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Summary--The differential equation and associated boundary conditions for a nominally uniform 
Bernoulli-Euler beam containing one or more pairs of symmetric cracks are derived. The reduction 
to one spatial dimension is achieved using integrations over the cross-section after plausible stress, 
strain, displacement and momentum fields are chosen. In particular the perturbation in the stresses 
induced by the crack is incorporated through a local function which assumes an exponential decay 
with distance from the crack and which includes a parameter which can be evaluated by 
experimental tests. Some experiments on beams containing cuts to simulate cracks are briefly 
described and the change in the first natural frequency with crack depth is matched closely by the 
theoretical predictions. 
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depth of crack 
beam cross sectional area 
reduced beam cross sectional area at crack location 
half breadth of rectangular beam 

half depth of rectangular beam 
= (rxx + ~yy + ~=), volume dilatation 

Young's Modulus of Elasticity 
crack function 
body forces 
surface tractions and prescribed surface tractions 
Shear Modulus of Elasticity 

unit step function at Izl= h 
second moment of area of beam section 
second moment of area of reduced section at crack 

length of beam 

stress magnification factor 
momentum components 
fundamental frequency of crack rectangular beam 
fundamental Bernoulli-Euler frequency of uncracked beam 
velocity function 
integrated crack function 

non-dimensional longitudinal coordinate 
surfaces of solid 
strain function 
stress function 
kinetic energy density function 
displacement components 
prescribed surface displacements 
volume of solid 
assumed beam shape function 
strain energy density function 
Cartesian coordinates 
integrals over the beam length 
exponential decay constant 
strain components 
Kronecker's delta 
= x - (1/2) 

shape coefficient in equation (33) 
Lamb's Constant 
Poisson's ratio 
direction cosines 
density 
stress components 
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1. INTRODUCTION 

The dynamic behaviour of  structures containing cracks is a subject of considerable current 
interest in the light of  potential developments in the automatic monitoring of structural 
integrity. It seems plausible that methods might be developed whereby changes in the 
overall dynamics of a structure, as reflected perhaps in the natural frequencies and 
associated modal shapes, might be used to indicate the existence of  cracks and even give 
their precise position and extent. Such an approach is not particularly easy because of the 
relative insensitivity in general of natural frequencies to the presence of a crack unless it 
is very extensive. Nevertheless such concepts must be examined. Some original work along 
these lines can be found for example in Ref. [1], more recent related research is described 
in Refs. [2-4]. 

As regards the analysis of  the problem in the case of a particular structure, numerical 
procedures, using for instance a finite element modelling, might well be resorted to but it 
does seem that an understanding of the foundations of  the 
it is for uncracked structures) by a fairly fundamental 
structures such as beams. The work reported in this paper 
idealised conditions in a beam in transverse vibration. 

subject could be approached (as 
analysis of simple continuous 

is an attempt to do that for very 

Elastic beams are three-dimensional continua but for certain classes of  their possible 
motions they can be modelled at a simpler level. The most elementary of these models, for 
transverse motion, is the well-known Bernoulli-Euler beam which is the simplest one- 
dimensional theory currently available. The adjective refers to the fact that in the theory 
there is only one spatial dimension, measured along the axis of the beam. 

In what follows a one-dimensional theory at the same level of approximation as 
Bernoulli-Euler theory and indeed sharing many of its assumptions, is developed for a 
straight beam which has at one or more stations along its length open cracks of  equal depth 
originating from its upper and lower surfaces as is more completely described below. The 
pairs of  cracks are taken to be normal to the beam's axis and to be symmetrical about the 
plane of  bending. The reason for this restriction on crack geometry is to hold the particular 
symmetry associated with bending motion. This symmetry requirement can be relaxed in 
the present theory with little error as is pointed out later. Also, much more complex theories 
can be generated which bring out for instance the coupling between flexural and torsional 
types of motion which would result from a less regular crack but it is intended to present 
these features in later publications. The reason for specifying an "open"  crack is to avoid 
at this stage the very interesting complexities which result from the nonlinear charactristics 
presented by a crack which can open and close. 

