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Three analytical one-dimensional linear elastic models of composite laminated beams are considered — com-
posite Bernoulli-Euler beam (BE), composite Timoshenko beam (T) and multilayer sandwich beam model (MS).
They are compared with results obtained via finite element method for a two-dimensional model in plane stress
state. Overall system stiffness is verified with experimental data obtained for two statical configurations — three-
point bending and four-point bending. The first configuration concerned 8 types of three-panel cross-laminated
timber (CLT) beams accounting for various materials and thickness of timber panels as well as various materials

and thickness of adhesive layer, while the second one concerned 5 types of two-panel aluminium laminated
beams accounting for different thickness of adhesive layer. Simplified multilayer sandwich model is found to be
in good accordance with FEA results and with experimental data, while simple BE and T models are shown to

provide erroneous estimates.

1. Introduction

Composites enable considerable flexibility in design of functionality
of the structure as a whole as well as concerning each composite
structural element separately. Composite structures make also more
efficient use of available resources by appropriate stress distribution
accounting for different bearing capacities of their components. Some
of such solutions are particularly simple in serial production, e.g. la-
minated (gluelam) beams or Cross Laminated Timber (CLT) beams
consisting of multiple layers of relatively rigid panels and more com-
pliant adhesive. The use of adhesives of higher flexibility was reported
to result in even more efficient use of material’s bearing capacity [1-3].
Construction of large structures consisting of multiple composite ele-
ments require appropriate simplified models in order to carry out cal-
culations efficiently. For a certain class of design problems restrictions
on admissible deformation result in limiting the material behaviour
regime to sole linear elasticity (small strains and displacements) - e.g.
in case of framework structures in civil engineering. Linear elastic
models, due to principle of superposition, enable direct element design
methods. They may be also used in order to determine element stiffness

matrix for more complex structural analysis with the use of Finite
Element Method if only proper nodal displacement compatibility is
provided.

The aim of this article is a preliminary comparison of simplified
linear elastic one-dimensinal models [4] of composite beams in order to
verify their applicability in the design and analysis of complex com-
posite bar structures (frameworks, trusses etc.). Among such models
one may distinguish the Bernoulli-Euler beam, Timoshenko beam [5]
and sandwich beam theories [6]. The classical theories may be easily
generalized in order to account for a composite structure of the beam’s
cross-section. Many alternative approaches were used in modelling the
sandwich beams and plates, accounting for shear deformation de-
termined by an assumption of various shear stress distribution functions
[7-12]. The present article deals with a model of a multilayer sandwich
beam consisting of multiple bending layers (Bernoulli-Euler beam) and
shear layers (simple shear deformation) placed in an alternating way —
it will be referred to as MS beam. It is compared with composite Ber-
noulli-Euler (BE) and composite Timoshenko (T) beams as well as with
the solution of the two-dimensional solution of plane stress state pro-
blem of linear theory of elasticity obtained via Finite Element Analysis
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(FEA). All results are verified with the experimental data on - in total —
13 beam types in two statics configurations: three-point bending and
four-point bending.

2. Compared models
2.1. Composite Bernoulli-Euler beam

Fundamental assumption of a composite Bernoulli-Euler (BE) model is
the Bernoulli hypothesis on plane cross-sections stating that there is no
deplanation and orthogonality of cross-section to the beam’s axis is pre-
served during deformation. This results in linear distribution of linear
strain which — in case of composite cross-section — yields a non-linear
distribution of normal stress. The governing equations of BE model is a
well-known fourth order ordinary differential equation (ODE):

d? ( d*w )_ @

o\ ) T 8]
where:
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is the flexural rigidity (which may be considered a function of cross-sec-
tion), q(x) is the load distribution along beam length, E (z) is the through-
the-thickness distribution of Young modulus in a composite cross-section,
and z is the distance from the elastic weighted centroid found in any co-
ordinate system aligned with beam axis and axis of bending as:

= = -
Zo = A—b where A, = quE(z)dA, Sy = quzE(z)dA. @
Normal stress distribution in each point is proportional to the linear
strain which E(z) being the proportionality factor:

o(x,z) = ——=2 E(2)

