1. Introduction

A bladed disk assembly is widely used in the fan, compressor and turbine sections of a gas turbine engine [1]. With the development 
of the aviation industry, the blade integrated disk, i.e. the blisk, is increasingly popular with the engine designers due to its improvement 
in the designs for structure simplification, light-weighting and aerodynamic efficiency [2–6]. The researches in Refs. [7,8] indicate that the 
decreasing clearance between the blade tip and the casing is very helpful to reduce fuel-consumption and tip leakage flow thus improving 
the engine performance. However, this strategy also brings about the very high likelihood of blade tip-casing rubbing. Additionally, some 
potential malfunctions [9–13] such as mass eccentricity and mistuning can significantly enlarge the forced response levels of the bladed 
disk, and then exacerbate the rubbing threat. In Ref. [14], it has been clearly pointed out that the rubbing between the blade tip and the 
casing is more dangerous than that occurring at seals. Therefore, it is essential to carry out the study on the blade tip-casing rubbing 
dynamics.

Numerous literatures on the blade tip-casing rubbing have been published and are mainly divided into three categories in terms of 
their differences in the system modeling: (1) single blade-casing coupled rubbing system [15], (2) bladed disk-casing coupled rubbing 
system [16], (3) shaft-bladed disk-casing coupled rubbing system [17]. As for (1) single blade-casing coupled rubbing system, a straight 
cantilevered blade established by the Euler-Bernoulli beam theory is commonly presupposed and only in-plane motion are considered in 
most cases, while the casing is simulated via either point mass [12,13] or flexible ring [14,15] models. In addition, some scholars also 
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adopt semi-analytical [18,19] or finite element [20,21] methods to establish corresponding two- or three-dimensional system models with 
rub-impact. Even if some rubbing characteristics between the blade tip and the casing can be revealed from this simple system to some 
extent, corresponding disadvantages are that there is only one definite blade at most interacting with the casing at an arbitrary moment 
[22–28], which may be impractical in most cases for the industrial engine [29–32]. Relative to (1) single blade-casing coupled rubbing 
system [33], (2) bladed disk-casing coupled rubbing system is a better substitute especially in simulating the multi-blade tips-casing 
rubbing characteristics [34]. Various bladed disk-casing coupled dynamic models have been proposed by many scholars [34–38]. Among 
these papers, there are two major concerns: one is the containment analysis [34,35], and the other is the rubbing-induced complicated 
dynamic responses [36–38]. For the former, the emphasis is placed on whether the casing suffers from the impact of the high-speed broken 
blade. This type of rubbing is accompanied by short-lasting duration and material time-varying and damaging behaviors, and the structural 
strength of the components is the focus of interest. Corresponding numerical simulation and experimental testing are time-consuming, 
high costs but necessary [34]. For the latter, the material properties of the blade, the disk, and the casing components are usually assumed 
to be isotropic and linear-elastic, and various model-reduction techniques can be utilized to improve the computational efficiency [38]. 
Relative to the former rubbing, this type of rubbing is equipped with long action time and rich fault characteristics, which are very suitable 
for the studies on fault mechanism and feature extraction [39]. However, it should be pointed out that the disk is often assumed to be rigid 
in the latter concern [40]. Based on (2) bladed disk-casing coupled rubbing system, the shaft is further involved in the system thus turning 
into (3) shaft-bladed disk-casing coupled rubbing system [41,42]. Under the premise of prohibiting model reduction, it is a common 
practice to utilize point mass-beam hybrid model [43] to establish the system dynamic model due to the higher computational efficiency 
and lower memory usage than the other models such as point mass-shell hybrid [44], beam-shell hybrid [45], shell-solid [40] and full 
solid [46]. In terms of the point mass-beam hybrid model, the shaft and disk are mainly simulated by the beam and point-mass models, 
respectively [47]; the casing is primarily simulated by point mass [48], hollow beam [49] and flexible ring models [50]; the blade is mostly 
simulated by either the rigid body model [51] or flexible beam model [52]. Obviously, the flexible beam model [53] has more advantages in 
simulating the complicated dynamic behaviors of the blade but also causes a larger solution size and a lower computational efficiency than 
the rigid body model [54]. In addition, some experimental models on blade tip-casing rubbing are also proposed by many scholars [55–57].

The literature survey listed above indicates that lots of researches on blade tip-casing rubbing have been done by many scholars. 
However, there still exist the following disadvantages especially for considering the effect of the disk: (i) the flexibility and the varying 
thickness of the disk are less involved; (ii) the non-uniform and pre-twisted cross-section feature of the blade established by the beam 
theory is less covered; (iii) rotating effects such as gyroscopic effect for the axisymmetric components (e.g. the shaft and the disk) and 
Coriolis, centrifugal stiffening and spin softening effects for the blade are less fully included into the system. In order to make up the 
existing deficiencies, the bladed disk-oval casing coupled system with elastic supports is taken as an example, whose finite element model 
(FEM) is built via the self-programmed beam-shell-spring hybrid elements and two types of the interfacial coupling elements (ICEs). Then 
a two-step hybrid Craig-Bampton method for the blisk reduction and one reduction for the casing are adopted to establish the reduced 
blisk-casing system, and corresponding effectiveness is verified via the frequency convergence analysis. Next, the central difference method 
combining with the Lagrange multiplier method is adopted to solve the rubbing characteristics of the reduced system under different 
rotating speeds. Finally, some conclusions are made.