The Bernoulli-Euler beam theory is well known but little understood. The assumptions 
that are built into it regarding displacement, strain and stress fields are apparently simple 
but they are at the same time mutually inconsistent. The theory can be derived in a 
consistent manner only through spatial integrations suggested by the variational theorem 
of Hu [5], and (independently) Washizu [6] further modified by certain momentum allow- 
ances (Barr [7]) which in the present case take into account the neglect of axial (rotatory) 
inertia. This procedure is a powerful one for developing further complexities or levels of 
approximation and it is applied here. Essentially, independent plausible assumptions are 
made for the displacement, strain, stress and momentum fields and these are then fed into 
the variational statement to produce, after integration over the cross-section of  the beam, 
the equation of motion and its associated boundary conditions. 

This equation is not solved directly but instead as an example, the Rayleigh-Ritz 
method is used to obtain from it an estimate of  the drop in the fundamental frequency of 
a simply supported beam in the presence of  a mid-span crack. The theoretical predictions 
then obtained agree well with results from experiment. 

2. VARIATIONAL THEOREM 
If displacement components are written as ul strain components as ~'u and stress components as T u with i , j  = l, 

2, 3 referring to cartesian axes x, y, z and if further pi are "momentum" components such that T = ltSop~pj is 
the kinetic energy density (6 o is Kronecker's delta) then the extended Hu-Washizu variational principle (Barr [7]) 
states that for arbitrary independent variations 6u~, 3~, 6z o and 6p~, 
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(1) 

In this equation W(yo) is the strain energy density function, p is the density, F~ and gl are, respectively, the 
body forces and the surface tractions, V is the total volume of  the solid and S its external surface. The overbarred 
quantities o;i and fii denote the prescribed values of  the surface tractions and the surface displacements, 
respectively, the former act over the surface Sp and the latter over S~, S u and Sp together make up the total surface. 
Differentiation with respect to time is shown by O. Commas in the subscript denote differentiation in the usual 
way. 

To derive, using equation (1), the Bernoulli-Euler theory for an uncracked beam, it is perhaps simpler to 
revert to normal engineering notation with u] = u, u2 = v, and u3 = w where the x axis is taken along the straight 
centre line of  the beam and the xz plane is the plane of  bending. In this notation the displacement field is taken 
as u = - z w ' ,  v = O, w = w(x, t) implying that u is a kinematic consequence of  the centre line slope w' 
(differentiation with respect to x is indicated by '). The strain field is taken in the form 7x~ = - z S ( x ,  t), 
7 ,  = 7= = -vT=,  7xr = ?= = )'y~ = 0 where v is Poisson's ratio. The assumptions for 7 ,  and 7= allow anticlastic 
curvature to develop freely. The stress field is taken to be such that the direct stress along the beam axis is of  
the form z= = - z T ( x ,  t) while the only other non-zero stress is T~ which permits the loading of  the beam. 

Finally the momentum or velocity field is assumed to have the form p~ =py = 0, and p~ = P(x, t). This indicates 
that longitudinal or rotatory inertia, as it is usually referred to, is neglected as is transverse inertia associated 
with anticlastic deformation. 

In the above S, T, P and w are unknown functions. From equation (1) integrations performed over the beam 
cross-section assuming independent variations of  the unknown functions give the relations S = w", T = ES and 
P = ff and, neglecting body forces, 

EIw ~ + Apf f  = 0 (2) 

where E is Young's Modulus, A is the section area and I its appropriate second moment of  area. 
In addition the principle generates a full set of  boundary conditions but these are omitted here. 