()]
Shear stress distribution may be approximated with the use of
Zhuravsky theory [13,14] as:

- Zo do (x)
= —=d
el A ®)
Analytical formulae for the above quantities may be easily com-
puted for any piecewise constant distribution of E (z) respective for a
laminated beam of layers of finite thickness.

d
T2

2.2. Composite Timoshenko beam

The model of Timoshenko [5] releases the assumption on the or-
thogonality of plane cross-section to the deformed axis. The angle of
rotation about the axis of bending ¢ provides an additional degree of
freedom. The model is governed by a system of ODEs:

2 d¢ B
@(D’E) - ®)

dw ( d¢ )
— Dy—|,
xDy dx dx ()

where flexural rigidity Dy, is defined as above, and shear rigidity is given
as:

D, = [ 6@aa ®)
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where G(z) is the through-the-thickness distribution of Kirchhoff
modulus in a composite cross-section. Stress distribution is assumed to
be the same as in case of BE model. Multiple estimates of the shear-
correction factor for a Timoshenko beam were made [15-20]. The one
which may be easily extended for the case of composite cross-section is
based on comparison of elastic strain energy due to shearing according
to Timoshenko model with its estimate based on Zhuravsky theory [13]
of shear stress distribution. Transverse (shear) force in a composite
Timoshenko beam may be defined as:

Q:K.[/;rxsz:K_[/;ZG(z)EXZ —K[f G(Z)(f—¢)

- dw
- KD“‘( dx ¢) ©

Then the elastic strain energy due to shearing may be written down
as follows:
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According to the Zhuravski estimate, one may write:
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what enables us to write:
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wheres(z) is the elastic weighted statical moment of the above-z part of
the cross-section about the axis passing through the weighted centroid.
This approximation is far from being precise, as in the derivation of
governing equations of the Timoshenko beam parameter is once used as
a scaling factor providing actual value of integral of the stress (strain)
distribution in a cross-section, namely the value of transverse force
which is a linear function of stress and for the second time it is used as a
scaling factor providing actual value of an integral of strain energy
density which is a quadratic function of stress. This scaling factor in
both of those case will be in general different.

2.3. Simplified multilayer sandwich beam model

Proposition on another one-dimensional linear elastic model may be
briefly described as a system of multiple bent and sheared layers placed
in an alternating way. The bending layers are assumed to be homo-
geneous Bernoulli-Euler beams, while the shear (adhesive) layers are
assumed to be in simple shear state. Equilibrium equations may we
written down as follows (See Fig. 1):
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Axial direction
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Fig. 1. Equilibrium of bending and shear layers.

% +bg=0 (11a)

% — bty + bt =0,1=2, N (11b)
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Transverse direction:

% +q+bpg+mg=0 (12a)

ffi% —bpy +bpy +hig=0i=2 N (12b)

% = by + hevengeny = 0 (120)
Moment equilibrium:

G T @ray=o (13a)

% = Qi+ (r4-1) + n)% =0,i=2, N (13b)

P~ Qe+ G =0 (130)

where M;, Q;, N; are bending moment, transverse force and axial force
in i-th bending layer respectively, p; ;, p; 5 are the through-the-thick-
ness normal stress at top and bottom surface of the i-th bending layer
respectively, b is the constant beam’s width, h; is the thickness of i-th
bending layer and 7 is the shear stress in an adhesive layer between

Fig. 2. Four-point bending of three-layer CLT beam. Statical configuration and location of gauge.
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bending layersiand (i + 1). External load is given by surface traction q
at top surface of the topmost bending layer and by the distribution of
body forces g; in bending layers andf; in shear layers.

