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Abstract—This paper presents a probabilistic framework for
making decisions about the replacement of ageing power equip-
ment. The framework involves three steps: first, to identify the
most important and critical components of the system for overall
system reliability; secondly, to performPareto analysis to relate the
replacement of the components to the effect on system reliability
indices; finally, to determine the optimum scenario for replace-
ment based on a comparison between the cost of unreliability due
to deferring the replacement and the saving on reinvestment cost.
The proposed approach is illustrated on a meshed test system
modeled using U.K. transmission system parameters, a represen-
tative transformer age profile and regulatory energy not supplied
values. The results demonstrate the feasibility of the framework
for application in the area of power system reliability, and show
its feasibility for informing replacement decisions.

Index Terms—Ageing equipment, criticality measure, power
system reliability, replacement plan, transmission network.

I. INTRODUCTION

A GEING of power system equipment is one of the major
issues facing power system utilities at present. Much of

the installed equipment has exceeded its design life time and
will, in time, potentially become less reliable. Consequently,
having a considerable amount of aged equipment in a network
will increase the risk of customer interruptions, which even-
tually could reach a level which is no longer acceptable. Ad-
ditionally, the cost of replacing components in a transmission
system is particularly high and the decisions regarding replace-
ment should not be taken lightly. For example, the cost of re-
placing a power transformer can be around £4 million. There-
fore, making correct asset management decisions is critical and
careful analysis is required to find the balance between relia-
bility and reinvestment costs. Additionally, electricity regula-
tory authorities commonly apply a reliability incentive scheme,
as part of the price control scheme, under which the allowed
level of return on reinvestment is determined.
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In recent years, there has been an increasing amount of
literature on using quantitative risk approaches in replacement
decision making [1]–[6]. One can classify those approaches
into two classes, the risk matrix method [1]–[4], and the risk
indices method [5], [6]. In the former, a risk matrix is con-
structed to define the replacement priority of components using
their condition or age as the first axis and their criticality to the
system, environment, and safety as the second axis. The risk
matrix method is effective in prioritizing replacement priority
into broad categories. The result, however, is sensitive to the
characteristics of the matrix which may not be optimal for all
cases and it does not directly link replacement with system
reliability.
The risk indices method, which can also be referred to as the

reliability indices method, allows integration of reliability op-
timization techniques. In the first application of the reliability
indices method [5], the replacement decision is taken based on
a comparison between the unreliability cost and the savings on
capital expenditure when deferring the replacement action to the
following years. However, the approach described makes a de-
cision on the replacement of a single component and not the
entire fleet. Reference [6] has implemented a similar approach
on a fleet of underground cables. Nevertheless, the replacement
volumes of cables were determined based on age only and did
not consider the criticality of the cables to the system reliability.
Hence, it can be argued that the currently applied quantitative
risk methods in the area of power system component replace-
ment planning have some shortfalls which need to be overcome.
This paper presents a replacement planning framework that

for the first time combines the advantages of the risk matrix
method and the reliability indices method. The framework uses
the reliability importance measures for identifying the critical
components for system reliability. Furthermore, by incorpo-
rating the end-of-life failure model into importance studies,
This paper identifies the most critical components for system
reliability in terms of ageing. This is a new application to the
importance measure in reliability evaluation. Pareto analysis
[7] is then performed to determine the effect of replacement
scenarios on system reliability as power systems comprise
many correlations between the components which are difficult
to detect using only a reliability importance measure. After
determining the effect of replacement scenarios on system
reliability, a cost-benefit analysis is carried out to determine
the optimum replacement plan. The cost of unreliability in
this analysis is calculated using data from an incentive/penalty
scheme which is typical of those commonly applied to regulate
system reliability. It must however be recognized that the
societal importance of a reliable transmission network could
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be significantly greater than the incentive mechanism would
imply, particularly in the case of widespread and extended
failures. The framework has been tested on a fleet of power
transformers in a test system modeled using UK transmission
system parameters.

