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Eddy Viscosity Transport 
Equations and Their Relation 
to the k'€ IVIodel 
A formalism will be presented which allows transforming two-equation eddy viscosity 
turbulence models into one-equation models. The transformation is based on Brad-
shaw's assumption that the turbulent shear stress is proportional to the turbulent 
kinetic energy. This assumption is supported by experimental evidence for a large 
number of boundary layer flows and has led to improved predictions when incorpo
rated into two-equation models of turbulence. Based on it, a new one-equation turbu
lence model will be derived from the k-e model. The model will be tested against the 
one-equation model of Baldwin and Barth, which is also derived from the k-e model 
(plus additional assumptions) and against its parent two-equation model. It will be 
shown that the assumptions involved in the derivation of the Baldwin-Barth model 
cause significant problems at the edge of a turbulent layer. 

Introduction 
Historically, the turbulence models of choice in aerodynamics 

have been algebraic models, Baldwin and Lomax (1978), John
son and PCing (1985), or, to a lesser extent, two-equation eddy 
viscosity models, like the k-e (Launder and Sharma, 1974) or 
the k-uj model (Wilcox, 1993). Recently, the monopoly of these 
models has been challenged by the re-emergence of one-equa
tion turbulence models. While one-equation models have been 
used earlier (Wilcox, 1993, Bradshaw et al., 1967), most of 
these older models solve an equation for the turbulent kinetic 
energy (or the turbulent shear stress), but, like the algebraic 
models, depend on the specification of an algebraic length-scale 
in order to calculate the eddy viscosity (see, however, Nee 
and Kovasznay, 1969 and Gulyaev et al., 1993). The model 
introduced by Baldwin and Barth (Baldwin and Barth, 1990) 
solves one transport equation for the eddy viscosity and is inde
pendent of an algebraic length-scale which made it very attrac
tive from a numerical point of view. The Baldwin-Barth model 
was derived from the k-e model and a number of additional 
simplifying assumptions. However, in the course of the transfor
mation, several diffusive terms were neglected. The effect of 
changing these terms could not easily be apprehended, and it 
turns out that the Baldwin-Barth model does perform very dif
ferently from the underlying k-e model even for simple equilib
rium flows. 

The change in the diffusive terms also changes the behavior 
of the model near the edge of shear layers and renders the 
equations ill-conditioned in that region as will be shown later. 
This is a severe issue, as the model was on its way to becoming 
the favored choice for aerodynamic applications. 

The aim of the present effort is. to establish a firm connection 
between one- and two-equation turbulence models. To achieve 
this goal, the k-e model will be transformed to a one-equation 
model based on a set of clearly defined assumptions. Numerical 
results based on the new model will be compared to those of 
the underlying k-e model and the Baldwin-Barth model. The 
computations will show that the new one-equation model per
forms very similar to the k-e model in situations were the under
lying assumptions are acceptable. It will also be shown that the 
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Baldwin-Barth model gives results very different from its parent 
k-e model. 

It should be emphasized that the purpose of the present work 
is to establish a clear connection between one- and two-equation 
models of turbulence and not to endorse a new model for general 
use. Due to the close relation to the standard k-t model, the new 
model inherits some of that model's deficiencies. Especially for 
aerodynamic flows, the model does not perform as well as mod
els specifically designed for these applications, as the one-equa
tion model of Spalart and Allmaras (Spalart and Allmaras, 
1990; Menter, 1994a) or the author's SST k-uj model (Menter, 
1993; Menter, 1994b; Menter and Rumsey, 1994). In Menter 
(1994a) results are shown for the SST and the Spalart-Allmaras 
model for the same test cases used in the present work. The 
interested reader can perform a one-to-one comparison between 
the models. 

Turbulence Models 

Transformation of the k-e Model. This section will pres
ent a transformation of the high Reynolds number version of 
the k-e model to a one-equation model. For simplicity the equa
tions will be written in boundary layer coordinates—the general 
form of the equations will be given later. The k-e model reads 
in boundary layer coordinates (x-streamwise coordinate, y nor
mal to layer, and DIDt = d/dt + Uj{d/dxj)): 

Dk __ JduV 
Dt " ^'\dy) 

De e 
T— = c,, - P, 
Dt k dy 

9 fi>, d ^,^ 
e + — — — (k) 

dy \ai, dy 

' k dy \crc dy 

with the following definition of the eddy viscosity: 

k' 
v, = c^ — 

(1) 

(2) 

In order to arrive at a one-equation model, we follow Baldwin 
and Barth and express the time derivative of the eddy viscosity 
by the time derivatives of k and e: 

DP, 

Dt 
kpk 
e Dt 

k^De^ 

e^ Dt 
(3) 
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Replacing the total derivatives of k and e on the right-hand 
side by the right-hand sides of Eq. (1) gives a single transport 
equation for the eddy viscosity, which, however, depends on k 
and e as well as on the eddy viscosity: 