2. FEM of the reduced blisk-casing system

Due to the thin-walled design, the casing configuration affected by manufacturing imperfections, in-take flow aerodynamic loads, 
thermal gradients and mounting conditions should be oval rather than circular [27,28,37,58]. Based on this, the blisk-oval casing system 
with elastic supports is pre-supposed in this paper, and corresponding three-dimensional (3D) model is shown in Fig. 1(a), which is 
divided into the three components such as the disk, the blade group, and the casing. In the figure, the disk center O d is supported by 
three linear (kd,X , kd,Y and kd,Z ) and three torsional (kd,rot X , kd,rot Y and kd,rot Z ) springs, and connected to the inner hole of the disk 
via the rigid zone (see Fig. 1(b)), while the casing is supported by a series of radial (kc,ri ) and circumferential (kc,ti ) linear springs (see 
Fig. 1(b)). Here, it should be noted that only the in-plane motions (XOY plane) of the casing are considered.

In terms of Fig. 1(a), corresponding FEMs are then established (see Fig. 1(b)). Here, the disk is discretized via self-programmed 
eight-node Mindlin-Reissner shell element (see Refs. [59,60]), while the blade and the casing are discretized via self-programmed two-
node Timoshenko beam element (see Ref. [61]). More detailed information on deriving corresponding element matrices can refer to 
Refs. [59–61], and no further explanations are presented here for the sake of space limitations. Particularly, during the establishment of 
the FEM of the blisk, there exist two types of crucial couplings such as disk center-inner hole of the disk (see rigid zone in Fig. 1(b), 
zero dimensional (0D)-two dimensional (2D) coupling) and disk-blade (see Fig. 1(b), 2D-one dimensional (1D) coupling). Unfortunately, 
less information on dealing with such couplings is elaborated in the existing literatures. Based on this, emphasis will be firstly placed on 
dealing with these two couplings.

2.1. Disk center-inner hole of the disk ICE

In fact, the coupling between the disk center O d and the inner hole of the disk is the rigid surface constraint. Taking the ith node pair 
O d–i as an example (see Fig. 2), corresponding displacement constraint equations in XOY, YOZ and ZOX are unified as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

T R,iqi = 0

T R,i =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 −1 0 0 0 0 Yi
0 1 0 0 0 0 0 −1 0 0 0 −Xi
0 0 1 0 0 0 0 0 −1 −Yi Xi 0
0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎦

(1)

where qi = [ui, vi, wi, θi,X , θi,Y , θi,Z , uO , v O , w O , θO ,X , θO ,Y , θO ,Z ]T.
d d d d d d
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Fig. 1. Blisk-casing system with elastic supports: (a) three-dimensional (3D) model, (b) FEM. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Based on Eq. (1), the penalty method is applied to obtain the rigid-coupled stiffness matrix K i
rigid = kp T T

R,i T R,i of the ith node pair. 
kp = max(diag(K d,e)) is the penalty term, and K d,e is the structural stiffness matrix of the disk. Then the global constraint stiffness matrix 
K rigid = ∑NI

i=1 K i
rigid can be determined, and NI represents the node number of the inner hole of the disk.

2.2. Disk-blade ICE

The mass, gyroscopic and structural stiffness matrices of the disk are established in OXYZ, while the blade with additional centrifugal 
stiffening, spin softening and Coriolis matrices included are built in the local co-ordinate system ok xk ykzk in Fig. 3. Here, the subscript k
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Fig. 2. Displacement compatibility: (a) XOY, (b) YOZ, (c) ZOX.

Fig. 3. Relationship between OXYZ and okxk yk zk .

represents the kth blade. When assembling those matrices of the blade and the disk, the interface displacement compatibility between 
the outer master nodes of the disk and the root master nodes of the blade should be satisfied.

Taking the coupling between the disk and the kth blade as an example, the transformation matrix from ok xk ykzk to OXYZ is as follows:

T k = 2

d6

⎡
⎢⎢⎢⎢⎢⎣

Xk −Yk 0 0 0 0
Yk Xk 0 0 0 0
0 0 1 0 0 0
0 0 0 Xk −Yk 0
0 0 0 Yk Xk 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ (2)

In light of the displacement compatibility, the displacement constraint equations of the kth ICE in OXYZ can be expressed as follows:

[I 6×6 − T k] · qk = 0 (3)

where qk = [u X,k, vY ,k, w Z ,k, θX,k, θY ,k, θZ ,k, uxk,ok , v yk,ok , wzk,ok , θxk,ok , θyk,ok , θzk,ok ]T.
The penalty method is then adopted to obtain the stiffness matrix of the kth ICE K k

db = kp[I6×6 − T k]T · [I6×6 − T k]. The total stiffness 
matrix of all the ICEs between the disk and the blades K db = ∑Nb

k=1 K k
db can be determined, and Nb represents the blade number.