II. REPLACEMENT FRAMEWORK

A. Component Failure Model

Themain purpose of power system reliability assessment is to
provide probabilistic measures of the system adequacy that can
be used in decision-making processes. The nature of the specific
decision making process determines which models or methods
have to be used. Failure models can be generally, classified as
repairable failure and end-of-life failure. When discussing deci-
sion making of components replacement, the end-of-life failure
model is the most essential input in reliability assessment. A lot
of research has been done in the area of equipment lifetimemod-
eling to overcome the lack of end-of-life failure data. Studies
reported in [8]–[10] estimate the probability distribution func-
tions of end-of-life failure using the data from failed and sur-
viving components while [11] and [12] model end-of-life failure
by combining expert judgment and condition monitoring data.
Life data analysis often represents end-of-life failure by prob-

abilistic distribution functions [13]. However, probabilistic dis-
tribution functions cannot be directly integrated into the most
common methods of bulk power system reliability evaluation:
state enumeration and non-sequential Monte Carlo simulation.
This is because those two methods use the unavailability as the
reliability measure at the component modeling level. Unavail-
ability due to end-of-life failure can be defined as the probability
of finding the component being failed in a particular future time
period given that it has survived to a specific age [14]. The def-
inition involves two factors, the conditional probability of sur-
viving to a specific age and the future study period . Ref-
erence [14] presents the state-of-the-art method for estimating
the average unavailability due to end-of-life failure from prob-
abilistic distribution functions. In power system literature, the
commonly used probabilistic distributions for this purpose are
normal and Weibull distributions [8], [15]–[17]. The method is
based on dividing the study period into subintervals. Then,
probability of end-of-life failure for each subinterval ( ) is cal-
culated using conditional probability theory. This is expressed
by

(1)

where is the age of the component, is the probabilistic
density function, and is the length of the subintervals. As-
suming that the component fails at any point within the subin-
terval , the average unavailable duration is given by

(2)

Having calculated the probability of end-of-life failure and
the average unavailable duration for each subinterval in the
study period , the average unavailability due to end-of-life
failure can be approximated by the sum given by (3). The
details of the derivation can be found in [14]. This method has

been adopted here to incorporate end-of-life failure into the
reliability assessment:

(3)

(Note: It should be mentioned that the actual data on reliability
obtained from condition monitoring can be used in this method
instead of chronological age of the component. This data could
be incorporated, for example by using an equivalent age of the
component adjusted according to its individual condition [14].
Additionally, sensitivity and uncertainty analysis can be per-
formed using end-of-life failure models formulated from avail-
able data to assess the effect of end-of-life data shortage on
system reliability and its application in power system, e.g., re-
placement decision.)

B. Reliability Importance Measure

Measuring the reliability importance of power system com-
ponents has been extensively discussed in power system relia-
bility literature [18]–[20]. According to [18], importance mea-
sures can be classified into structural importance (IS) and crit-
icality importance measures (IC). Structural importance (IS) is
calculated using the partial derivative of the system reliability
to the component reliability, which can be substituted by simple
sensitivity analysis. The IS assesses the structural importance
of the component because it presents the difference between the
system reliability when the component has an outage model and
the system reliability when the component is ideal. IS can be de-
fined as

(4)

where is the incremental change in system reliability and
is the incremental change in component reliability.

Criticality importance (IC) is calculated using the IS as given
by (5). IC measures the criticality importance by considering
the reliability of the component in addition to its structural im-
portance. Thus, when using IC measure, the less reliable com-
ponent of the two having equaled structural importance will be
considered as more influential:

(5)

where and are the base case component reliability and
system reliability, respectively.
For this study, the criticality importance measure was chosen

because the reliability of a component is essential in replace-
ment decision making. In order to calculate IC, the energy not
supplied (ENS) index was chosen as the system reliability mea-
sure whereas the average unavailability was defined as the com-
ponent reliability measure. IS in (5) is calculated using a simple
sensitivity analysis of the ENS index to the change in the com-
ponent unavailability.
By including an end-of-life failure model into importance

studies, this paper has identified the most critical components
affecting system reliability taking into account both the aged
state and their location in the system. This is a new application
to the importance measure in reliability evaluation.
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C. Pareto Analysis