Dt 
= F{V,; k; e) (4) 

This presents a closure problem with one equation for three 
unknowns. In order to close the equation, two additional rela
tions have to be provided. The first one is the definition of the 
eddy viscosity, Eq. (2) , which allows one to replace e by the 
eddy viscosity and the turbulent kinetic energy: 

(5) 

with c^ = 0.09. Note that this relation does not involve any 
additional assumptions and the resulting equation is still equiva
lent to the original k-e model. A second relation is needed to 
eliminate k from the right-hand side of Eq. (4) and this relation 
cannot be derived from the k-e model (otherwise the k-e equa
tions would be overspecified). However, there is a relation 
readily available that relates the turbulent kinetic energy and 
the eddy viscosity, which has been confirmed for a large number 
of experimental boundary layer data and was used by Bradshaw 
et al. (1967) in the derivation of their one-equation model, 
namely (see also Townsend, 1962): 

1^, 
du 

dy 
Utk (6) 

where a, is a constant and \—u'v'\ is the turbulent shear stress. 
Note that the relation between the turbulent shear stress and the 
turbulent kinetic energy that results from standard two-equation 
models is: 

Production^ 

Dissipation^, 
ttik (7) 

using fli = ^c,,. However, Eq. (7) is not confirmed by experi
mental evidence in strong adverse pressure gradient flows. It is 
therefore to be expected that the introduction of Eq. (6) will 
actually lead to improved predictions of non-equilibrium flows. 

Since we have a complete set of equations, the one-equation 
model can be derived by straightforward substitution. The result 

Dv, 

Dt 
= CiV, 

+ 2 

du 

dy 
— €2^ H (ly,) 

dy \ac dy 

(cTe - g t ) d^P, (dv,y 

+PI 
1 

du 

dy 

d' 

dy^ 

du 

dy 
(8) 

Equation (8) is complicated and difficult to solve numerically. 
However, the contribution of the terms in the last parenthesis 
of the equation is proportional to the difference in the diffusive 
coefficients of the k- and the e-equation. For a number of k-e 
models these coefficients are equal and the whole term is exactly 

zero. It was shown in detail in Menter (1994c) that the influence 
of these terms is small and can be neglected. The second as
sumption in the derivation of the model is therefore: 

(Tt = a, = a ( 9 ) 

The resulting high Reynolds number form of the equation is: 

Dv, 

Dt 
= Cif, 

du 

dy 
f 2 

d (V, d 

dy \cr dy 
{y.) (10) 

Equation (10) involves the inverse of the von Karman simi
larity length-scale L^^: 

1 

^VK 

d 

dy 

du 

dy 

du 
(11) 

The von Karman length-scale was not very successful when 
used in a mixing length model, mainly because it is singular 
whenever the denominator goes to zero. In the present one-
equation model, the singularity (of the inverse of LVK) is not a 
problem, because the destruction term that involves L^K can be 
limited by any other term that has the same dimension, as will 
be shown later. In the framework of eddy viscosity transport 
models, the von Karman length scale was also utilized in an 
unpublished model by Baldwin (1993), and in a model by 
Durbin et al. (1994), but was never formally derived from the 
k-e model. 

The formalism used in the derivation of Eq. (10) can be 
applied to transform any two-equation eddy viscosity model to 
a one-equation model. In the Appendix the transformation for 
the k-u) model is presented. 

The coefficients of the one-equation model follow directly 
from the k-e model constants: 

C] = (c,2 ~ Cci)Vcv = 0.144; a = a,, = I 

1 
Cl + 1.86 (12) 

The standard k-e model constants of c\\ = 1.44, 0^2 = 1-92, 
c^ = 0.09 = a] and cr„ = 1.0 have been used. Note that the 
transformation leads to C2 = 21 a^ =1.71 with a^ = 1.17. Since 
a was chosen to be equal to Uj, and not equal to a^, the coeffi
cient C2 had to be slightly recalibrated to match the law of the 
wall. 

The key to the understanding of the one-equation model lies 
in the comparison of Eqs. (6) and (7). For equilibrium flows 
the two formulations are equivalent and the one-equation model 
will be very close in performance to the k-e model. For nonequi-
librium adverse pressure gradient flows, Bradshaw's relation, 
Eq. (6) , is better confirmed by experiments than Eq. (7). For 
these flows the ratio of Production/Dissipation becomes larger 
than one in the outer region of the boundary layer and the k-e 
model will give higher shear stresses than the one-equation 
model. Since the k-e model is well known to overpredict shear 
stress levels for these flows, it is to be expected that the one-
equation model will lead to improved predictions. For flows 
without shear, Bradshaw's relation, Eq. (6) , has no meaning, 
and the one-equation model cannot be expected to give good 
results. An example is isotropically decaying turbulence, where 
one-equation models predict that the eddy viscosity stays con
stant, whereas the k-e model predicts, more realistically, a decay 
of the turbulent variables. This deficiency is associated with the 
lack of a second scale in the model. For shear flows the second 
scale is provided by the mean shear rate. Regions where the 
mean shear is locally zero are bridged by the diffusion and 
the convection terms. Note, however, that the overwhelming 
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majority of applications of turbulence models is for shear flows, 
for which one-equation models are well suited. 