3. C R A C K E D  B E A M  T H E O R Y  
The introduction of  cracks will lead to changes in the stress and strain distributions in the vicinity of  the 

cracked section. It is known that  near the crack tip there are large stress concentrations and that over the cracked 
section of  the beam the stress is not linearly distributed and all components of  stress are likely to be non-zero. 
However, since the overall dynamics of  the beam is o f  interest it is assumed that the fine structure of  the stress 
distribution is not particularly significant. The equation (1) deals with integrated effects over the section. Of  
course, if crack propagation modelling was under discussion then this might not be the case and a more refined 
theory could be required. 

The change in stress and strain distribution near the crack are brought in by using a functionf(x,  z), at present 
unknown, which has its maximum value at the tip of  the crack and which decays with distance from the cracked 
section. It is applied to the direct stress ~ ,  only, the remaining direct stresses and the shear stresses out o f  the 
plane of  bending are still taken to be zero. 

It is further assumed that the presence of  the crack does not alter in any way the displacement and velocity 
fields. 

The assumptions made following the notation indicated in Section 2 are then, for a nominally uniform beam 
in the absence of  body forces, 

u = - z w '  v = O  w = w ( x , t )  

p~=O py=O p ~ = P ( x , t )  

Y~x = [--z  + f ( x ,  z)]S(x, t) 

~'. = y~ = - ~xx (3) 

Yxy = 7y~ = 7= = 0 

~xx = [ - z  + f ( x ,  z)lT(x,  t), Zxz = ~=(x, z, t) 

T y y  = "[zz = T x y  = "~yz = 0 

F~=Fy = Fz = O. 

The inclusion of%~ is required to permit the loading of  the beam as is shown below. The details o f  its distribution 
through the depth or along the length of  the beam are not required. 

These assumptions can now be substituted in the general equation (1) and independent variations of  the 
unknown w, P, S and T considered. For simplicity at this stage it is preferred to consider the variations one by 
one. 
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Strain-displacement term 
The strain-displacement term of  equation (1) becomes for an arbitrary and independent 6T variation 

This expression (4), defining the various integrals over the section A as 

becomes 

(4) 

(5) 

fx{ ( l  - 2K + L )S - (I - K)w"}6T dx. (6) 

Strain-stress term 
The stress-strain term of equation (1) is given by 

f v fF  OW-] OW OW ) 41zxx - - - I  6Vxx - - -  6 7 y y  - - -  ~ T z z  ~" 6S dV. 

Substituting the various quantities from equation (l) and using the expression W=~J.e •+ 
2 2 2 1 2 2 4 2  G(~'~x + 7~y + 7zz) + 5G(Txy + 7xz + '/y:) where e is the dilatation (Yxx + 7,, + 7~) and 2 is Lam6's constant, the 

expression simplifies to the form, 

f {(T - ES)(I - 2K + L)}6S dx. (7) 

Velocity-momentum term 
In a similar way the velocity momentum is written using assumptions (3) as 

f (pAw - pPA)6P dx. (8) 

Dynamic equilibrium term 
The first term of equation (1) leads to the equation of motion. Using assumptions (3) the term in question 

is 

(9) 

The first term of (9) can be integrated by parts in the following way. Noting that 6w" =- 6 (Ow/Ox) = O (6w)/Ox, 
we have 

The last term of expression (10) can be integrated by parts over z as follows, 

f, oX{fyf.° ZozzdZOZX~ dr} 3w d x .  =fvf~x(Z~xz)6we~dyl~-f~f~ °~'~ 6w dx dA. 

Expression (10) thus contains the following boundary terms, which are incorporated with the other boundary 
conditions, of equation (1) 

,1, ,  

The remaining two terms of expression (10) incorporated in (9) reduce that expression to the form 

f~ IA {[(- z2 + zj)T]" - p ,  } 6w aA dx. (12) 

Performing the double differentiation indicated and integrating over the cross-section allows this to be 
rewritten as 

f [K"T + 2K'T" + (K - I)T" -- pAl~]6w dx. (13) 
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Boundary conditions 
As regards the surface integrals over Sp and S~ in equation (1), it will be assumed that  the lateral surfaces 

of the beam are free of external traction, i.e. g~ = 0. The surface force is obtained from the stress components 
by the expression g~ = T,v, where the vj are the direction cosines of  the external normal to the surface with the 