Ranking of power system components provides only part of
the important information for replacement decision making. It
brings the attention to specific critical equipment but does not
reflect the effect on the system reliability if they are replaced or
left in service.
Power system reliability is inherently a nonlinear function

of component reliability, involving many hidden correlations
and interactions between the components. Increased reliability
is usually obtained using redundant parallel operation creating
one of the most important correlations. When calculating crit-
icality measures using traditional sensitivity analysis, parallel
operation may cause misleading results. For example, two com-
ponents may have the same effect on system reliability with one
way sensitivity analysis, but replacing one of them can eliminate
the effect of the other. Conversely, in some cases replacing one
of them may not improve the reliability at all so both have to be
replaced. Most transmission systems have designs based on the

criterion or better, which prevents a load shedding event
with one component out of service. Therefore, most load shed-
ding events are caused by having more than one component out
of service and further analysis is needed to distinguish between
individual component effects on reliability.
Pareto Analysis or the 80/20 principle has been applied in

many different disciplines since it was introduced in the 1950s
[7]. The 80/20 principle states that “approximately 20–30 per
cent of any resource accounted for 70–80 per cent of the activity
related to that resource” [7]. This means that a large number
of achievements can be completed by fewer inputs. It has been
found that this principle can be applied to any kind of resource,
and that the linear conception that 50 per cent of the causes will
lead to 50 per cent of the results is not true for the vast ma-
jority of cases [7]. In this paper, this principle has been applied to
determine the contribution of individual components to system
unreliability. This has been completed by replacing the com-
ponents one after another starting from the top of a ranking of
components based on the criticality measure IC. By performing
this analysis, the relationship between increase in system relia-
bility and resulting replacement scenario can be determined.

D. Replacement Justification

For transmission system asset managers there is a choice be-
tween replacing the equipment now and delaying the replace-
ment to the following years. The typical decision for the asset
manager would be to postpone the replacement of assets to the
following year in order to achievemaximum utilization of assets
and savings in the reinvestment cost. Postponement of the re-
placement, however, increases the risk of having an end-of-life
failure, and hence, customer supply interruptions. The replace-
ment decision should be justified by performing cost-benefit
analysis to compare the cost of unreliability when the replace-
ment is deferred and the benefit gained by saving on reinvest-
ment cost.
Since the year 2000, European national regulatory authorities

have started to impose a reliability regulation scheme in order
to ensure that the budget constraints on transmission system in-
vestment do not affect the continuity of supply to the end users
[21]. The reliability regulation schemes are based on incen-
tives/penalties calculated using some of the reliability indices,

Fig. 1. Cost of system unreliability as a function of ENS based on Ofgem’s
incentives/penalties scheme.

commonly energy not supplied (ENS). For example in Great
Britain, the regulator has applied an incentive scheme to Na-
tional Grid Electricity Transmission plc (NGET) [22]–[24]. The
proposal has set a target of ENS equal to 316 MWh. Achieving
an ENS less than this target will be rewarded at a rate of £16 000
per MWh. Comparably, any values of ENS more than the target
will incur penalties with the same rate. This paper uses the
scheme as a measure of the cost of unreliability, but it is recog-
nized that this may not represent the full societal or reputational
costs of extended or widespread power failure, and these factors
also need to be taken into account in replacement planning. This
incentive scheme is illustrated in Fig. 1.
In order to calculate the saving on reinvestment cost

( ), the time value of replacement cost in the current
year and time value of replacement cost in the following year
have to be calculated. The time value of the replacement cost in
the current year (referred to as present value PV in economics
terminology) equals the current cost of replacement. The rein-
vestment is usually carried out as a series of equal installments
at equal time intervals, i.e., uniform annual payments (annual
value). The present value (PV) can be calculated from annual
values (AV) adjusted for time value of money. The time value
of money depends on the type (simple or compound) of interest
rate considered [25], [26]. For simple interest rate, PV can be
calculated using (6):

(6)

where is the interest rate and is number of installments.
The time value of replacement cost in the following year (future
value FV) can be calculated using the present value. For simple
interest rate, FV can be calculated from PV by (7):

(7)

where is the interest rate and is number of future years.
The saving on reinvestment equals the difference between the
future value of the replacement cost and the present value. Then,
saving on reinvestment cost ( ) can be obtained by

(8)

Equation (8) shows the interest earned on the money when it is
not spent on replacement.
In order to economically justify the postponement of reinvest-

ment decision, i.e., the replacement decision, the cost of unreli-
ability and the saving in reinvestment cost are calculated for all
the replacement scenarios obtained from Pareto analysis. These
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Fig. 2. Test network single line diagram.

scenarios are then compared to determine the maximum number
of components whose replacement can be deferred to the fol-
lowing year without compromising the system reliability. The
optimum replacement decision is the scenario for which the cost
of unreliability is less than the saving in reinvestment cost and
has the maximum number of components that can be left in ser-
vice for an additional year.

