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a b s t r a c t

A new reweighted l1�norm penalized least mean square (LMS) algorithm for sparse
channel estimation is proposed and studied in this paper. Since standard LMS algorithm
does not take into account the sparsity information about the channel impulse response
(CIR), sparsity-aware modifications of the LMS algorithm aim at outperforming the
standard LMS by introducing a penalty term to the standard LMS cost function which
forces the solution to be sparse. Our reweighted l1�norm penalized LMS algorithm
introduces in addition a reweighting of the CIR coefficient estimates to promote a sparse
solution even more and approximate l0�pseudo�norm closer. We provide in depth
quantitative analysis of the reweighted l1�norm penalized LMS algorithm. An expression
for the excess mean square error (MSE) of the algorithm is also derived which suggests
that under the right conditions, the reweighted l1�norm penalized LMS algorithm
outperforms the standard LMS, which is expected. However, our quantitative analysis
also answers the question of what is the maximum sparsity level in the channel for which
the reweighted l1�norm penalized LMS algorithm is better than the standard LMS.
Simulation results showing the better performance of the reweighted l1�norm penalized
LMS algorithm compared to other existing LMS-type algorithms are given.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

The least mean square (LMS) algorithm is very well
known in the field of adaptive signal processing [1,2].
It belongs to the class of stochastic gradient algorithms.
The attractive feature of the LMS algorithm is that it does
not need extensive stochastic knowledge of the channel
cience and
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and the input data sequence unlike some other parameter
estimation methods such as the recursive least squares
(RLS) and Kalman filter. While RLS and Kalman filter need
to know the covariance matrix of the input data sequence,
the LMS algorithm only requires an approximate estimate
of the largest eigenvalue of the covariance matrix for
proper selection of the step size that guarantees the con-
vergence. The LMS algorithm is being employed in a wide
variety of applications in signal processing and communica-
tions including system identification [3], echo cancelation [4],
channel estimation [5], adaptive communication line
enhancement [6], etc. A particular application considered in
this paper is that of estimating a finite impulse response (FIR)
channel. The choice of the channel estimation algorithm for
use in a communication system comes down to the available
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1 CS is the theory that considers the problem of sparse signal
recovery from a few measurements [22,23]. The number of measure-
ments in CS is a lot smaller than the overall dimension of the signal.

2 Some preliminary results (the method and some simulation results)
have been reported in the conference contribution [24].
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information about the statistics of the system, the desired
performance of the estimation algorithm, as well as the
complexity of the estimation process.

The standard recursive parameter estimation algo-
rithms do not assume any information about the specific
structure of the channel being estimated. However, being
aware of the channel structure one can modify the
standard algorithms in order to have a better estimate of
the channel. In this paper, we are concerned with a class of
channels where the channel impulse response (CIR) is
sparse. A time sparse discrete-time signal is the one with
only a few nonzero entries. In general, the domain that the
signal is sparse in does not necessarily have to be the time
domain. Other sparsity bases can also be used and are
represented by an N � N orthogonal matrix where N is the
length of the signal.

Sparsity-aware modifications of the LMS algorithm
have been presented in the signal processing literature in
the past few years. The methods introduced in [7,8] add a
penalty term to the standard LMS error function which is
designed in a way to force the solution to be sparse. A
penalty in the form of the l0-pseudo-norm of the CIR is
used in [8], while [7] uses the l1�norm. In [9], the mean
square convergence and stability analysis for one of the
algorithms in [7] for the case of white input signals is
presented. A performance analysis of the l0-pseudo-norm
constraint LMS algorithm of [8] is given in [10]. In [11,12],
variations of the algorithms in [7] are introduced. In [11],
the filter coefficients are updated in a transform domain
which leads to faster convergence for non-white inputs. In
[13], the idea of using a weighted l1�norm penalty for the
purpose of sparse system identification is presented with-
out any convergence analysis. Moreover, sparsity promot-
ing partial update LMS algorithms have been recently
developed in [14].

The authors of [15] introduce a scheme that employs
two sequential adaptive filters for communication line or
network echo cancelers. The method exploits the sparse-
ness of the CIR and uses two sequential LMS type structures
which are both shorter than the largest delay of the
channel. A family of the so-called natural gradient estima-
tion algorithms is also studied in [16]. It is shown that the
class of sparse LMS algorithms presented has faster con-
vergence rate.

Sparse diffusion schemes are presented in [17,18] that
provide adaptive algorithms for distributed learning in
networks. In [17], projection methods over hyperslabs and
weighted l1-balls are presented and analyzed for distrib-
uted learning. Penalized cost functions are used in [18] to
enforce the sparsity of the solution. Among the penalty
terms considered is the weighted l1�norm penalty of [7].
Convergence analysis for the distributed adaptive algo-
rithm is also given in [18] for a convex penalty term.