~ J  . . . . .  

co-ordinate directions. I f  the beam is untapered the normal to Its lateral surfaces will be at  nght  angles to its 
axis so that  vx is zero. Thus the expressions for the g~ using assumptions (3) are 

gx = "rxxVx + rxylYy -~ TxzYz = 'l'xzPz ] 

gy = zxyv x + ~yyVy + xy~v~ = 0 l (14) 

gz = rzxVx + zzyvy + zzzvz = O. 

On the other hand,  over the ends of the beam x = O, l, Vx = - 1 and Vx = + 1, respectively (assuming plane 
ends normal to the beam axis) and from the general expressions in (14) gx reduces to +z~x and gz to +Txz. The 
specified forces ~ at the ends, integrated over the section, correspond to an applied force or moment.  

The surface integrals in equation (1) thus take the form, over the surface of the beam at the limits of z (say zl 
and z2, z2 > zl) 

fxf{[O-'~xz]z=z:'u+IO+'~xz]~u}dy~. .... 
This can be written 

[H -..,u 
then using the relation ~u = - z ~ w '  and integrating by parts over x this becomes 

The second term of  this expression cancels with the final term of expression (11). The second term of (1 I) 
can be integrated by parts over z and results in a term which cancels the first of  expression (15). The remaining 
terms of (11) apply to the boundaries of x and are 

f a { - - z [ ( - z  "rx~ } dAm:,. (16) + f )  T]' + 6w 

Similarly, the surface integrals of equation (1) over the ends of the beam (x = 0 and x = l) take the form, 
when forces .~' and 2 are prescribed: 

Incorporating expression (16) with expression (17) and substituting for the quantities 6u, 6w and ~ from 
the assumed functions in equation (3), integration over the section can be performed and the resulting boundary 
terms take the form, 

[{-f z.ed.4 +(K-OT}6w'+{f ;~dA + ( I - K ) T ' - K ' T } S w ] ~ = t  

[{-f z~'da-(K-I)T}6w'+{fAgd.4 + ( I - K ) T ' - K ' T ) S w ] x = o .  (18) 

On the other hand,  when displacements t~ and ff are prescribed, the surface integrals of  equation (1) over 
the ends x = 0, l are 

[ f A { ( u - ~ ) t $ ~ x + ( w - f f , ) 6 " c , , ~ } d A ] x = - [ f A { ( u - ~ ) 6 z ~ , , + ( w -  ~ ) 6 ~ }  dAis=0.  

After substitution for u, w and r~, from equation (3) and integration over the section, this expression becomes, 

Derived equations of  the problem 
The entire variational statement for the problem can now be assembled using the equation (1) and the various 

terms of  the variational expressions (6)--(8) and (13) along with the boundary terms given in expressions (18) 
and (19). 

The variations 6w, 6w', 6P, 6S, 6T and 6T~ are regarded as independent so that  equation (1) implies, for 
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arbitrary values o f  these variations, that each expression multipled by them in the volume inegral must  
independently be zero. This gives the following relations directly. 

From expression (6) for fiT, 

S = Q ( x ) w "  (20) 

where 

Q ( x )  = ( I  - K ) / ( I  - 2 K  + L) .  (21) 

From expression (7) for 6S,  

T = ES.  (22) 

From expression (8) for 6P,  

From expression (13) for fiw, 

P = w (23) 

K " T  + 2 K ' T "  + ( K  - I ) T "  - p A P  = O. (24) 

Equation (24) is the equation of  motion. Substitution for T and P can be made in terms of  the displacement 
w using equations (20)-(23). The resulting equation is 

E ( I - K ) Q w W + 2 E I Q ' ( I - K ) - K ' Q ] w " + E [ Q " ( I - K ) - 2 K ' Q ' - K " Q ] w " + p A f ~  = 0 .  (25) 

The boundary conditions appropriate to the equation of  motion (25) are obtained by equating the surface 
integral expression (18) to zero in the case of  prescribed external forces and the equivalent expression (19) to 
zero in the case o f  prescribed displacements. 