Let us combine the equilibrium equations for transverse direction
and moment equilibrium equations and introduce constitutive relations
of the form:
du; N d*w M;

&  EA; d&* EL’ a4
where E;, A;, Lare the Young modulus, cross-section area and cross-
section second moment of area of the i-th bending layer. Please note,
that the deflection is common for all bending layers. Then, summing up
all the combined equilibrium equations for transverse forces and mo-
ment, gives us following system of governing equations:

d’u
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The through-the-thickness normal stress may be ousted by an ac-
count for the equilibrium equations of the shear layers:

dg

b(p; =bti— + tf;
(Pz,B p(H—l)T) dx i

19

Finally, we may express the shear stress by the displacement func-
tions. Kinematics of the shear layer is analogous as in shear layers of
classical lap joint models (i.e. [21-24]). It is assumed that the long-
itudinal displacement of points at interface of the shear layer with
neighbouring bending layer is due to elongation of the bending layer
and its rotation about central axis:

W= g — iAW
i,B — Wi 2 dx (20)
h(i+1)d7W
2 dx 2D

It is assumed that the longitudinal displacement in shear layer
changes linearly between those boundary values, resulting in constant
shear strain and shear stress in the layer:

G; hgs+1) dw ( h; dw)
== U + ——— | = i — ——
t; 2 dx 2 dx

hi | haeyYdw |
= UGy — W) + + — ,i=1, ---,N
L [( (i+1) ) (2 5

UGi+i),T = UGi+1) +

(22)

Let’s substitute the above results in the Egs. (15) to (18). After
simple rearrangements, we obtain the final form of the governing
equations:

du, b hy hl)dw
EA— + —G —w)+ |2+ 2|=|=0
1441 ) 1[(”2 u;) (2 l (23)
du; b hi  hi_\dw]| b
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This is a fourth order system of N + 2 ordinary differential equa-
tions for N + 2 displacement functions: N + 1 longitudinal displace-
ments of bending layers and common deflection of all bending layers.
They constitute a multi-point boundary value problem. Boundary con-
ditions should be formulated with care. Transverse deflection con-
straints may be accounted for in the same way as in case of classical BE
model. It must be noted that edge longitudinal displacements of each
panel may be in general different and they should be defined sepa-
rately. In particular symmetry of a system enable simple determining of
the boundary conditions. Static boundary conditions (edge point loads)
may be accounted for by proper definition of cross-sectional forces.

Total cross-sectional axial force:

N+1 hj N+1 du
N@x) = Z fnl [o]dzy = Z BiAi— - £
27)
Total cross-sectional transverse force:
N+1 +1 dM
Q) = Z Qe + Zbur, = Z += Z (B + iy + 26)5
k=1 dx 2 i=1
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d w b G;
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Speaking of total cross-sectional bending moment is perhaps irre-
levant since it may be calculated as a moment of stress resultants about
any point P:

N+1 hj
Mpx) = 3, [ [oc(@ox + 26) — Z)]dzx
k=1 2 (29)

None single point of particular meaning in a cross-section can be
distinguished. From the statical point of view this should be the point of
a central axis of system of axial forces (no moment due to axial forces) —
yet, since they may vary along beam’s axis, such a point would be
different in each cross-sections. In fact, edge cross-sectional moment
could be most easily applied rather in the form of a system of axial
forces applied to the panels instead of point moment (necessarily equal
for all of panels).

Distribution of normal stress within a single bending layer is the
same as in classical BE theory:

dui d2W )

i(zi)) = E —5 %
01 (i) (dx RS

(30)

Distribution of shear stress in a bending layer may be estimated as in
the Zhuravsky theory, accounting for additional shear stress at interface
with shear layers:

% dxu; d?
Tp(Z) = 11 — j:% [Ei (KL; - EM; )]d{ 31)

Transverse normal strain at interfaces is given be recurrence for-
mulae:
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Fig. 3. Three-point bending of two-layer aluminium beam. Statical configuration and location of gauges.

Fig. 4. Finite Element Method model of the CLT beam.

Fig. 5. Finite Element Method model of the ALU beam.

1 d*w dg bhy
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where shear stress is given by formula Eq. (22).

Presented model may also be used for an analysis of deflection and
stress distribution in transversally loaded high beams (for which
/h < 10) of homogeneous cross-section divided into N + 1 equal

bending layers and N shear layers. This is an alternative for e.g.
Timoshenko model. The limit case corresponding to N — oo and
h;, t; = 0 is equivalent to the 2D equilibrium equations expressed in
terms of longitudinal displacement u(x, z), deflection w(z) and trans-
verse normal stress p(x, z), providing that the Poisson ratio v = 0.