III. TEST SYSTEM AND DATA

A. Test System Description

The proposed framework has been applied to a fleet of
power transformers in a model meshed test system. The test
system broadly represents the transmission network of a large
metropolitan city. The single line diagram of the network is
shown in Fig. 2. The transmission voltage levels are 400 and
275 kV. The network has 8 equivalent generation buses/in-feed
points and 24 load buses at different voltage levels (132,
66, and 33 kV). It has 28 interbus transmission transformers
(400/275 kV tagged in the single line diagram as T1–T28) and
42 transmission lines and cables. Each load bus represents a
substation that contains step down transformers, substation
cables, circuit breakers and disconnectors. The total number
of step down transformers is 126 (not shown in the single
line diagram). Though the test network does not represent any
existing real network, all of its components are modeled using
the typical parameters of the U.K. transmission network.

B. Transformers’ End-of-Life Failure Data

The age of the transformers in the test system has been as-
signed in accordance with the age distribution of transformers
in the England and Wales transmission system. The age distri-
bution is shown in Fig. 3. The system contains a considerable
number of transformers that have exceeded the original design
life time (25 or 40 years).

Fig. 3. Age distribution of the test system’s transformers.

Fig. 4. Unavailability due to end-of-life failure using normal distribution (
, ) for a range of ages (0–57).

The end-of-life failure of power transformers in the test
system is characterised by a normal distribution with a mean
value ( ) equal to 65 years, and a standard deviation ( ) equal
to 16 years. In order to calculate the unavailability due to
end-of-life failure using a normal distribution function, proba-
bility of end-of-life failure (1) is approximated by (9) which is
adopted from [14]:

(9)

where is calculated by

if
if

Fig. 4 shows the unavailability calculated using the men-
tioned normal distribution for the age range of the test system
transformers (0–57 years) for a one-year study period. From
Fig. 4, it can be seen that there is a nonlinear relationship be-
tween age and unavailability. It is apparent that the youngest
transformers (0–18 years) have small values of unavailability
that does not increase rapidly with age, whereas the unavail-
ability of older transformers (30–60 years) increases rapidly
with age. This shows that a one-year age difference can make
the unavailability vary significantly when the transformer is old.

C. Load and Network Model

Since the integration of annual load curve into bulk power
system reliability assessment by enumerating the demand at
each hour requires excessive computation time and effort, it is
commonly presented by multi-step load level model [27]. The
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TABLE I
SIX-STEP LOAD LEVEL MODEL OF THE TEST SYSTEM

accuracy of the results is proportional to the number of the steps,
and hence, proportional to the computation time. The selection
of the number of the steps is a trade-off between the required
level of accuracy and the computational time of the evalua-
tion. Different transmission networks have different sensitiv-
ities to the load levels, and hence to the number of the steps
in the load model. For the test system considered in this study,
the annual demand variation is presented by an optimum 6-step
load level model. The model is constructed from historical op-
erating points of the England and Wales network system. They
are chosen to accurately represent assumed periods of time that
they cover during the year. Table I shows the loading levels as
a percentage of the peak demand, the time period covered and
corresponding probabilities of occurrence of the time period.
Moreover, for each loading level there are different power in-
jections from generation and in-feed buses in order to present
the seasonal variation of power flow in the network. In addition,
the variation of the thermal capability of equipment (higher or
lower than the nameplate thermal rating) with different seasons
of the year is also modeled. This is considered because it ef-
fects the reliability calculation as it will be explained in the next
section.

IV. RELIABILITY ASSESSMENT PROCEDURE

The test system is modeled in DIgSILENT’s PowerFactory
software package. DIgSILENT Programming Language (DPL)
is used to develop a dedicated reliability assessment programme
based on the non-sequential Monte Carlo (MC) simulation. The
four-step system reliability assessment procedure includes: 1)
load level selection, 2) component state selection, 3) failure ef-
fect analysis and remedial actions by system operator; and 4)
calculation of reliability indices. Each of the steps is discussed
in the following sections.
It should be mentioned that the main purpose of the devel-

oped research grade software was to facilitate studies of the
influence of ageing components on power system reliability
within the computational environment of DIgSILENT’s Power-
Factory software package as one of currently most widely used
and trusted commercial software packages by power system
utilities. It was not aimed to introduce more advanced tech-
nique for power system reliability evaluation. There are other
advanced and computationally more efficient techniques for
assessing composite power system reliability, e.g., [28]–[31],
however, they are either not commercially available or they
have been developed and demonstrated as “stand alone” appli-
cations by different researchers.