The main assumption in the derivation of the one-equation 
model is that the turbulent shear stress is proportional to the 
turbulent kinetic energy. In standard two equation models this 
assumption is equivalent to: 

Production^ = Dissipation^ (13) 

used in the derivation of the Baldwin-Barth model. However, 
in that model only the production and dissipation terms are 
transformed based on Eq. ( 1 3 ) . The diffusion terms are not 
transformed exactly. The high Reynolds number form of the 
Baldwin-Barth ( B B ) model reads: 

DP, 

Dt 
= CiV, 

^ dP,dP, d P, d 
Ci H {Vt) 

dy dy oy \a dy 

(14) 

The original Baldwin-Barth model solves an equation for the 
turbulent Reynolds number. In order to allow a one-to-one com
parison of the constants, it has been reformulated here (exactly) 
as an equation for the eddy viscosity. The transformed constants 
for this model are: 

Ci = (CJ2 - c,i)vc^ = 0.24; a = a, = 0.7 

C2 = - ^ + - = 2.86 
K a 

(15) 

They are based on c î = 1.2, Ca = 2.0, c^ = 0.09 = a\ and a^ 
= 0.7 for the underlying k-t model. The low Reynolds number 
form of this model can be found in Baldwin and Barth (1990) 
and is not repeated here. 

In order to distinguish the new model, Eq. ( 1 0 ) , from the 
other models in this study, we call it (fc-e)i£ model where the 
subscript stands for one-equation. The main difference between 
the {k-€)iE and the BB model is the form of the destruction 
term (c2 term). Although the derivation of the BB model starts 
out from the fc-e model, a comparison with Eq. ( 8 ) shows that 
a number of additional assumptions were introduced in order 
to arrive at Eq. ( 1 4 ) . The link between the BB model and the 
k-t model is thereby broken and it is for this reason that the 
two models perform very differently, as will be shown later. 

Low Reynolds Number Terms. The assumptions leading 
to the (k-t)iE model are obviously not correct in the viscous 
sublayer, so that the low Reynolds number terms of the k-t 
model cannot be carried over to the one-equation model. This 
is not a great loss because the near wall terms of the k-e model 
are generally complicated and difficult to integrate so that a 
one-to-one transformation is not desirable. 

The purpose of damping functions is to reduce the eddy 
viscosity in the sublayer. In the present model this is achieved 
by reducing the production term near the wall and by multi
plying the high Reynolds number eddy viscosity, P,, by a damp
ing function in order to arrive at the corrected eddy viscosity, 
V,. The damping functions are designed in a pragmatic way that 
ensures that the resulting model is numerically stable and does 
not require excessive grid resolution near the surface. Two 
damping functions are introduced, D, in front of the production 
term and D2 into the definition of the eddy viscosity: 

ClP, 
du 

dy 
-" DiCiP, 

du 

U, = D2P, 

based on the following expressions: 

Di 

£»2 = 1 

V, + V 

P, + V 

- e^'V'*' KU)^ 

(16) 

(17) 

(18) 

(19) 

and K = 0.41. Furthermore, the molecular viscosity is added 
into the diffusion term in analogy to the k-e model. The coeffi
cient A ^ is equal to A^ = 13. 

General Form of the Equations. In order to arrive at an 
invariant formulation, all occurrences of the strain rate are re
placed by the following invariant expression: 

S = 4U,jiU:j+ Uj,) (20) 

As has been pointed out by Spalart and Allmaras (1994) , 
alternative formulations like the absolute value of the vorticity, 
or •iUijUij are possible, but for thin shear flows there is little 
difference among them. In general, applications S has the advan
tage of being invariant under system rotation and of not produc
ing turbulence under solid body rotation. The term involving 
the inverse of the von Karman length-scale becomes: 

£ * . - & ? — = 
1 

LiVK 
(21) 

An alternative but numerically more expensive (and not yet 
tested) form would be: 

d^Ui 

v] V,\ 
dxjdxj dxtdxk 

du, dus 

dxi dxi 

(22) 

Similarly, all j -der ivat ives are replaced by their complete 
invariant forms. 