2.3.1. Solving the MS model governing ODEs

The system of governing equations of proposed model was nu-
merically solved for the considered sctatical configurations with the use
of author’s own script based on Finite Difference Method. Total number
of FDM mesh nodes is 901 what results in system of 2709 linear
equations. Due to symmetry of both configurations, longitudinal dis-
placements were assumed equal O in the middle of the span and free
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not-loaded ends were assumed for longitudinal displacements.
Concerning the boundary conditions for distribution of deflection, zero
deflection and its second derivatives — namely, end-moments applied to
each panel - were assumed at supported ends. Please note, that equal
moments applied to all panels are independent of possible cross-sec-
tional moment applied to the beam as a whole by applying unequal
axial forces to the same panels. External point forces were applied in
the form of impulse transverse load q of non-zero value only in single
FDM nodes. Convergence of the proposed method was validated for two
models (B-PST-3-120 and ALU-PSM-5-992- see below) — relative error
is not greater than 0,005%.

2.4. Reference FEA models

Numerical calculation was also performed with the use of the Finite
Element Method in Abaqus 2019 software. Fine mesh was assumed in
order to provide regular shaped elements in the adhesive layers of small
thickness and denser meshing in case of layers of greater thickness so
that localized deformation effects could be accounted for. Point loads
and point supports were accounted for as single-node boundary con-
ditions. All models accounted for approximately 90,000 statical degrees
of freedom (the number of equations in the linear system). Convergence
of the estimate of system stiffness was verified for two models (B-PST-3-
120 and ALU-PSM-5-992- see below) — doubling the density of mesh
resulted in change of system stiffness not greater than 0,1%.

3. Experimental verification

The raw and processed data required to reproduce these findings
cannot be shared at this time due to legal reasons.

3.1. Performed tests
Two statical configurations were analysed:

e Symmetric four-point bending of simply supported CLT beams —
deflection was measured in the middle of the span. Statical config-
uration is presented in Fig. 2. Depending on specimen, beam was
loaded until deflection of L/300 or L/150 was obtained.

e Symmetric three-point bending of simply supported laminated alu-
minium beams [25] - deflection was measured in 3 points and re-
lative longitudinal displacement of panels’ axis was measured in 4
points. Statical configuration and location of dial gauges are pre-
sented in Fig. 3. The beams was loaded in seven steps up to the value
of the bending force equal 155,3N.

Figs. 4 and 5 show numerical FEA models of B-PST-3-120 and ALU-
PSM-5-992 beams (see: descriptions below).

3.2. Beam types

In total 8 types of 3-panel CLT beams were analysed. Description of
general form PP-AA-t-L has the following meaning:

® PP — panel’s material
® B — spruce wood
e SK — plywood
e ALU - PA-38 aluminium alloy
® AA - adhesive
® PS - Sika ® PS polyurethane resin
e PST - Sika ® PST polyurethane resin
e PSM - Sika ® PSM polyurethane resin
e t — adhesive layer thickness in mm (DX means smallest possible
providing adhesion)
e L — span length in mm

Composite Structures 241 (2020) 112088

Dimensions hr, hy and hp denote top, middle and bottom panel
thickness respectively. Following types of CLT beams are considered
(See Table 1).

Table 1

CLT beam types and dimensions.
LP Description Number of b hr hy hg t L

specimens [mm] [mm] [mm] [mm] [mm] [mm]

1 B-PS-3-120 3 100 22 25 22 3 1200
2 B-PST-3-120 3 100 22 25 22 3 1200
3 B-PST-DX-120 1 100 22 25 22 0 1200
4 B-PS-DX-120 2 100 22 25 22 0 1200
5 SK-PST-1-120 7 100 17 17 17 1 1200
6 SK-PST-1-72 6 100 17 17 17 1 720
7 SK-PST-2-120 7 100 17 17 17 2 1200
8 SK-PST-2-72 6 100 17 17 17 2 720

Following types of aluminium laminated beams are considered (See
Table 2):