Thus,  for example a cantilever beam with its fixed end at x = 0, has  at that point displacements ff and 
prescribed as zero while at x = l it has ~' and 2 prescribed as zero. 

At x = 0 equation (19) then gives directly 

w = 0, w' = 0 .  

At x = l equation (18) gives ( K  - I ) T  = 0 and ( I  - K ) T "  - K ' T  = O. 
The first of  these using equations (20) and (22) implies, from T = 0, that w" = 0. The second then implies 

T' = 0 or w " = 0 as expected. 
If the crack is absent from the beam then the functions K and L are zero and Q ( x )  becomes unity. The 

equation of motion (25) and the boundary conditions become those of the uniform Bernoulli-Euler beam. 

The crack func t ion  f(x, z) 
The above theory is based on stress and strain distributions (3) which are affected by the presence of  the crack 

or cracks through the function f ( x ,  z ) .  It is necessary to establish a plausible means  of  evaluating f for a given 
cross-section and crack geometry. 

It is assumed in the first place that  cracks occur in symmetric pairs one from the upper surface z = - d  of 
the beam and the other from its lower surface z = d, both at the same value of x. A typical situation is shown 
in Fig. 1. 

The cracks are o f  depth a and the remaining material between them is of  depth 2h. Remote from the crack 
the distribution of  the stress zxx is known to be linear to good approximation for relatively long wavelengths 
as is assumed in the application of  Bernoulli-Euler theory. 

At the cracked section a linear distribution of Z~x across the reduced section is again assumed (although this 
is known not to be correct) but  the magni tude o f  the stress level at a given co-ordinate z is augmented.  A simple 
though approximate way of  estimating the magni tude of  this increase which should be reasonable at least for 

2 " = - d  

2 

H 

T 

t7 

1¢ t q _ -  

FIG. 1. Typical symmetric crack geometry. 
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shallow cracks is to demand that the same bending moment be carried by the cracked section as would have 
been carried by the intact section. 

ThUS, 

(-zT)z dA = (-z +f(x,,z))Tz dA (26) 

where A, is the reduced section remaining at the crack (x = xc). 
The distribution (-z +f(x,, z)) is, as has been stated, taken to be linear in z say (-mz) with m constant. 
Hence, equation (26) becomes 

-T z2dA = --mT 
s 

z2dA 
A, 

so that 

m = (I/&) (27) 

where I, is the second moment of area of the reduced section. Further at the cracked section the stress rXX drops 
stepwise to zero when the cracked zone is entered, i.e. for lz] > h. This is introduced in f(x, z) through the use 
of the unit step function H(h - lzl) at z = h. 

The above accomodates the z-wise distribution of T,,. In the direction x, on the other hand, the stress r,, 
is assumed to decay from its maximum value at the cracked zone to its nominal (Bernoulli-Euler) value remote 
from the crack. This question of the decay from the cracked zone is similar to questions in the application of 
the Principle of St. Venant. In this case however rather than a load distribution being changed over some defined 
area, we have an unchanged load (zero, for the unloaded beam) but the external surface. of the beam is being 
changed through the formation of the crack surfaces. 

In many instances where analytical solutions relating to St. Venant’s Principle are known the decay rates are 
found to be exponential and this is also assumed for the present problem. 

Thus, taking the crack to be at the position x = x,, the functionf(x, z) occuring in the stress distribution r, 
(equation (3)) is taken in the form 

f(x, z) = [z - mz H(h - )z I)] exp ( - a Ix - xii/d) 

where d is half the depth of the beam section. 