2.3. Contact strategy

2.3.1. Determination of the contact pairs (CPs)
The Lagrange multiplier method (LMM) is adopted to simulate the interaction process between the multi-blade tips and the casing. 

The key issue to use the LMM is the establishment of the contact constraint matrices in the normal-, circumferential- and axial-directions. 
Before deriving these contact constraint matrices, the primary task is to judge which casing segment contacting with which blade tip. 
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Fig. 4. Contact judgment between the multi-blade tips and the casing.

Taking the kth blade tip and the ith casing segment as an example, the phase angles θc,i , θb,k , θc,i+1 satisfying θc,i ≤ θb,k ≤ θc,i+1 and the 
contact gap gk

n < 0 in Fig. 4 indicate that the contact between the blade tip of the kth blade and the ith casing segment i − (i + 1) occurs. 
The flow chart on the contact judgment between the multi-blade tips and the casing is shown in Fig. 4. Here, it should be pointed out 
that the detailed calculations of θc,i and θb,k in Fig. 4 can refer to Ref. [62].

2.3.2. Establishment of the contact constraint matrices
Frictionless or frictional status between the blade tip and the casing may exist under the existence of the normal rubbing force. 

Especially for the frictional status, the friction force is assumed to be a sliding one in this paper.

(1) Contact constrained matrix in the normal direction The kth blade contacting with the ith casing segment is taken as an example. Corre-
sponding contact unit vectors ri , t i , and si are defined as follows:

ri = (P i+1 − P i)/‖P i+1 − P i‖, si = [0,0,1] t i = si × ri (4)

Letting ξk = dot(P k − P i, t i)/‖P i+1 − P i‖, the co-ordinates of k′ in OXY can be calculated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Xk′
Yk′

]
= (1 − ξk)

[
Xi,0
Yi,0

]
+ ξk

[
Xi+1,0
Yi+1,0

]
+

[
βT

k,1

βT
k,2

]
[ui, vi,ϕi, ui+1, vi+1,ϕi+1]T

βk,1 =
[

n2
i,xNv1(ξk) + t2

i,xNu1(ξk),ni,xni,y Nv1(ξk) + ti,xti,y Nu1(ξk),ni,xNv2(ξk),

n2
i,xNv3(ξk) + t2

i,xNu2(ξk),ni,xni,y Nv3(ξk) + ti,xti,y Nu2(ξk),ni,xNv4(ξk)

]T

βk,2 =
[

ni,xni,y Nv1(ξk) + ti,xti,y Nu1(ξk),n2
i,y Nv1(ξk) + t2

i,y Nu1(ξk),ni,y Nv2(ξk),

ni,xni,y Nv3(ξk) + ti,xti,y Nu2(ξk),n2
i,y Nv3(ξk) + t2

i,y Nu2(ξk),ni,y Nv4(ξk)

]T

(5)

where N v = [Nv1(ξk), Nv2(ξk), Nv3(ξk), Nv4(ξk)]T and N u = [Nu1(ξk), Nu2(ξk)]T are the displacement interpolation functions in the flex-
ural and axial directions, respectively [61,63]; (ni,x, ni,y) and (ti,x, ti,y) are the components of ni and t i , respectively; [Xi,0, Yi,0]T and 
[Xi+1,0, Yi+1,0]T are the initial position vectors of the nodes i and i + 1 at t = 0 in OXY, respectively; [ui, vi, ϕi, ui+1, vi+1, ϕi+1]T is the 
displacement vector of i and i + 1.

gk
n can be calculated as follows:

gk
n = [ni,x,ni,y,−ni,x,−ni,y][Xk, Yk, Xk′ , Yk′ ]T (6)
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In terms of Eqs. (5) and (6), λk
nδgk

n can be easily determined as follows:

λk
nδgk

n = δ[uk, vk, wk, θk, φk,ϕk, ui, vi,ϕi, ui+1, vi+1,ϕi+1]
[

ni,x cosαk + ni,y sinαk − ni,x sinαk

+ni,y cosαk,0,0,0,0,−ni,xβ
T
k,1 − ni,yβ

T
k,2

]T

λk
n

= δ[uk, vk, wk, θk, φk,ϕk, ui, vi,ϕi, ui+1, vi+1,ϕi+1]Bk
c,nλ

k
n

(7)