A. Load Level Selection

The load levels are enumerated one by one from the 6-step
load level model. For each level, 20 000 iterations of Monte
Carlo (MC) simulation are executed and the system reliability
indices are calculated.

B. Component State Selection

The function selects the state of each component by gener-
ating a random number between 0 and 1. Then, it compares
the component’s unavailability due to random failure and un-
availability due to end-of-life failure to the random number. If
the random number is less than one of the two unavailability
values, the components will be considered as unavailable. In this
case study the unavailability due to random failure is assumed
to be zero as it is much smaller than the unavailability due to
end-of-life failure, which is of primary importance in this study.
(Note: It is a fact that the system reliability indices will be af-
fected by this assumption. However, the assumption is justified
by the fact that the average unavailability due to random failure
of power transformers is very small, i.e., 0.001 [32](equiva-
lent to the unavailability of 30 years old transformer), and the
test system considered in this study has 93 transformers older
than 30 years. Furthermore the assumption will affect the re-
sults, i.e., different amount of energy not supplied, only when
both end-of-life failure and random failure occur simultane-
ously, which is not likely to happen due to much smaller trans-
former unavailability due to random failure.)

C. Failure Effect Analysis and Remedial Actions by System
Operator

The function utilizes DC load flow to examine potential
violations of loading limits in the network. Therefore, the
reactive power constraints are not addressed. This is appro-
priate since for the long term reliability assessment the active
power constraints are the crucial aspect. When a violation of
the limits (different thermal limits for individual load levels)
is detected, an overload relief procedure, based on system
generation re-dispatch and load shedding, is performed. The
procedure is based on the sensitivity of the system overload
to bus injections [33]–[35], which is presented by a sensitivity
factor calculated by

(10)

where

sensitivity factor of bus ;

0 if or if ;

power flow through the overloaded line ;

distribution factor of bus for line .

Buses with a negative sensitivity factor have an inverse rela-
tionship between their injection and the system overload. The
opposite is true for buses with a positive sensitivity factor. Gen-
eration and load buses are sorted according to the value and
the sign of the sensitivity factor . The generation re-dispatch
and load shedding are performed by choosing a pair of buses
that have different signs and enough increase/decrease reserve
and exchanging a specific amount of power between them. The



2554 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 5, SEPTEMBER 2014

amount of power exchanged is determined by selecting the min-
imum of 1) the increase reserve available in the increasing bus,
2) the decrease reserve available in the reducing bus, and 3) the
exchange power that will relieve the overload of a line. The gen-
eration re-dispatch is attempted first to alleviate the overload,
then, if necessary, load is shed at the most sensitive buses. This
will ensure optimum load shedding. The process is repeated
until the overload is completely eliminated. For this case study,
it has been assumed that the generation and the in-feed injec-
tions are 100% reliable. This will not affect the analysis because
for this study only the influence of the transmission equipment
on system reliability is of interest [5].

D. Calculation of Reliability Indices

The indices for the annual loading curve are calculated by
using corresponding indices of each loading level and their as-
sociated probabilities. For each loading level the indices are ob-
tained by averaging the results from the iterations of the Monte
Carlo simulation.

V. CASE STUDY

A. Criticality Measure

In calculations of the importance measures IS and IC, the
seed of the random number generator for the MC simulation
is kept constant to ensure consistent results of reliability indices
for different loading levels. Sensitivity analysis of system relia-
bility (measured by ENS) to transformers reliability (measured
by unavailability due to end-of-life failure) is performed. The
steps for calculating the importance measures are:
1) Assess the base case system reliability and estimate base
case ENS.

2) Perform sensitivity analysis by considering that the trans-
formers are ideal ( ), one by one, and
estimate ENS at each case. [Note: Referring to (4), more
accurate sensitivity results of ENS would be obtained
by using a small incremental change in component un-
availability values. In standard reliability assessment
simulations, as in this case, however, the unavailability
values of the components are not directly integrated into
the reliability indices. At each iteration of Monte Carlo
simulation, a component is considered unavailable when
its unavailability is greater than or equal to a generated
random number. If a very small incremental change in the
unavailability value is used it may not affect the results
of reliability assessment in some cases as the generated
random number may still be smaller than the component
unavailability the incremental change. For example, if
a component, whose unavailability is 0.02, is considered
to be failed because the generated random number is 0.01,
it will be also considered to be failed if an incremental
change of is applied to its unavailability since the
unavailability will still be greater than 0.01. In order to
comprehensively assess the effect of changing in compo-
nent unavailability, the sensitivity analysis is performed
by assuming ideal transformer (unavailability ) This
assumption, however, does not affect the accuracy of
the results as the purpose of the performed sensitivity
analysis is to assess the effect of the replacement of com-
ponents (age , hence, unavailability ) on system