Table 2
Aluminium beam types and dimensions.
LP Description Number of b hr hg t L
specimens [mm] [mm] [mm] [mm] [mm]
1 ALU-PSM-5-992 1 29,25 9,656 9,656 5 992
2 ALU-PSM-3,1- 1 29,25 9,656 9,656 3,1 992
992
3  ALU-PSM-1,75- 1 29,25 9,656 9,656 1,75 992
992
4  ALU-PSM-1,2- 1 29,25 9,656 9,656 1,2 992
992
5 ALU-PSM-0,5- 1 29,25 9,656 9,656 0,5 992
992

3.3. Material characteristics

3.3.1. Spruce wood

Spruce wood was assumed an orthotropic homogeneous linear
elastic solid. It’'s Young modulus at bending along fibres was de-
termined in a four-point bending test on three specimens (b X h x L:
100 x 22 x 1200 mm; 120 x 38 1200 mm (two specimens)) as equal
E, = 11, 053 GPa. This value was assumed for edge panels with fibres
along beam’s axis. Ratios of this value with other elastic constants for
spruce wood were estimated as average ratios for picea sitchensis and
picea abies found in [26-29]. For the middle panel the Young modulus
in direction transverse to fibres was assumed as an average of the values
respective for radial (R) and tangential (T) directions, equal E;, = 0, 774
GPa. Poisson ratio for middle panel was assumed as an average of vgr
and v values equal 0,398. Poisson ratio for edge panels was assumed
as an average of vy and vy values equal 0,452. Kirchhoff moduli we
assumed equal G = 0, 597 GPa and Ggr = 0, 044 GPa.

3.3.2. Plywood

Plywood was considered an isotropic homogeneous linear elastic
solid. It’s Young modulus was estimated via four-point bending test on
plywood panels — the same as in SK CLT beams - as equal Ep = 8, 460
GPa. A number of FEA tasks were performed in order to examine the
influence of the value of the Poisson ratio — it was found that within the
range of v € (0; 0, 5) the maximum relative change in midspan de-
flection was approximately 0,02%. Finally, vp = 0, 3 was assumed.
Kirchhoff modulus was assumed equal Gp = 0, 600 GPa [30].

3.3.3. PA-38 aluminium alloy
Young modulus was estimated in a simple tension test as Ey; = 77, 7
GPa. Poisson ratio was assumed equal vy = 0, 33.
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3.3.4. Adhesives

Initial secant Young modulus for PSM resin was found in a simple
tension test in ambient temperature on specimens of width 16 mm,
thickness 5 mm and gauge length 45 mm with displacement rate equal
0,01 mm/s. It was found to be Epgy = 4 MPa. Kirchhoff modulus was
determined basing on assumption of incompressibility (v = 0, 5) equal
Gpsy = 1, 33.

PS and PST resins were examined in test of simple tension of spe-
cimens of width 10 mm, thickness 4 mm and gauge length 80 mm. The
specimens were seasoned for 1,5 of a month. The test was performed
with three strain rate values, 0,1/min, 1/min, 10/min. Incompressible
Mooney-Rivlin [31,32] model parameters were found and initial tan-
gent moduli were then determined.

Due to fact that flexible adhesives are in fact viscous materials,
strain rate was estimated for the CLT beams. Maximum shear stress 7,
was estimated in adhesive layers then corresponding shear strain was
calculated and linear strain was determined based on principal stretch
respective for simple shear deformation:

1 T
=A-1==@*+2+7y/r2+4)—1, wh =z
€ 2(y YV ) where y G (33)

Performed analysis indicated that the true strain rate in bent beams
was lower than the lowest of those performed in material examination.
Final values of those material parameters were taken for the lowest
strain rate (See Table 3):

Table 3

Assumed material parameters of PS and PST resins.
Parameter PS PST
Incompressible Mooney-Rivlin: Cy; [MPa] 8,717 2,145
Incompressible Mooney-Rivlin: C;o [MPa] —4,878 -0,118
Initial tangent Kirchhoff modulus: Go = 2(Co1 + C10) [MPa] 7,678 4,054

Initial tangent Young modulus: E; = 3G, [MPa] 23,034 12,162

3.4. Comparison of results

System stiffness, defined as ratio between load and maximum de-
flection, was calculated for each model and compared with the ex-
periment-based stiffness, estimated as a slope of a linear regression. In
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case of CLT beams the set of experimental data for which regression was
calculated was limited to those values for which the stress—strain curve
was constantly convex in order to neglect load process initialization
disturbances. Last experimental data point was either the one corre-
sponding with L/300 deflection, or the peak value before unloading. In
case of the aluminium laminate beams the regression was calculated
basing on 7 experimental data point corresponding with performed load
steps.