(28) 

In equation (28), a is a positive non-dimensional constant which may be determined from experimental results. 
The use of Ix - xi( gives a symmetric decay on either side of the crack. A sketch of the assumed stress distribution 
rXX near the crack is shown in Fig. 2 for a rectangular section beam. Boundary terms from the variational 
principles (1) which arise at the new crack surfaces can be shown to be mutually cancelling. 

Using equation (28), the stress distribution can be written in a general way for the case in which the beam 
has symmetric cracks at several points xi (i = 1, 2, 3, . . , n), thus, 

L(x, z, 1) = {--z + [z - mzH(h - (z()] i exp (--alx -x,l/d)j T(x, r) 
i 

4. RECTANGULAR SECTION BEAMS 
As an example of the application of the above theory attention is now focussed on the case of a beam of 

rectangular section of depth 2d and breadth 26 with a symmetric pair of cracks at mid-span x = l/2. The constants 
I, I,, K, L, Q and m of equations (5), (21) and (27) can be evaluated. They are found to be 

and 

also 

I = 4bd’/3, I, = 4bh’/3, m = (d/h)‘, 

L = CI exp( -2al.x - (1/2)1/d) where 

K=O 

c = (m - 1) 

Q=[l+Cexp(-2a(x-(1/2)1/d)]-‘. 

The equation of motion of the unloaded beam from equation (25) is 

EIQw’“+2EIQ’w”+EIQ”w”+pAl=0. (31) 

This differential equation has to be considered in conjunction with appropriate boundary conditions taken 
from equations (18) and (19) along with any relevant initial conditions. 

Approximate determination of first natural frequency 
The application of the describing differential equation (31) to a real beam can be examined by considering 

the particular case of the variation of the first natural frequency of a simply supported beam having a central 
symmetric crack of varying depth. This problem can be tackled experimentally as described below, and can be 
approached most easily analytically by using the Rayleigl-Ritz method. 
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Txx f 

..../,/i 
~ f J  
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f 
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-x 

j 
J 

f 

J 

Crack 

FiG. 2. Sketch of assumed distribution of stress Zxx in vicinity of crack. 

The Rayleigh quotient associated with equation (31) can be written in the form 

f' tfo (pJpsE) 2 = (I/n)'* Q(W") 2 dx W 2 dx (32) 
jo 

where Pc is the natural frequency of the cracked beam, PBE is the Bemoulli-Euler frequency of  the uncracked 
beam and W ( x )  is an assumed shape function. This equation can be arrived at by equating potential and kinetic 
energies in an assumed periodic motion of  frequency Pc. 

For the first mode of a simply supported beam the shape function is taken (for 0 <~ x <~ 1/2) as 

W ( x  ) = sin (nx  / l)  + x {(x / l)  - [4(x/1)3/3]}. (33) 

The first term in this expression is that of  the uncracked beam. The second term, multiplied by the unknown 
factor x, is intended to account for the presence of  the crack at x = 1/2, it has zero slope at that point. The stated 
expression applies only up to x = 1/2 and its mirror image applies from l /2  to L The displacement function is 
thus symmetric about the beam centre and only half the beam (0 <~ x <~ l/2) need, therefore, be considered. 

Since equation (32) gives an upper bound on Pc the factor r is evaluated by minimizing Pc. In evaluating 
expression (32) it is convenient to change co-ordinates to the centre of  the beam using ( = x - (//2); Q is given 
by equation (30). 

F 

Nylon rollers 

Ball race / 

;. 
Base plate ~ Excitation 

Fic. 3. Experimental beam and supports. 
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Transverse vibrations of a cracked rectanguLar 
beam. RayLeigh-Ritz method 
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FIG. 4. Comparison of experimental and theoretical values of frequency ratio. 
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Substituting equation (33) in equation (32) results in 

(pffpBr) 2 = [X I + (16X2r/n 2) + (64X3x2/n4)]/[0.25 + (! 6x/~z 4) + 0.02698K 2] (34) 

where XI, X2 and X 3 are the integrals, 

f01/2 ['1/2 f i l l2 1 
XI= ecos2~rdr ,  X:=Jo  (½-r )Qcos~rdr ,  X3=J0 ( i - r ) 2 Q d r ,  

where r = ~//and Q = [1 + C exp (-2¢trl/d)] - 1. These integals are evaluated numerically and the expression for 
(Pc/pne) 2 is minimized with respect to K. 