As was pointed out previously, the inverse of the von Karman 
length-scale can become singular whenever S goes to zero, lead
ing to an infinite destruction term Ek.^. In order to prevent this 
from happening, the destruction term is limited by a multiple 
of the Baldwin-Barth destruction term, ^ B B : 

Etc = CjEjiB tanh 
CIEB 

(23) 

(24) 

with a constant C3 = 7. EBB is defined as: 

^ dp, dP, 

dxj dxj 

Equation (23) provides a smooth transition between the two 
formulations whenever JÊ .̂  goes to infinity. For most of the 
flow Et-e < C^EBB and the original formulation is recovered. A 
less smooth transition could be achieved by Eu = min (Ek-a 
CJEBB). The numerical results are not sensitive to the constant 
C3. 

The final form of the (k-e)iE model is: 

DP, „ „ 
-—- = ciDiV,S 
Dt 

CiEu + JL 
dxj 

V + — 
a 

d_ 

dX: 

V, = D2P, 

(&,) (25) 

(26) 

Note that the above equations are still strictly local, without 
dependence on the distance from the surface. 

N u m e r i c a l R e s u l t s 

Free Shear Flows. Self-similar shear layers are very im
portant test cases which provide insight into the performance 
of turbulence models, without the need for large computer re
sources. In this section, the models will be tested against the 
standard free shear cases, namely, a self-similar mixing layer. 
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Table 1 Definition of variables for free shear flows 

Far wake Mixing layer Plane/round jet 

N 

Additional definitions 

u{x,y) = U^- J—U(r,) 

v,ix, y) = —rr Nirf) 

V = y.. 

D = 2 pM(f/« - u)dy 
Jo 

u(x,y)= UMv) 

v,(x, y) = xUtNiv) 

_ y 

u(x, y) Uiv) 

v,(x, y) = ^x^'-'^'^Nirj) 

X 

2 Jo 
y'dy 

the plane and round jet and the self similar far wake. The 
equations are cast into self-similar form following Wilcox 
(1993) , resulting in the following two ordinary differential 
equations for the nondimensional velocity U and the nondimen
sional eddy viscosity A :̂ 

V— - — — 
drj r?-' dri 

r}'N d£ 
dr] 

= SuU (27) 

^dN 

dr) 

with: 

LA. 
T]' drj 

— r]'N—• 
a drj 

S«N + c. 

T]' drj \ 

dll 
drj 

dU 

N 
(28 ) 

dt] 

dU 

drj 

( 2 9 ) 

where j = I for the round jet and j = 0 for the plane flows. 
The nondimensional variables are defined as given in Table 2 
and Table 3: The coefficients in Table 2 can be obtained from 
Wilcox (1993) and S ,̂ = 25^ - S,. (Note that the coefficient 
5s- in Wilcox (1993) should be 2U for the round jet.) 

Asymptotic Solution Near Shear Layer Edge for the (fc-
e)iB and the Baldwin-Barth Model. The analysis of the as
ymptotic solution near the edge of turbulent layer is an im
portant part of turbulence model evaluation. It is especially 
important to determine the sensitivity of the solution to changes 
in the freestream values specified for the turbulence variables 
outside the layer. Models with solutions that change signifi
cantly with the freestream conditions are not acceptable, be
cause the "cor rec t " freestream conditions are not known in 

Table 2 Coefficients for free shear flows 

Flow 

Far wake 

Mixing layer 

Plane jet 

Round jet 

Su 

1/2 

0 

mu 

u 

^N 

0 

-u 

-\I2U 

0 

nn) 
1 

2 ' 

- f U(n')dr)' 

1 f 
- - J^ f/(rj')t/7?' 

1 f 
- - U{7j')r]'drj' 

rj Jo 

most applications. The problem has been analyzed in detail by 
Menter (1992a) and Cazalbou et al. (1994) for two-equation 
eddy viscosity models. It was shown that the k-oj model has a 
severe dependency on the values specified for cj outside the 
layer. It was also shown that the k-e model does not suffer from 
this ambiguity. There is no theory available to decide whether 
a model has a freestream sensitivity, but the existence of an 
asymptotic algebraic solution near the boundary layer edge 
seems to be at least a necessary condition for a model to be 
well conditioned. 

The analysis does not depend on which shear flow is selected 
for the analysis, since the existence of an algebraic solution 
implies that the terms involving Sy and S^ decay faster than the 
other terms near the edge of the layer and can therefore be 
neglected. The new variable fj = rj - 6 is introduced near the 
shear layer edge, 6, and algebraic solutions of the form: 

dU(v) 
dfj 

= AT?"; Nifj) = Bfj = Rf,P (30) 

are introduced into the equations. Straightforward algebra 
shows that the exponents for the (A:-e)i£ model are: 

-1 4- - 4ca( 1 - -
a 

2C2 
0; /9 = 1 (31) 

Therefore, the velocity and the eddy viscosity approach the 
shear layer edge linearly. It is interesting to note that the solution 
for the k-e model is also linear for at = CT, = 1 so that the 
asymptotic behavior of the k-e model carries over to the present 
one-equation model. 