TABLE II
BASE CASE ENS FOR DIFFERENT ANNUAL LOAD LEVELS (MWh/YEAR)

TABLE III
TRANSFORMERS WITH RANKED FROM LARGEST TO SMALLEST BASED

ON IC

reliability and to compare it with decision to postpone the
replacement].

3) Repeat steps 1 and 2 for individual loading levels.
4) Calculate annual base case ENS and annual ENS for indi-
vidual cases in step 2 using loading level probabilities.

5) Calculate IS for each transformer using (4).
6) Calculate IC for each transformer using (5).
All calculations are performed using a 2.83-GHz quad core

CPU PC with 3.5 GB of RAM. The calculation of the IC for the
test system was completed in two weeks. The computation time
for large power network, e.g., England and Wales transmission
network, which is approximately 5 times larger than the test
system, would take approximately 11 weeks using the same PC.
For the assessment of large power networks the computation
time can be reduced by using multiple PCs as in the case study
reported in [36].
Table II shows the base case ENS for individual load levels

of the 6-step annual load model. It can be seen that the system
is 100% reliable if a constant load level equal to one of the low
demand levels is used. If a constant load level equal to one of
high demand levels is used, then the system becomes unreliable
and there are different values of ENS. The overall annual ENS
is 401.6 MWh/year.
The IC calculation results show that only 32 out of 154 trans-

formers in the test system have an influence on system relia-
bility. For the remaining 118 transformers, the ENS value does
not change if they have been considered ideal. Table III shows
the transformers that have , their IC values, and their age.
All the transformers that appear in the table are step down trans-
formers. They are not shown in the single line diagram due to
the complexity of the network; therefore, they are named by the
load point index. From this, one can conclude that the reliability
problems, which are linked with transformer failure, originate
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Fig. 5. Reliability importance measure (IC) for power transformers.

from load supply points. It is also apparent from Table III that
all the critical transformers are in the age range 43–54 years.
Compared with the age histogram of the test system’s trans-
formers (see Fig. 3), this age range has the highest frequency
of occurrence in the test system. Interestingly, the highest aged
transformers (54–57 years old) did not appear in the table. This
can be explained by the fact that the reliability importance mea-
sures depend on both the age (represented by the unavailability)
and the location of the transformer in the network.
The alternative representation of the IC measure is given by

a “heat” map showing areas in the system most affected by
ageing of the components. This representation is particularly
useful when the network contains areas of particular strategic
importance. Fig. 5 shows the heat map of the test system. As
seen in the figure, the most critical transformers are located in
a limited area. The strategic impact of unreliability in this area
in terms of societal, reputational and environmental impacts can
be considered in further studies if required.

B. Pareto Analysis

In order to relate the replacement scenarios to the reliability
benefit, transformers shown in Table III were replaced one at a
time starting with the top ranked one. That is to say, the first sce-
nario is replacing 1 transformer (L20-T3), the second scenario is
replacing 2 transformers (L20-T3 and L20-T1), and so on until
all 32 transformers are replaced. Fig. 6 presents the calculated
ENS against the number of replaced transformers following the
previously explained procedure. As it appears from Fig. 6, the
reduction in ENS has an inverse exponential relationship with
the number of replaced transformers which illustrates the suit-
ability of 80/20 principle for replacement planning. Fig. 6 also
shows that there are 17 transformers whose replacement will
not achieve a further reduction in ENS. In other words, in the
model a 0 ENS, or a 100% reliable system, can be achieved by
replacing a smaller number of transformers than might be ex-
pected from the importance measure results shown in Table III.

Fig. 6. ENS for replacement scenarios of transformers.

Fig. 7. Reduction in system ENS and cumulative reduction in system ENS
against replacement scenarios.