This evaluation was carded out for a range of crack depths, defined by the parameter C in Q. The results 
depend on the value assumed for ~t, a value that gave reasonable comparison with experimental data was chosen. 

Experimental work and comparison with theory 
An experimental beam of mild steel of length 0.575m and of rectangular section 31.75mm depth and 

9.525 mm breadth was attached to a base plate through a pin running in a ball race at one end and through 
a pair of nylon rollers bearing on the upper and lower surfaces of the beam at the other end (see Fig. 3.). This 
was an attempt to simulate simply supported boundary conditions. The base plate was attached to the vibrating 
table of a large electrodynamic shaker. A non-contacting probe detected the motion of the beam relative to the 
table. The table vibration was itself monitored by an attached accelerometer. The power amplifier for the shaker 
was driven by a precision oscillator with a digital frequency readout. 

The natural frequencies in flexure of the uncracked beam were first obtained. Then fine saw cuts, symmetric 
with respect to the neutral axis and normal to it were made on the upper and lower beam surfaces at midlength. 
The natural frequencies of the beam for that particular depth of cut were measured and the process was repeated 
until the cuts went through the whole depth of the beam. This was repeated for a number of beams of the same 
dimensions. 

Experimental and analytical results are compared in Fig. 4. They are presented in the form of the frequency 
ratio, that is the ratio of the frequency of the cracked beam to that of the uncracked case, against the crack depth 
ratio, i.e. the ratio of the depth of cut a to the half depth of the beam d. The experimental points are averages 
from tests but in general the spread of observations about the points was small. 

The theoretical curve is based on the expression (34) with the parameter ct chosen to give good agreement 
with the experimental points. In general terms a higher value of ~t will underestimate the frequency reduction 
due to the crack and inversely for a lower ct. 

5. C O N C L U S I O N S  

T h e  o n e - d i m e n s i o n a l  t h e o r y  fo r  the  f lexural  m o t i o n  o f a  B e r n o u l l i - E u l e r  b e a m  c o n t a i n -  

ing  o n e  o r  m o r e  pa i r s  o f  s y m m e t r i c  c r acks  w h i c h  is p r e s e n t e d  in the  fo r ego ing ,  p r o v i d e s  

a m o n g  o t h e r  th ings  a m e a n s  fo r  e s t i m a t i n g  the  f r e q u e n c y  changes  b r o u g h t  a b o u t  by  the  

ex is tence  o f  the  cracks .  T h e  t h e o r y  d e p e n d s  on  m o d e l l i n g  the  stress field p e r t u r b a t i o n  

i n d u c e d  by  the  c r a c k  in an  a p p r o x i m a t e  w a y  w h i c h  inc ludes  an  e x p o n e n t i a l  d e c a y  p a r a m e t e r  
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which has becn estimatcd from the experimental data on natural frequcncy change as a 
function of crack depth. 

Simple predictions of  this frequency change from the theory have been found to show 
close agreement with the experimcntal data and give confidence for the application of the 
theory to the general dynamics of the beam. 

The theory can be extended to situations in which the crack symmetry is absent and 
in which coupling between the various forms of motion such as bending and torsion takes 
place. Such coupling is not generally significant except in regions of the spectrum where 
for instance both the frequencies of  predominantly bending and predominantly torsional 
motion and their corresponding wavelengths are approximately the same. Away from these 
regions the theory that has been presented above can also bc applied to the flexural 
vibration of a beam with a crack on one side only. It is intended to present the theories 
for coupled motion of  cracked beams at a later date. 
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