The Baldwin-Barth model does not have a solution of the 
form given by Eq. ( 3 0 ) . However, as pointed out before, there 
is no theory available to show that the existence of algebraic 
solutions is a sufficient, or even a necessary condition to prevent 
free stream dependency. Numerical test will have to be used to 
obtain insight into the model characteristics. 

Figure 1 shows spreading rates for a far wake, computed with 
the Baldwin-Barth model as a function of the freestream value, 
Nf, and the number of grid points, n, across the layer 0 == r? 
< 0.4. The gridpoints are evenly distributed and the highest 
freestream values shown in Fig. 1 are 2 percent of the maximum 
value of N inside the layer. The Baldwin-Barth model shows a 

Table 3 

Flow 

Spreading rates for free shear flows 

k-e (*:-e)iE Experiment 

Far wake 
Mixing layer 
Plane jet 
Round jet 

0.256 
0.100 
0.109 
0.120 

0.250 
0.084 
0.111 
0.131 

0.365 
0.115 

0.100-0.110 
0.086-0.095 
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Fig. 1 Spreading rates of the Baldwin-Barth model for far wake, de
pending on freestream values, Nf, and number of gridpolnts, n 

strong sensitivity to the values specified for A'̂ , especially as 
the grid is refined. Furthermore, none of the solutions is in 
acceptable agreement with the experimental spreading rate of 
0.365 as quoted from Wilcox (1993). 

Figure 2 shows the computed velocity profiles on the finest 
grid (M = 4000) for the highest and the lowest freestream val
ues. It is apparent that the model develops extremely high gradi
ents in the velocity profile for the lower freestream values. The 
high gradients are the reason why the freestream sensitivity 
does not show up on the coarse grids, where they cannot be 
resolved. No grid independent solution could be obtained for 
the low values of N^. Even if the number of points is doubled 
again to n = 8000, the solution develops even higher slopes 
and lower spreading rates. As with the k-to model, the influence 
of the freestream conditions is not restricted to the vicinity of 
the boundary layer edge, but affects the whole layer. However, 
the k-w model becomes more diffusive with decreasing 
freestream values and no grid sensitivity is observed. 

Spalart and Allmaras (1994) have investigated the behavior 
of a turbulent front and found that for the Baldwin-Barth model 
the front propagates in the (physically) incorrect direction away 
from the non-turbulent region. They also report that their results 
are dependent on the freestream values specified for the eddy 
viscosity, consistent with the present findings. Spalart (1994) 
also reports similar problems with the Baldwin-Barth model as 
shown in Fig. 1 for his computation of a self-similar mixing 
layer. Like in the present calculations, his results are highly 
sensitive to grid resolution and free-stream values. On the other 
hand, Baldwin and Barth (1990) have tested the model for a 
flat plate zero pressure gradient boundary layer (based on a 
Navier-Stokes code) and found only a moderate dependency 
on the freestream values. Note, however, that Navier-Stokes 
grids are generally coarse near the boundary layer edge (assum
ing that all points are plotted in Baldwin and Barth (1990), 
there are about forty points across the boundary layer but only 
ten of them in the wake region) so that it is apparent that the 
problem was not resolved in that computation. Note also that 
the present author has tested the Baldwin-Barth model in Na
vier-Stokes codes (Menter, 1992b) and did at first not realize 
the severity of the problem for the same reason. However, Rog
ers (1994) reported that he could not obtain grid independent 
solutions for airfoil flows with the Baldwin-Barth model using 
the INS2D Navier-Stokes code. 

Goldberg et al. (1994) and Goldberg (1994) have proposed 
a number of "pointwise" one-equation models, which are, in 
their high Reynolds number version, formally identical to the 
Baldwin-Barth model (note that the present problems are inde
pendent of the low Reynolds number treatment). Although 
Goldberg does not report problems near the edge of turbulent 
layers, computations by the present author have shown the same 
deficiencies as with the BB model. Furthermore, the results 
presented in Goldberg (1994) for self-similar flows could not 
be reproduced with any reasonable combination of freestream 

values and grid distributions. These references are therefore not 
considered in the present discussion. 

What are the implications of the results shown in Figs. 1-2 
for Navier-Stokes applications? There are two different strate
gies. The first one is to specify small values for the eddy viscos
ity in the freestream (inflow). The advantage of low values is 
that they can be specified unambiguously—values that are a 
fraction of the molecular viscosity will ensure that they are 
small compared to those inside the layer. However, due to the 
large gradients developing in this case, no grid independent 
solutions can be obtained, a situation not acceptable in a Navier-
Stokes code. The second strategy is to specify large freestream 
values (say x percent of the maximum values inside the layer). 
Tests have shown that in order to reproduce the experimental 
spreading rates of free shear flows, freestream values of about 
20-30 percent of the maximum inside the layer have to be 
used. Values that high would severely impact laminar regions 
in the flowfield and are certainly not acceptable. 