(2) Contact constrained matrix in the circumferential and the axial directions The circumferential and the axial contact constrained matrices 
are determined via Hamilton’s principle, as is shown in Eqs. (8) and (9).⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λk
t δgk

t = δ[uk, vk, wk, θk, φk,ϕk, ui, vi,ϕi, ui+1, vi+1,ϕi+1]Bk
c,tλ

k
n

Bk
c,t = μ cosϑk

t

[
ηT

k γ T
k

]T

ηk = [ti,x cosαk + ti,y sinαk,−ti,x sinαk + ti,y cosαk,0,0,0,0]T

γ k = −[
ti,xNu1(ξk), ti,y Nu1(ξk),0, ti,xNu2(ξk), ti,y Nu2(ξk),0

]T

(8)

{
λk

sδgk
s = δ[uk, vk, wk, θk, φk,ϕk, ui, vi,ϕi, ui+1, vi+1,ϕi+1]Bk

c,sλ
k
n

Bk
c,s = μ cosϑk

s [0,0,1,0]T
(9)

where ϑk
t and ϑk

s are the angles between the total interface sliding friction and ti- /si- direction, respectively.

2.4. Model reduction

The equations of motion of the system with contact-impact can be written as follows:

Mü + (C + D)u̇ + K u + BcλN = F ext (10)

where M , C , D , and K are the mass, Coriolis/gyroscopic, Rayleigh damping, and stiffness matrices, respectively; Bc is the total contact 
constraint matrix; ü, u̇, and u are the acceleration, velocity and displacement vectors, respectively; λN and F ext are the Lagrange multiplier 
and external force vectors, respectively. And

M =

⎡
⎢⎢⎢⎢⎣

Md 0 0 0 0
0 Mb1 0 0 0

0 0
. . . 0 0

0 0 0 MbNb
0

0 0 0 0 Mc

⎤
⎥⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎢⎣

C d 0 0 0 0
0 C b1 0 0 0

0 0
. . . 0 0

0 0 0 C bNb
0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , D =

[
αbd Mbd + βbd K bd 0

0 αc Mc + βc K e
c

]
(11a)

Bc =
[

B1
c,n + B1

c,t + B1
c,s · · · B

Ncp
c,n + B

Ncp
c,t + B

Ncp
c,s

]
, u = [

uT
d, uT

b, uT
c

]T
, λN =

[
λ1

N · · · λ
Ncp
N

]
,

F ext = [
(F d

ext), (F b
ext),0

]T
(11b)

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
K c

d + K rigid

+(
∑Nb

i=1 K i
db)d

]
(K 1

db)db · · · (K Nb
db )db 0

(K 1
db)db

[
K e

b1
+ K c

b1

+K s
b1

+ (K 1
db)b

]
0 0 0

... 0
. . . 0 0

(K Nb
db )db 0 0

⎡
⎣ K e

bNb
+ K c

bNb

+K s
bNb

+ (K Nb
db )b

⎤
⎦ 0

0 0 0 0 K e
c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11c)

where Ncp represents the number of the blade contacting with the casing.
Considering a high number of degrees of freedom (DoFs) of the blisk-casing system with elastic supports, the model reduction is 

essential to improve computational efficiency [64]. In this paper, the Craig-Bampton method (CBM) in Refs. [38,59] is applied to build 
corresponding reduced models. By definition, the DoFs of the component such as the disk, the blade or the casing should be firstly 
separated into the slave and master DoFs. Corresponding equations of motion are then written as follows:[

M X
ss M X

sm

M X M X

][
ü X

s

ü X

]
+

[
C X

ss C X
sm

C X C X

][
u̇ X

s

u̇ X

]
+

[
K X

ss K X
sm

K X K X

][
u X

s

u X

]
=

[
F X,ext

s

F X,ext

]
(12)
ms mm m ms mm m ms mm m m
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Fig. 5. Flow chart of the reduced blisk-casing system.

where the superscript X represents the disk, blade or the casing component; M , C , and K are the mass, Coriolis/gyroscopic and stiffness 
matrices, respectively; F is the external force vector; the subscripts ‘s’ and ‘m’ represent the slave and master DoFs, respectively; u, u̇ and 
ü are the displacement, velocity and acceleration vectors, respectively.

In terms of CBM (see Refs. [38,59]), the relationship between the physical DoFs u X and the generalized DoFs qX can be expressed as 
follows:

u X =
[

u X
s

u X
m

]
=

[
(Φ X

ss)l Φ X
sm

0 I X
mm

][
qX

s

qX
m

]
= Φ X qX (13)

where Φ X
sm = −(K X

ss)
−1 K X

ss; (Φ X
ss)l is the reserved first-l order fixed interface normal modes.

Substituting Eq. (13) into Eq. (12), the equations of motion of the reduced component X can be written as follows:

M̂ X q̈X + Ĉ X q̇X + K̂ X qX = F̂ X
ext (14)

where χ̂ X = (Φ X )T
[

χ X
ss χ X

sm

χ X
ms χ X

mm

]
Φ X (χ = M, C , K ).