Other channel estimation algorithms have also been
modified to either better adapt to a sparse channel or
achieve the same performance as the corresponding stan-
dard algorithms with lower complexity. Time and norm-
weighted least absolute shrinkage and selection operator
(LASSO) where weights obtained from RLS algorithm has
been presented in [19]. A greedy RLS algorithm designed
for finding sparse solutions to linear systems has been
presented in [20], and it has been demonstrated that it has
better performance than the standard RLS algorithm for
estimating sparse time-varying FIR channels. A com-
pressed sensing (CS)-based Kalman filter has been devel-
oped in [21] for estimating signals with time varying
sparsity pattern.1

In this paper, we first derive the reweighted l1�norm
penalized LMS algorithm which is based on modifying the
LMS error (objective) function by adding the l1�norm
penalty term and also introducing a reweighting of the
CIR coefficients.2 Then the main contribution follows that
is the in depth study of the convergence and excess mean
square error (MSE) analysis of the reweighted l1�norm
penalized LMS algorithm. It is worth mentioning that the
analytic arguments in [18] can be applied to a centralized
learning problem as well as a diffusion network. In this
way, it is also possible to prove the mean square stability
of the reweighted l1�norm penalized LMS algorithm in
a different manner than presented in this paper. Our
simulation results show that the proposed algorithm out-
performs the standard LMS as well as the penalized
sparsity-aware LMS algorithms of [7] and approve our
theoretical studies.

The rest of the paper is organized as follows. Section 2
reviews the system model used and the standard LMS
algorithm. In Section 3, the reweighted l1�norm penalized
LMS algorithm is introduced. An analytical study of the
convergence of the reweighted l1�norm penalized LMS
algorithm as well as its excess MSE is given in Section 4.
Simulation results comparing the performance of different
sparsity-aware LMS algorithms are given in Section 5.
Section 6 concludes the paper.
2. System model and preliminaries

2.1. Standard LMS

The system model of a general communication system
used in this paper is shown in Fig. 1. The standard LMS
algorithm is used to estimate the actual CIR of the com-
munication system, i.e., the vector w in Fig. 1. Let us
introduce as well other notations in the figure. An estimate
of the actual CIR vector w at the time step k is denoted as
wk. The system's input data vector is xk, nk is the additive
noise, dk is the desired response, and ek is the error signal.
The CIR is assumed to be of length N, and therefore,
w9 ½w1 w2 … wN�T , wk9 ½w1;k w2;k … wN;k�T , and xk9
½xk xk�1 … xk�Nþ1�T , where ð�ÞT stands for the vector
transposition. As shown in Fig. 1

dk ¼wTxkþnk

ek9dk�wT
kxk: ð1Þ

The noise samples nk are assumed to be independent and
identically distributed (i.i.d.) with zero mean and variance



Fig. 1. Block diagram of a communication system.

3 The other approach is to use the lp-pseudo-norm penalty termwith
0opo1 which is introduced in the simulations section.
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of s2n. Also, the input data sequence xk and the additive
noise samples nk are assumed to be independent.

In standard LMS, the cost function is Lk9 ð1=2Þe2k , and it
is minimized using the gradient descent algorithm [1]. The
update equation of the standard LMS algorithm can be
derived from the above-mentioned cost function as

wkþ1 ¼wk�μ
∂Lk
∂wk

¼wkþμekxk ð2Þ

where μ is the step size of the iterative algorithm. To make
sure that the LMS algorithm converges, μ is chosen such
that 0oμoλ�1

max with λmax being the maximum eigenvalue
of the covariance matrix of xk, i.e., R9E½xkxTk �. For the
purpose of convergence analysis of the LMS algorithm,
a coefficient error vector is usually defined as

vk9wk�w: ð3Þ

The data vector xk is assumed to be independent of the
coefficient error vector vk. The excess MSE denoted as ξk is
defined as ξk9E½ðvTkxkÞ2�. It can be further expanded as

ξk ¼ E½vTkxkxTkvk�: ð4Þ

In (4), vTkxkx
T
kvk is a scalar, and therefore, it is equal to its

trace, denoted hereafter as trf�g. Also, since trfvTkxkxTkvkg ¼
trfxkxTkvkvTk g and the two mathematical operators of matrix
trace and expectation are interchangeable we can simplify
(4) as

ξk ¼ E½trfvTkxkxTkvkg� ¼ trfRE½vkvTk �g: ð5Þ

Let us introduce the matrix Rv9 limk-1E½vkvTk � and the
vector ξ9 limk-1ξk. Then we have from (5) that ξ¼ tr
fRRvg. Moreover, the excess MSE can be found as [7]

ξ¼ η

2�η
s2n ð6Þ

where

η9μ trfRðI�μRÞ�1g: ð7Þ
3. Reweighted l1�norm penalized LMS algorithm

In the standard LMS algorithm, the fact that the cost
function is convex guarantees that the gradient descent
algorithm converges to the optimum point under the
aforementioned condition on μ. The standard LMS algo-
rithm assumes no structural information about the signal/
system to be estimated. Taking any structural information
into account, one should be able to modify the algorithm
and benefit by lower estimation error, faster convergence,
or lower algorithm complexity. In this paper, we are
interested in the case when the CIR is sparse. For a CIR
w to be sparse in some sparsity domain Ψ most of the
coefficients in the vector representation of w in this
domain Ψ should be zeros or insignificant in value. Several
sparsity-aware modifications of the standard LMS have
been introduced in the literature [7–13,24].