The ik-e),E model was subjected to the same tests as the 
Baldwin-Barth model. The model did not show any freestream 
dependency, as long as the freestream values are small ( < 1 
percent) compared to the values inside the layer. Furthermore 
the solution for the {k-e)iE model did follow the algebraic solu
tion given by Eq. (30) near the boundary layer edge. Even for 
very small values, grid independent solutions were obtained 
with only about 15 points inside the half-layer. 

Table 3 compares the spreading rates of free shear layers as 
computed with the standard k-e and the (k-e)ir, model. The 
experimental values are taken from Wilcox (1993). The Bald
win-Barth model is not included because no grid- or freestream 
independent solutions could be obtained. It is interesting to note 
that the (^-e)ig model gives very similar spreading rates to the 
k-e despite the fact that Bradshaw's assumption is not generally 
true for these flows. 

Self-Similar Boundary Layer Flows. Wilcox (1993) has 
popularized the use of defect layer computations for testing 
turbulence models under equilibrium pressure gradient condi
tions. As expected, the Baldwin-Barth model has the same 
freestream dependency as for the free shear layers. Figure 3 
shows computations with this model for the zero pressure gradi
ent boundary layer experiment of Wieghardt (Kline et al., 1981) 
with two different freestream values on a fine grid of 1000 
points. The high freestream value is about 1 percent of the 
maximum eddy viscosity value inside the boundary layer. 
Again, the solution develops extreme gradients near the bound
ary layer edge for the low freestream values. The same computa
tions have shown only a moderate sensitivity on a coarse grid. 

0.£ 

0.6 

p- 0.4 

Baldwin-Barth (high) 

Baldwin-Barth (low) 

Experiment 

0.2 0,4 0.6 O.i 

Fig, 2 Velocity profiles for far wake with Baldwin-Barth model for high
est and lowest freestream values (number of gridpoints, n = 4000.) 
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Fig. 3 Velocity profiles for defect layer with Baldwin-Barth model and 
two different freestream values, N,, (fine grid with n = 1000) 
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Fig. 5 Velocity profiles for defect layer, fi^ = 8.7 

It is obvious from these results that the freestream sensitivity 
could not be resolved in Baldwin and Earth (1990). As in the 
free shear layer computations, the influence of the freestream 
values and grid densities is not confined to the vicinity of the 
boundary layer edge, but affects the whole layer. No grid con
verged solution could be obtained with the Baldwin-Barth 
model for the low freestream value. From the present study it 
is not clear whether an asymptotic solution exists for this model 
as Nf goes to zero and the number of grid points goes to infinity. 
Whenever the number of grid-points was increased, the solution 
changed with an increase in the slope near the edge and a lower 
eddy viscosity inside the layer. 

Figure 4 shows a comparison of results for the zero pressure 
gradient case of Wieghardt for the k-e and the (k-e)iE models. 
Both models give very accurate velocity profiles and C/-predic
tions. 

Figure 5 shows the velocity profiles for the adverse pressure 
gradient flow of Clauser (Kline et al., 1981) for a nondimen-
sional pressure gradient of /3r = 8.7. It is well known that the 
standard k-e model overpredicts the skin friction for adverse 
pressure gradient flows, in this case by about 50 percent. Note 
that the apparent differences in boundary layer thickness be
tween the computations and the experiment are a result of the 
definition of rj, involving the friction velocity Ur • The introduc
tion of Bradshaw's relation, Eq. (6) , into the (k-e)iE model 
obviously improves the predictions, but the skin friction is still 

too high by about 30 percent. Due to the close relationship of 
the (k-e)iE model to the standard k-e model, it had to be expected 
that the deficiency in the adverse pressure gradient behavior of 
the k-e model would not entirely be avoided by the new model. 

Navier-Stokes Computations. All of the following test 
cases have been computed with the NASA Ames INS2D and 
INS3D codes (Rogers and Kwak, 1988). All flows in this study 
are part of a test base assembled by the author to evaluate the 
performance of turbulence models. The flows have been set up 
in a way to match the experimental boundary conditions as 
closely as possible. Furthermore, all computations are per
formed on grids that have been shown to produce grid indepen
dent solutions. A number of additional test of the present models 
can be found in Menter (1994c). Ah k-e model computations 
were based on Launder and Sharma (1974). 

It was initially intended to compare results of all three models 
for the following Navier-Stokes applications. However, due to 
the severe deficiencies discovered in the Baldwin-Barth model 
for the equilibrium flows, the model was dropped from the 
study since the results are invariably either grid- or freestream 
dependent. 