Estimation of system stiffness for a three-point bending test of a
simply supported beam according to Bernoulli-Euler model is:

[ 2]
1296 Dy 34

and for Timoshenko model:

[ L]
1296 Dy 6xD; (35)

Estimation of system stiffness for a four-point bending test of a
simply supported beam according to Bernoulli-Euler model is:

v 13"
- [ﬁﬁb] (36)

and for Timoshenko model:

[a5- 5]
" |48 Dy, " 4xD, (37)

The comparison of obtained results for the CLT beams under four-
point bending are presented in Fig. 6 and in Table 4. MS estimate for
zero-thickness adhesive layer are not presented as the Egs. (23) to (26)
are no longer valid for ; = 0 and numerical calculations diverge as
ti —> 0.

Load displacement curves for 3 specimens of SK-PST-1-72 beam, as
well as theoretical and numerical predictions of linear deformation
according to considered model are presented in Fig. 7.

Strain was not measured during the deformation, so no experi-
mental verification of the strain or stress estimate can be performed.
However numerical estimates for each model can be carried out and the
results are close one to another — they are shown Figs. 8-10 and Tables
5-7. Maximum normal stress in case of FEA is located in the neigh-
bourhood of the point of application of external load and it is greater

Fig. 6. Comparison of calculated system stiffness for considered models with experimental results for CLT beams.
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Table 4

Estimated and measured stiffness of CLT beams.
Beam System stiffness k [kN/m]

Bernoulli-Euler BE/EXP Timoshenko T/EXP Multilayer Sandwich MS/EXP Finite Element Analysis FEA/EXP EXP

B-PS-3-120 1181,01 137,06% 289,97 33,65% 671,24 77,90% 706,95 82,04% 861,70
B-PST-3-120 1180,97 142,06% 173,70 20,89% 513,74 61,80% 544,07 65,45% 831,32
B-PST-DX-120 943,04 112,53% 167,56 20,00% - - 877,48 104,71% 838,00
B-PS-DX-120 943,04 96,71% 167,56 17,18% - - 877,48 89,99% 975,08
SK-PST-1-120 337,79 110,80% 103,01 33,79% 266,15 87,30% 277,77 91,11% 304,87
SK-PST-1-72 1563,83 154,22% 213,31 21,04% 955,9 94,27% 980,20 96,67% 1014,00
SK-PST-2-120 372,50 139,76% 106,52 39,97% 239,25 89,77% 261,09 97,96% 266,52
SK-PST-2-72 1724,54 207,27% 217,29 26,12% 757,72 91,07% 807,17 97,01% 832,03

Fig. 7. Force-displacement curves for 6 specimens of the B-PST-3-120 beam and theoretical predictions of the system stiffness.

than the normal stress in the middle of the span due to local effects
caused by point load.

The comparison of obtained results for the aluminium laminated
beams under three-point bending are presented in Fig. 11 and Table 8.

Relative longitudinal displacements of aluminium panels axes are
plotted in Figs. 12 and 13 for two thicknesses of adhesive layer. It can
be seen that for a thin adhesive layer the predictions of MS model and
FEA are qualitatively the same as the observed deformations, yet
quantitative estimate is not precise. However, for adhesive layers of
greater thickness both models underestimate the true displacement —
the thicker the layer, the greater discrepancy with experimental results.

4. Conclusions and discussion of results
It can be noticed that in general:

e BE model overestimates the system stiffness,

o T model underestimates the system stiffness,

e FEA and MS models slightly underestimate the system stiffness,

e FEA and MS models are in good accordance with each other,

e MS model predicts higher values of maximum normal stress than
other models,

e Estimation of maximum shear stress in the middle of bent panels
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Fig. 8. Comparison of estimates of maximum normal stress for CLT beam models.

with the use of Zhuravsky theory applied to MS and BE/T models
gives smaller values than those predicted in FEA,

e Estimation of shear stress in adhesive layer is approximately the
same in all models.