In order to establish the final reduced blisk-casing system, the two-step reduction for the blisk and the one-step reduction for the 
casing are adopted, respectively. More detailed information on the model reduction is shown in Fig. 5. After the final reduction, the 
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Table 1
Material and geometrical parameter settings.

Component Material parameters Geometrical parameters 
(mm)

Supporting stiffness

Density ρ
(kg·m−3)

Young’s modulus E
(GPa)

Poisson’s ratio 
υ

Disk [65] 8228.3 216.8 0.28 b1 = 23.9, b2 = 42.5, b3 = 116, b4 = 46.5; kd,X = kd,Y = 1 × 108 N/m,
d1 = 166.4, d2 = 216, d3 = 344, d4 = 564, kd,Z = 1 × 109 N/m,
d5 = 626, d6 = 664; ecc = 3 × 10−4 kd,rot X = kd,rot Y = 6 × 105 N/m, 

kd,rot Z = 1 × 107 N/m

Blade L =160, b0 = 25.2, h0 = 4.2, β0 = 15◦ , 
γ (L) = 45◦ , κ = 5/6, τb = 0.3056, τh = 0.4048

–

Casing 4430 113 0.33 Rc,min = 493.5, Rc,max = 503.5, kc,r = kc,t = 2 × 104 N/m
hc = 2, bc = 100, κ = 5/6

Fig. 6. Effects of mode truncation numbers ηb, ηd and ηbd: (a) single blade, (b) single disk, (c) blisk, (d) Campbell diagram of the blisk.

equations of motion of the reduced system with Rayleigh damping and contact-impact considered can be rewritten as follows:

M̂q̈ + (Ĉ + D̂)q̇ + K̂ q + B̂cλN = F̂ ext (15)

3. Numerical examples

3.1. Model reduction of the blisk-casing coupled system

A numerical case is exemplified here to verify the model reduction techniques proposed in Subsection 2.4. Corresponding parameter 
settings of the disk, the blade, and the casing are listed in Table 1. In light of the final reduced blisk model originated from the two-step 
Craig-Bampton reduction (see Fig. 5), the effect of each reduction on the model accuracy should be verified firstly. In this paper, the 
natural frequency of the blisk is an indicator to obtain the appropriate mode truncation number.

The first-seven order frequency convergence of the single blade and the single disk under n = 0 rev/min is shown in Figs. 6(a) and 
6(b), respectively, while the first-one hundred order frequency convergence of the blisk under n = 0 rev/min is shown in Fig. 6(c). Here, it 
should be noted that all the frequency errors in Figs. 6(a)–6(c) is calculated via the comparisons between the reduced model and the full 
model (benchmark). It can be concluded from Figs. 6(a)–6(c) that the smaller the mode truncation number is, the larger the frequency 
error close to higher-order frequency is. Here, the mode truncation numbers ηb = 4 for the single blade and ηd = 4 for the single disk are 
sufficient to accurately calculate corresponding first-seven order natural frequencies when performing the first Craig-Bampton reduction 
(see Figs. 5, 6(a), and 6(b)), and the mode truncation number ηbd = 86 for the blisk is sufficient to accurately calculate the first-one 
hundred order natural frequencies of the blisk when performing the second Craig-Bampton reduction (see Figs. 5 and 6(c)). Considering 
the effect of the unbalance load with the excitation frequency 1 × n/60 located at the disk center O d, the variation of the dynamic 
frequencies of the blisk is plotted in Fig. 6(d) when the rotating speed n ∈ [0, 15000] rev/min, and the results obtained from ηbd = 86
are as a benchmark. It can be seen from Fig. 6(d) that ηbd = 4 are sufficient to simulate the dynamic characteristics of the blisk for the 
studied operating conditions.

In this paper, ηb = ηd = ηbd = 4 is adopted to establish the final reduced blisk model. Here, it should be noted that ηbd = 4 can 
only guarantee the accuracy of the first-forty-two order natural frequencies (see Fig. 6(c)). In order to identify the dominated modes of 
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Fig. 7. Frequency changes due to the disk-blade coupling.

Fig. 8. Local modes reconstructed from the reduced blisk: (a) fn1 = fn2 = 68.55 Hz, (b) fn3 = fn4 = 143.65 Hz, (c) fn5 = 155.37 Hz, (d) fn39 = fn40 = 164.43 Hz, (e) 
fn41 = 210.60 Hz, (f) fn42 = 417.32 Hz.

the blisk among those frequencies, corresponding frequency distributions of the single blade, the single disk, and the blisk are plotted 
in Fig. 7. It can be seen from the figure that the vibration modes of the blisk can be divided into the disk mode-dominated and the 
blade mode-dominated, respectively. Particularly, only the undominated nodal diameter modes of the disk are coupled with the blade 
mode-dominated (see f ∈ [155.37, 164.43] Hz in Fig. 7). In addition, only the first two bending modes of the blade are coupled with disk. 
Some local modes of the blisk are also plotted in Fig. 8 using Matlab 2016a software.