Flat Plate Zero Pressure Gradient Boundary Layer. Fig
ure 6 shows a comparison of the computed wall skin friction 
coefficients, Cf, versus displacement thickness, 6, for a flat plate 
zero pressure gradient boundary layer. The computations are 
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Fig. 4 Velocity profiles for defect layer, /3r = 0 
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Fig. 6 Skin-friction coefficient for flat plate boundary layer 
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Fig. 7 Velocity profiles for flat plate boundary layer in inner coordinates 

compared with the experimental correlation of v. Karman and 
Schoenherr. The low Reynolds number version of the k-e model 
is due to Launder and Sharma (1974). Both models are in good 
agreement with the experimental correlation. The one-equation 
model gives accurate results, as long as the first grid point 
satisfies yt < ~2.0. The Launder-Sharma model requires a 
significantly smaller grid-spacing near the wall of j'J" < ~0.3. 
(Note that a finer grid-spacing is used compared to Menter 
(1994c), leading to improved results for the Launder-Sharma 
model.) 

The velocity profiles in inner coordinates are depicted in Fig. 
7. Again both models are in good agreement with the law of 
the wall. 

Driver Separated Adverse Pressure Gradient Flow. In 
Driver's flow (Driver, 1991), a turbulent boundary layer devel
ops in the axial direction of a circular cylinder. A strong adverse 
pressure gradient is imposed on the flow by diverging wind 
tunnel walls plus suction applied at these walls. The pressure 
gradient is strong enough to cause the flowfield to separate. The 
inflow Reynolds number is 2.8 X 10^ based on the diameter, 
D, of the cylinder. The inflow boundary layer thickness is about 
0.2D. The experiments offer independent wall-skin friction 
measurements and it was found in previous tests (Menter, 
1994c) that the data are highly self-consistent and well suited 
to test models under strong pressure gradient conditions. The 
computations are performed on a 60 X 3 X 60 (verified on a 
90 X 3 X 90) grid. 

Figure 8 shows the wall skin friction coefficient for this flow. 
As in previous comparisons, the standard k-e model predicts 
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Fig. 9 Velocity profiles for Driver's case CSO at x/D •• 
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significantly higher values than the experiment. The (/c-e)iE 
model is in better agreement with the data, but still somewhat 
too high, especially in the region where the experiment shows 
separation. 

For the velocity profiles shown in Fig. 9 the one-equation 
model is a little closer to the data, but both models underpredict 
the viscous-inviscid interaction. Again, the (A:-e)iE model pre
dicts a stronger retardation due to the pressure gradient, but not 
enough to be in good agreement with the data. 

As the flow encounters more severe nonequilibrium condi
tions, the differences between Bradshaw's relation, Eq. (6), 
and the relation enforced by the two-equation model, Eq. (7), 
become more severe and the predictions of the two models 
start to deviate. Figure 10 shows the ratio of production versus 
dissipation as predicted by the standard k-e model at the location 
of the maximum turbulent shear stress. This ratio is an indicator 
of the nonequilibrium effects and enters into Eq. (7). Since 
Bradshaw's relation is generally more realistic than Eq. (7) , the 
(k-e)iE model gives better results than the standard k-e model. 

Backward Facing Step Flow. The backward facing step 
is one of the most widely used test cases for turbulence model 
evaluation. While early results for this flow indicated that 
the k-e model underpredicts the reattachment length by —30 
percent, more recent results have shown that the model is off 
by only about 5 percent. The earlier computations had not 
enough resolution to accurately predict the flow. The test 
case in this study is the flow of Driver and Seegmiller (1985). 
The Reynolds number, based on the upstream momentum 
thickness 0 is Re© = 5,000 and the ratio of the boundary 
layer thickness to step height is about 1.5. The expansion 
ratio is 1.125. The computations have been performed on a 
120 X 120 grid with substantial grid refinement near the step. 
The computations are virtually identical to those performed 
on a 240 X 240 grid. 

Figure 11 shows the computed and the experimental skin 
friction distributions. The k-e model underpredicts the reat
tachment location by about 5 percent and is generally not in 
good agreement with the data in the separated region and 

Fig. 8 Skin-friction for Driver's case CSO 
Fig. 10 Ratio of Production/Dissipation for Driver's case CSO as com
puted from the k-e model 
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near reattachment. Different low Reynolds number forms of 
this model give different skin friction distribution, so that 
this behavior is certainly a result of the low-Reynolds number 
terms. The (k-e),E model is in very good agreement with the 
data. The reattachment location is predicted within experi
mental uncertainty, and there are no overshoots near reattach
ment. Especially impressive is the skin friction recovery 
downstream of reattachment, where other models tend to fall 
more severely below the experiments (Menter, 1994a; 
Menter, 1993; Menter, 1994c). 

The velocity profiles depicted in Fig. 12 show that the high 
Reynolds number differences between the models are amazingly 
small. The velocity profiles are almost identical even inside the 
separation bubble and it appears again that the two-equation 
model does not offer an advantage over the one-equation model. 
Both of the present models fail to predict the recovery of the 
velocity profiles downstream of reattachment. This is a general 
problem with existing models and has been observed before 
(Menter, 1994c). 