Large discrepancy between BE and T model estimates and experi-
mental results are due to violation of a fundamental assumption of
these models on lack of deplanation. It can be easily shown that ad-
hesive layers are strongly sheared and the panels are displaced one with
respect to another (see: Fig. 14).

The reason for which T model gives such strong underestimate and
it differs so much from the BE model estimate is the unusual small value
of the shear correction factor. The normal stress distribution, on which
the function s(z) is based in Eq. (10), makes the numerator of integrand
bell-shaped in such a way that only the values of G(z) which are close to

the weighted centroid make a considerable contribution to the value of
the integral. In case of all considered beams those values are relatively
small and placed in denominator making the final value of integral
large and its reciprocal - the shear correction factor — small. Due to
invalid assumption on deformation of cross-section, improper normal
stress distribution resulting from that assumption decrease the con-
tribution of the most rigid edge panels to the overall shear rigidity
strongly overestimating the systems shear compliance. However, the
estimate of the shear correction factor given by Eq. (10) can still be
useful if only those basic assumptions are approximately fulfilled - it
can be shown that for very thin adhesive layer (ALU beam 5, in which
t/h = 0, 05) system stiffness predicted by the Timoshenko beam model
is close to estimates of MS model and FEA, approximately 80% of the
value obtained in experiment (See Fig. 15).

Considering slight underestimate of the MS model with respect to

Fig. 9. Comparison of estimates of maximum shear stress in adhesive for CLT beam models.
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Fig. 10. Comparison of estimates of maximum shear stress in bent panels for CLT beam models.

Estimates of maximum normal stress in panels of CLT beams.

Beam Estimate of maximum normal stress in panels [MPa]
Bernoulli-Euler/Timoshenko Multilayer sandwich FEA
B-PS-3-120 6,867 9,850 8,678
B-PST-3-120 6,867 10,958 9,530
B-PST-DX-120 7,911 - 8,330
B-PS-DX-120 7,911 - 8,330
SK-PST-1-120 12,985 15,341 14,279
SK-PST-1-72 7,791 10,113 9,176
SK-PST-2-120 12,220 15,632 14,173
SK-PST-2-72 7,332 10,755 9,485
Table 6
Estimates of maximum shear stress in panels of CLT beams.
Beam Estimate of maximum shear stress in panels [MPa]
Bernoulli-Euler/Timoshenko Multilayer Sandwich FEA
B-PS-3-120 0,269 0,267 0,335
B-PST-3-120 0,269 0,263 0,336
B-PST-DX-120 0,300 - 0,346
B-PS-DX-120 0,300 - 0,346
SK-PST-1-120 0,419 0,431 0,548
SK-PST-1-72 0,419 0,431 0,547
SK-PST-2-120 0,399 0,421 0,533
SK-PST-2-72 0,399 0,422 0,531
Table 7
Estimates of maximum shear stress in adhesives of CLT beams.
Beam Estimate of maximum shear stress in adhesives [MPa]
Bernoulli-Euler/Timoshenko Multilayer sandwich FEA
B-PS-3-120 0,267 0,264 0,275
B-PST-3-120 0,267 0,259 0,268
B-PST-DX-120 0,296 - 0,340
B-PS-DX-120 0,296 - 0,340
SK-PST-1-120 0,375 0,373 0,395
SK-PST-1-72 0,375 0,366 0,388
SK-PST-2-120 0,359 0,353 0,378
SK-PST-2-72 0,359 0,334 0,362
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experimental data and FEA results, it should be noted that axial strain
of a shear layer is neglected. In fact, a linear distribution of longitudinal
displacements in shear layer with non-zero average value requires a
non-zero axial force in such a layer - this is depicted in a simplified way
in Fig. 16. Any change in such a force along beam’s axis could be
equilibrated only by a through-the-thickness change in shear stress
which is assumed to be zero. Thus, the axial force in shear layer must be
constant along beam’s axis what is contrary to the assumption that
longitudinal displacements of bending layers are in general functions of
x. It is clear that simple kinematics assumed for the shear layers is only
an approximation. Neglecting axial stiffness of the shear layers is one of
the reasons for which the MS model provide an underestimated system
stiffness.