In terms of the casing, all the nodal displacements in OXYZ are transformed into the generalized ones in the modal coordinate sys-
tem thus causing the non-existence of master nodes on the casing, and corresponding modal truncation number ηc is assumed as 11. 
Corresponding natural frequencies and mode shapes are shown in Fig. 9. It should be pointed out that the dimensions of the blisk-casing 
system with elastic supports before and after reduction are 15021 × 15021 and 125 × 125, respectively, which indicates that the system 
dimension has been eventually reduced by 99.17%.

3.2. Effects of rotating speed on the rubbing characteristics of the system

Based on the reduced blisk-casing system presented in Subsection 3.1, the effects of n (n ∈ [2460, 14940] rev/min) on the rubbing 
characteristics of the system are discussed. Here, the speed step size �n is predefined as 120 rev/min. In addition, the X-displacement 
responses of the central node for the blisk (see Fig. 1) and the X-acceleration responses of the node located at (Rc,min, 0, 0) for the casing 
(see Fig. 1) are extracted to exhibit corresponding rubbing characteristics, respectively.

When n ∈ [2460, 14940] rev/min, there exist two types of regions: (1) non-rubbing region (see the region I in Fig. 10), (2) rubbing 
region (see the regions II, III, IV, and V in Fig. 10). The determination of the regions I (n ∈ [2460, 6660] rev/min), II (n ∈ [6780, 7980]
rev/min), III (n ∈ [8100, 8910] rev/min), IV (n ∈ [8940, 11100] rev/min) and V (n ∈ [11220, 14940] rev/min) is mainly based on the disper-
sion behaviors of the point-set in the bifurcation diagram (see the left column in Fig. 10). The details on how to obtain those bifurcation 
diagrams are also illustrated here. Specifically, taking the X-displacement bifurcation diagram of the blisk (see the left column in Fig. 10(a)) 
as an example, the primary step is to extract the bifurcation points at certain rotating speed n. Here, the time-domain waveforms of the 
X-displacement under n = 8820 rev/min in the last 49/ fr s are exemplified and plotted in Fig. 11. fr = n/60 Hz is the rotating frequency. 
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Fig. 9. First-eleven order modes of the casing: (a) 180.98 Hz, (b) 181.04 Hz, (c) 181.05 Hz, (d) 181.22 Hz, (e) 181.54 Hz, (f) 181. 99 Hz, (g) 181. 99 Hz, (h) 183.35 Hz, (i) 183.36 
Hz, (j) 186.54 Hz, (k) 186.54 Hz.

Fig. 10. Bifurcation diagram and spectrum cascade in X-direction: (a) the blisk, (b) the casing.

P1 at the last moment (see Fig. 11) is regarded as the reference point, and the points such as P2, P3, . . . , and P49 are then extracted 
in sequence every 1/ fr s. Similarly, the bifurcation points at other rotating speeds can be also obtained. Next, taking n as abscissa and 
bifurcation points as ordinate, the bifurcation diagram of the blisk in X-direction can be then obtained, as is shown in Fig. 10(a). The 
bifurcation diagram of the casing (see the left column in Fig. 10(b)) can be drawn in a similar way and no more tautology here.

In order to show the distribution rules in the rubbing regions II, III, IV, and V clearly, corresponding enlarged views are supplemented 
in Figs. 12–15. In these figures, �n is further set as 30 rev/min. Some main phenomena are concluded as follows:

(1) With the increasing n, the motion of the bliks successively experiences period-1 motion (see the regions I and II in Figs. 10(a) and 
12(a)) → chaotic motion to period-1 motion (see the region III in the left column in Fig. 13) → switch between period-1 and chaotic 
motions (see the region IV in Fig. 14(a)) → chaotic motion (see the region V in Fig. 15(a)), while the motion of the casing successively 
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Fig. 11. X-displacement time-domain waveforms of the blisk in the last 49/ fr s.

Fig. 12. Enlarged view of the region II: (a) the blisk, (b) the casing.

Fig. 13. Enlarged view of the region III: (a) the blisk, (b) the casing.
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Fig. 14. Enlarged view of the region IV: (a) the blisk, (b) the casing.

Fig. 15. Enlarged view of the region V: (a) the blisk, (b) the casing.

experiences static state (see the region I in Fig. 10(b)) → chaotic motion (see the region II in Fig. 12(b)) → switch among chaotic, 
multi-period, and period-1 motions (see the region III in Fig. 13(b)) → switch between chaotic and period-1 motions (see the region IV 
in Fig. 14(b)) → chaotic motion (see the region V in Fig. 15(b)). Here, it should be pointed out that in terms of the region I in Fig. 10, due 
to the non-existence of the rubbing between the blades and the casing, only the period-1 motion and fr for the blisk can be observed 
(see Fig. 10(a)), while only static state for the casing is existent (see Fig. 10(b)). In addition, the reason for the point-set scattering in the 
regions III and V is that the former region is close to the critical speed of the system (see Fig. 6(d)) and the latter region is located at the 
high-speed zone, which can aggravate the degree of rubbing.