Those 17 transformers are highlighted in Table III in grey.When
looking at those transformers, it is apparent that they are located
on different buses. However, there are transformers, which be-
long to the same buses and have been replaced earlier. This
replacement has resulted in eliminating the effect of those 17
transformers on system reliability. For example, replacing trans-
former L20-T4 does not have an impact on system reliability be-
cause L20-T3, L20-T1, and L20-T5 were replaced at previous
steps.
Fig. 7 shows the reduction in ENS and the cumulative re-

duction for the replacement scenario excluding 17 transformers
which have no effect on the system reliability. It can be seen
from the figure that there are 15 transformers which have no-
ticeable effect on ENS reduction. It is apparent that 80% reduc-
tion in the ENS can be achieved by replacing 6 transformers
(18.8% of the most critical transformers) in confirmation of the
applicability of Pareto analysis to power system reliability and
component replacement. Fig. 7 directly links the reduction in
ENS to the number of replaced transformers.

C. Justification of Replacement

In order to match the regulatory incentive/penalty scheme to
the test system, the ratio of the test system demand to the total
demand of the England and Wales network was calculated. The
ENS baseline target of the test system was calculated by mul-
tiplying the ratio by 316 MWh (the baseline target for NGET).
The calculation determined 70 MWh as the baseline target for
the test system. The same incentives/penalties rate (£16 000)
was used to determine the cost of unreliability. Table IV shows
the cost of unreliability results starting from no replacement (0
transformers to be replaced) to replacing all 15 transformers
which have a negative effect on system reliability. As can be
seen from the table, the cost of applying the unreliability incen-
tive changes sign after replacing 6 transformers. This is due to
achieving the baseline target ENS by replacing 6 transformers
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TABLE IV
COST OF UNRELIABILITY FOR REPLACEMENT PLANS

TABLE V
SAVING ON REINVESTMENT COST FOR THE REPLACEMENT SCENARIOS.

only. In addition, the maximum incentive for achieving 0 MWh
of ENS is £1.12 million.
In order to calculate the future value of reinvestment cost for

the replacement plans, a simple annual interest rate of 5.4% is
used [37].
The saving on reinvestment cost is calculated using (8) for

one-year postponement. The cost of replacing a power trans-
former, which is the present value of reinvestment, is taken as
£4 million. Considering the first replacement scenario as ex-
ample, replacing 0 transformers, i.e., deferring the replacement
of 15 transformers to the next year, results in savings of £3240
K. (This would be the amount of interest earned for a year by
postponing replacement of 15 transformers for one year, i.e.,
the saving on reinvestment cost. Table V shows the results of
the calculations.
Fig. 8 shows an economic comparison between the cost of un-

reliability and saving on reinvestment cost for different replace-
ment plans. The figure, also, shows the actual cost of replace-

Fig. 8. Economic comparison of replacement plans.

ment. The aim of this comparison is to estimate the maximum
number of transformers whose replacement can be postponed
without jeopardizing system reliability. This number is deter-
mined when the saving on reinvestment cost due to deferring
the replacement of transformers becomes greater than the cost
of unreliability caused by leaving them in service. It can be seen
from Fig. 8 that the cost of unreliability when deferring replace-
ment of 15 or 14 transformer to the following year is greater than
the saving on reinvestment cost. Moreover, the cost of unrelia-
bility is greater than the cost of replacing one transformer, i.e.,
deferring the replacement of 14 transformers. After replacing
2 transformers, the saving on reinvestment cost becomes larger
than the unreliability cost. Therefore, the maximum number of
transformers to be replaced in the following years, i.e., not to
be replaced this year, without compromising the system relia-
bility is 13. Hence, the optimum number of transformers to be
replaced is 2.

VI. CONCLUSIONS

This paper introduced a framework for making decisions
about the replacement of power system equipment. The frame-
work is based on mapping the criticality of the component to
system reliability and determining the impact of its replacement
on system reliability. An economical comparison between the
cost of unreliability based on regulatory incentives and the
saving on reinvestment cost by deferring replacement is per-
formed to determine an optimum replacement plan for a model
system.
The first contribution of this paper is that the framework com-

bines the merits of the two commonly-used quantitative risk ap-
proaches, risk matrix and risk indices. By applying this merger,
this paper introduces a more comprehensive decision-making
framework for component replacement.
The second contribution is bringing out the use of Pareto anal-

ysis in this area of power system studies. The use of Pareto anal-
ysis provides an insight into the effect of equipment replacement
volume on system reliability.
Finally, This paper provides an example of using reliability

regulation scheme in decision making.
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