Another reason for this underestimate is neglecting the transverse
deformation, namely contraction due to transverse normal stress caused
by applied load. In the MS model work of external forces is completely
transformed into strain energy of shear, elongation and bending, while
in true deformation part of it is transformed into transverse linear
strain, especially in the neighbourhood of external point forces. It is
obvious that point force applied to top panel causes local deformation
in beam resulting in smaller deflection (thus, greater system stiffness) of
bottom panel, where the measurement is performed. Those features of
deformation cannot be observed with an unaided eye even in case of
highly deformed beam (Fig. 16) — they are depicted in an exaggerated
way in Fig. 17.

Proposed MS model is in good accordance in precise (fine mesh)
FEM analysis — in case of all considered beams, the MS model estimates
were 90%-98% of the FEA estimate of system stiffness. Such an estimate
was obtained by solving a problem of much smaller computational size
— the MS model consisted of system of at most 2709 equations (for
three-panel beam), while FE model had more than 90,000 equations.
Another benefit due to use of simplified one-dimensional model is the
lack of any meshing issues, as for the FDM a uniform discretization of a
single dimension is sufficient to obtain the result. It is obvious that FEA
do not require such a dense mesh as the one used, however any attempt
for reduction of number of equations must account for the fact, that
large FE sizes in panels may lead to insufficient number of through-the-
thickness elements or ill-shaped elements in adhesive layers of much
smaller dimensions unless different meshing is used for those layers.
Those issues contribute to the overall computational effort and time in
favour of MS model.
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Fig. 11. Comparison of calculated system stiffness for considered models with experimental results for aluminium beams.

Table 8
Estimated and measured stiffness of ALU beams.

Beam System stiffness k [kN/m]

Bernoulli-Euler BE/EXP Timoshenko T/EXP Multilayer Sandwich MS/EXP Finite Element Analysis FEA/EXP EXP
ALU-PSM-5-992 132,660 457,97% 8,296 28,64% 21,739 75,05% 24,202 83,55% 28,967
ALU-PSM-3,1-992 104,560 332,87% 10,526 33,51% 23,468 74,71% 25,523 81,25% 31,412
ALU-PSM-1,75-992 86,960 252,64% 14,868 43,20% 26,588 77,25% 28,278 82,15% 34,42
ALU-PSM-1,2-992 80,354 225,09% 18,863 52,84% 29,411 82,39% 30,887 86,52% 35,699
ALU-PSM-0,5-992 72,419 177,97% 31,218 76,72% 38,311 94,15% 39,234 96,42% 40,691

Fig. 12. Relative axial displacement of panels of ALU-PSM-0,5-992 beam type. Comparison of numerical estimates and experimental data.

5. Summary

Three one-dimensional linear elastic models of multi-layer compo-
site beams were compared with 2D Finite Element Analysis results and
experimental data corresponding with 8 beam types in three-point
bending and 5 beam types in four-point bending. A system of governing
equations for a multi-layer sandwich beam was derived. An estimation
for the shear correction factor for composite Timoshenko beams was
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proposed. While classical models of Bernoulli-Euler and Timoshenko
provide poor estimate of global system stiffness, proposed multi-layer
sandwich model is in good accordance with FEA results and experi-
mental data. Stress distribution is predicted in a similar manner by all
models, with MS slightly overestimating (wrt FEA) the maximum
normal stress and all one-dimensional models underestimating (wrt
FEA) the maximum shear stress in bent panels.
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Fig. 13. Relative axial displacement of panels of ALU-PSM-5-992 beam type. Comparison of numerical estimates and experimental data.

Fig. 14. Deplanation of cross-section due to relative displacements of bent
panels.

Fig. 15. CLT beam specimen undergoing large deformation.
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Fig. 16. Axial deformation of shear layers.

Fig. 17. Through-the-thickness deformation of the beam.
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