(2) In terms of the spectrum cascade shown in Figs. 10, 12–15, the significant phenomenon is that the odd-harmonic frequencies 
( fr, 3 fr, 5 fr, . . . ) for the blisk and the even-harmonic frequencies (2 fr, 4 fr, 6 fr, . . . ) for the casing are prominent. Especially when n is 
larger, the fractional frequency (FF) occurs (see the region V in Figs. 10 and 15).

In order to further understand the dynamic characteristics of the system located at the rubbing regions II, III, IV and V, the distribution 
characteristics of the contact zone on the casing and the blades at local speeds n = 7980 rev/min (see Q 1 in Fig. 12), 8280 rev/min (see 
Q 2 in Fig. 13), 8820 rev/min (see Q 3 in Fig. 13), 9750 rev/min (see Q 4 in Fig. 14), 10710 rev/min (see Q 5 in Fig. 14), and 11400 rev/min 
(see Q 6 in Fig. 15) are then extracted, respectively, as is shown in Fig. 16. Obviously, due to the oval configuration of the casing (see 
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Fig. 16. Distribution of the rubbing positions on the casing and the blades in the last 49/ fr s: (a) 7980 rev/min, (b) 8280 rev/min, (c) 8820 rev/min, (d) 9750 rev/min, (e) 
10710 rev/min, (f) 11400 rev/min.



JID:AESCTE AID:105481 /FLA [m5G; v1.261; Prn:17/10/2019; 16:14] P.14 (1-18)

14 J. Zeng et al. / Aerospace Science and Technology ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
Table 2
Parameter settings for the blisk-casing system.

Component Varying parameters Other parameters

Blisk kd,X = kd,Y = [5,10, . . . ,995,1000] × 106 N/m Same to Table 1
Casing kc,r = kc,t = [2,11, . . . ,1998,2000] × 102 N/m Same to Table 1

Fig. 17. Bifurcation diagram and spectrum cascade in X-direction: (a) the blisk, (b) the casing.

Fig. 1), the rubbing between the blade tip and the casing is extremely likely located around its semi-minor axis, which is also verified by 
the numerical results (see the left column in Fig. 16). In addition, it can be seen from Fig. 16 that there exist two contact regions on the 
casing, i.e., each turn of the blisk brings two impacts on the casing thus causing that the fundamental frequency of the impact load on the 
casing is the two-fold rotating frequency of the blisk (see 2 fr in Figs. 12–15). Rubbing-induced nonlinearity further causes the appearance 
of the multi-harmonics in the spectrum of the casing such as 4 fr, 6 fr, 8 fr, and so on. Furthermore, a larger contact area corresponds to 
a larger blade number involved in rubbing (see Fig. 16). In Fig. 16, there exist multiple blades interacting with the casing simultaneously 
and the adjacent blade close to the rubbing blade can also contact with the casing, which is a little different from the rubbing dynamics 
of the single blade-casing system.

3.3. Effects of supporting stiffness on the rubbing characteristics of the system

In this part, the effects of the supporting stiffness of the blisk/the casing on the dynamic characteristics of the system are studied 
when n = 10000 rev/min. Corresponding parameter settings are listed in Table 2. Here, the mode truncation numbers ηb, ηd, and ηbd are 
the same as those in Subsection 3.1.

3.3.1. Effects of supporting stiffness of the blisk
The effects of kd,X /kd,Y on the dynamics of the system are shown in Fig. 17. Some main phenomena are summarized as follows:
(1) With the increasing kd,X /kd,Y , the period-1 motion for the disk is intuitively observed (see the left column in Fig. 17(a)). In terms 

of the casing, the period-1 motion also exists except in the region II (kd,X /kd,Y ∈ [370, 545] × 106 N/m), where the period and chaotic 
motions appear alternately (see the left column in Fig. 17(b)). Especially in the region I (see the left column in Fig. 17(b)), there exists a 
trip point (kd,X/kd,Y = 1.4 × 108 N/m).

(2) Similar to the spectrum cascade in Subsection 3.2, only odd-harmonic frequencies ( fr, 3 fr, 5 fr, . . . ) for the blisk can be observed, 
while only even-harmonic frequencies (2 fr, 4 fr, 6 fr, . . . ) for the casing are remarkable (see the right column in Fig. 17). When kd,X /kd,Y ≥
6.75 × 108 N/m, only fr for the blisk and zero-amplitude for the casing occur due to the disappearance of the rubbing between the blisk 
and the casing. In addition, there exists a significant amplitude amplification in the region I.