Conclusions 
The connection between one- and two-equation models of 

turbulence has been reexamined. It was found that the standard 
k-e model can be transformed into a one-equation model based 
on only two assumptions. The first assumption is Bradshaw's 
relation that the turbulent shear stress is proportional to the 
turbulent kinetic energy. This assumption corresponds to 
Production* = Dissipation* in standard two equation models and 
is therefore closely satisfied for equilibrium flows. For nonequi-
librium flows, Bradshaw's relation is actually better confirmed 
by experiments than the relation enforced by the standard k-e 
model. The second assumption is that the diffusion coefficients 
in the k- and the e-equations are identical. By enforcing this 
condition in the k-e model, it was shown in Menter (1994c) 
that only minor changes resulted from it. The new model was 
termed (k-e)iE model and tested against the Baldwin-Barth 
model and the standard k-e model. 

Free-shear layer computations have shown that the Bald
win-Barth model is ill-conditioned near the boundary layer 
edge. The model does not posses an algebraic solution in that 
region and produces unlimited gradients in the velocity as 
the grid is refined. Furthermore, results are sensitive to the 
freestream values specified outside the layer. No grid and 
freestream independent results could be obtained with this 
model and it was for this reason not included in the rest of 
the study. The reason for the failure of the model lies in a 
destruction term that does not follow from the transformation 
of the two-equation model. 

The findings for the Baldwin-Barth model re-emphasize that 
the behavior of turbulence models near the turbulent-nonturbu-
lent interface is one of the most important aspects of turbulence 
modeling. Shortcomings in that area are not confined to the 
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Fig. 12 Velocity profiles for backward facing step flow at x/h = 2, 4, 
6.5, 8, 14, 32 

immediate vicinity of the interface, but change the solution 
through the whole layer, essentially nullifying the calibration 
process. Unfortunately, not enough attention is paid to this prob
lem in the derivation and calibration of most new models, leav
ing the door open for potentially devastating failures. This is 
also true for Reynolds stress models. 

The new one-equation model does not suffer from these 
deficiencies and shows a very close similarity to its parent 
two-equation model near the boundary layer edge. A compar
ison of the free shear layer results has shown that the predic
tions of the one- and two-equation models are fairly close to 
one another. 

The one-equation model gives almost identical results to the 
k-e model for zero pressure gradient boundary layers. A number 
of increasingly stronger adverse pressure gradient flows has 
shown that the results of the one-equation model improve com
pared to the k-e model predictions as the nonequilibrium effects 
become more important. The improved results confirm that the 
main assumption going into the (k-e),E model is more realistic 
than the relation enforced by the k-e model. 

The computations have shown that the new one-equation 
model produced very similar, and for boundary layer flows 
improved results when compared to the standard k-e model. 
Because of its simplicity, the model is also attractive from a 
computational standpoint. However, a note of caution should 
be made concerning the use of the second derivative of the 
velocity field in the von Karman length scale. From the limited 
tests the model has undergone at this stage, it is not certain 
whether the von Karman length scale will be general enough 
for the computation of complex three-dimensional flow fields, 
especially for cases that are severely out of equilibrium. Further 
tests will have to be conducted to evaluate the model under 
these conditions. 
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A P P E N D I X 
Transforming the k-(o Model 
The transformation leading to the {k-e)iE can be used to trans
form any two-equation model into a one-equation model. An 
example is the k-u model of Wilcox (1993): 

Dk 

Dt = v,\ dy) 
P*kuj + — 

dy 

Duj (duV . , 

Dt \dy J + 
d_ 

dy 

c^i', — (fc) 
ay 

aiy,-—(uj) 
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In the k-LO model the definition of the eddy viscosity is: 

k 
v, = -

u 
With the help of Eqs. (3) and (6) the following one-equation 
model can be derived (high Reynolds number form): 

DP, 
Dt 

dy 
du 
dy 

+ C2P,• 
du 
dy 

dy dy \ ' dy 

The constants in this model follow directly from the k-uj con
stants: 

with: 

C| = UiU = 0 . 0 8 3 3 ; C2 = 2o" = 1 

P = 0.075; a = 0.5; P* = al = 0.09 

Note that the diffusion coefficients in the k- and the w-equation 
are equal so that no terms proportional to the difference of these 
two constants appears (see Eq. (8)). 

First tests with this model have shown that the solutions 
develope large gradients in the velocities near the boundary 
layer edge, similar to the Baldwin-Barth model. This is possibly 
due to the small diffusion coefficient of u = 0.5. Note also that 
the k-LO model has a strong dependency on freestream values 
(Menter, 1992a), which seems to carry over to the one-equation 
model. More analysis and careful testing, as well as a possible 
recalibration of the coefficients will be required before the 
model can be applied to engineering flows. 
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