The distributions of the rubbing positions on the casing and the blades at kd,X /kd,Y = 1.4 × 108 N/m (i.e. the trip point in Fig. 17(b)) 
and 4.55 × 108 N/m (i.e. a case of the region II in Fig. 17(b)) are further plotted in Fig. 18. It can be seen from the figure that the period-1 
motion for the blisk corresponds to the equal and radially symmetric contact zones on the casing, which can be also verified by those in 
Fig. 16.

In order to explain the resonance phenomenon shown in Fig. 17, the effects of kd,X /kd,Y on the natural frequencies of the blisk 
ranging from 0 Hz to 300 Hz are plotted in Fig. 19. In the figure, there exist two cross points C1 (kd,X/kd,Y = 1.3 × 108 N/m) and C2
(kd,X/kd,Y = 1.5 × 108 N/m), which is also in accordance with the resonance points in the spectrums of the blisk and the casing shown in 
Figs. 19(b) and 19(c). Generally speaking, the resonance phenomenon in the vibration responses of the casing is more obvious than that 
in those of the blisk.
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Fig. 18. Distribution of the rubbing positions on the casing and the blades in the last 49/ fr s: (a) kd,X /kd,Y = 1.4 × 108 N/m, (b) kd,X /kd,Y = 4.55 × 108 N/m.

Fig. 19. Effects of kd,X /kd,Y on the natural frequencies of the blisk: (a) frequency curve, (b) region I in the spectrum of the blisk in Fig. 17, (c) region I in the spectrum of 
the casing in Fig. 17.

Fig. 20. Bifurcation diagram and spectrum cascade in X-direction: (a) the blisk, (b) the casing.
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Fig. 21. Distribution of the rubbing positions on the casing and the blades in the last 49/ fr s: (a) kc,r/kc,t = 3.8 × 103 N/m, (b) kc,r/kc,t = 2.27 × 104 N/m.

3.3.2. Effects of supporting stiffness of the casing
Relative to the effects of kd,X/kd,Y on the rubbing dynamics of the system shown in Subsection 3.3.1, kc,r/kc,t has more significant 

effects on the rubbing characteristics of the system, as is shown in Fig. 20. These figures show the following dynamic phenomena:
(1) In terms of the bliks, period-1 motion is observed only in the region III (kc,r/kc,t ∈ [209, 263] × 106 N/m), and the chaotic motion 

in the regions I (kc,r/kc,t ∈ [2, 155] × 106 N/m), II (kc,r/kc,t ∈ [164, 200] × 106 N/m), IV (kc,r/kc,t ∈ [272, 668] × 106 N/m), and V (kc,r/kc,t ∈
[677, 2000] × 106 N/m) widely exists (see the left column in Fig. 20(a)); in terms of the casing, period-1 motion exists in the regions II 
and III, and chaotic motion mostly exists in other regions (see the left column in Fig. 20(b)).

(2) The spectrum cascade shows that the odd-harmonic frequencies ( fr, 3 fr, 5 fr, . . . ) for the blisk and the even-harmonic frequencies 
(2 fr, 4 fr, 6 fr, . . . ) for the casing are prominent (see the right column in Fig. 20), which also corresponds to that in Figs. 10 and 17.

The distributions of the rubbing positions on the casing and the blades at local kc,r/kc,t are shown in Fig. 21. Generally speaking, the 
smaller kc,r/kc,t is, the larger the contact area is (see the left column in Fig. 21). In addition, period-1 motion/chaotic motion for the blisk 
corresponds to the equal/unequal and radially symmetric contact zones on the casing (see the left column in Fig. 21), which can be also 
verified by Figs. 16 and 18.

4. Conclusions

In this paper, the finite element model of the blisk-oval casing system with elastic supports is established using the self-programmed 
beam-shell-spring hybrid elements combining with two types of self-programmed interfacial coupling elements (ICEs). In order to improve 
computational efficiency, the two-step reduction for the blisk and the one-step reduction for the casing are adopted to establish the 
reduced blisk-casing system. Then the reduced system is verified via the frequency convergence analysis. Next, the central difference 
method combining with the Lagrange multiplier method is adopted to solve the rubbing dynamic characteristics of the system under 
different rotating speeds and supporting stiffness. Some main conclusions are summarized as follows:

(1) Under the premise of guaranteeing the accuracy and the computational efficiency of the system, only a few modes in the modal 
reduction basis are essential when using the Craig-Bampton method.

(2) The fundamental frequency in the spectrum of the casing is dependent on the rotating frequency of blisk and the number of contact 
zone on the casing. In addition, period-1 motion/chaotic motion for the blisk indicates the equal/unequal and radially symmetric contact 
zones on the casing, respectively.

(3) The change of the supporting stiffness on the casing has more significant effects on the dynamic characteristics of the system than 
that on the blisk. Besides, the vibration responses of the casing are more sensitive to the system state variations such as the occurrence 
of the resonance than those of the blisk.
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