The reweighted l1�norm minimization for sparse signal
recovery has a better performance than the standard l1�norm
minimization that is usually employed in the CS literature
[25]. It is due to the fact that a properly reweighted l1�norm
approximates the l0-pseudo-norm, which actually needs to be
minimized, better than the l1�norm. Therefore, one approach
to enforce the sparsity of the solution for the sparsity-aware
LMS-type algorithms is to introduce the reweighted l1�norm
penalty term in the cost function [24].3 Our reweighted
l1�norm penalized LMS algorithm considers a penalty term
proportional to the reweighted l1�norm of the coefficient
vector. The corresponding cost function can be written as

Lrl1k 9ð1=2Þe2kþγr Jskwk J1 ð8Þ
where J � J1 stands for the l1�norm of a vector and γr is the
weight associated with the penalty term and elements of the
1� N row vector sk are set to

½sk�i ¼
1

ϵrþj½wk�1�ij
; i¼ 1;…;N ð9Þ

with ϵr being some positive number and ½��i denoting the
i-th entry of a vector. The update equation can be derived by
differentiating (8) with respect to the vector of CIR coefficients
and using the gradient descent principle shown in (2). The
resulting update equation is

wkþ1 ¼wkþμekxk�ρr
sgnðwkÞ

ϵrþjwk�1j
ð10Þ

where ρr ¼ μγr and sgnð�Þ is the sign function which operates
on every component of the vector separately and it is zero for
x¼0, 1 for x40, and �1 for xo0. The absolute value
operator as well as the sgnð�Þ and the division operator in
the last term of (10) are all component-wise. Therefore, the i-th
element of sgnðwkÞ=ðϵrþjwk�1jÞ is ½sgnðwkÞ�i=ðϵrþj½wk�1�ijÞ.
Note that although the weight vector sk changes in every
stage of this sparsity-aware LMS algorithm, it does not
depend on wk, and the cost function Lrl1k is convex. There-
fore, the reweighted l1�norm penalized LMS algorithm is
guaranteed to converge to the global minimum under
some conditions. Thus, we study the convergence of the
proposed algorithm in the next section.
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4. Convergence study of the reweighted l1�norm
penalized LMS method

The reweighted l1�norm penalized LMS algorithm
follows the logic that the penalty term resembling the
l0-pseudo-norm of the coefficient vector forces the
solution of the modified LMS algorithm to be sparse.
The cost function of the reweighted l1�norm penalized
LMS algorithm is given in (8), while the update equation
is given in (10).

4.1. Mean convergence

We first study the mean convergence of the reweighted
l1�norm penalized LMS algorithm. The update equation
for the coefficient error vector of the l1�norm penalized
LMS vk can be written as

vkþ1 ¼ vkþμ wT �wT
k

� �
xkþnk

� �
xk�ρr

sgnðwkÞ
ϵrþjwk�1j

¼ vk�μvTkxkxkþμnkxk�ρr
sgnðwkÞ

ϵrþjwk�1j
: ð11Þ

Since vTkxk is a scalar which is equal to xTkvk, (11) can be
rewritten as

vkþ1 ¼ vk�μxkx
T
kvkþμnkxk�ρr

sgnðwkÞ
ϵrþjwk�1j

: ð12Þ

From (12) we can derive the evolution equation for
E½vk�. Since nk and xk are independent and nk is assumed to
have zero mean, we have E½μnkxk� ¼ 0. Then the evolution
equation is

E vkþ1
� �¼ I�μRð ÞE vk½ ��ρrE

sgnðwkÞ
ϵrþjwk�1j

� �
: ð13Þ

It is easy to see that the term sgnðwkÞ=ðϵrþjwk�1jÞ is
bounded below and above element-wise as follows:

�1
ϵr

r sgnðwkÞ
ϵrþjwk�1j

r 1
ϵr

ð14Þ

where 1 is the vector with all of its entries set to one.
Indeed, �1 is always less than or equal to sgnðwkÞ, while 1
is always larger than or equal to sgnðwkÞ. Moreover, jwk�1j
and ϵr are always non-negative, which means that the
denominator of the middle term in (14) is always larger
than or equal to the denominator of the right and left
terms of (14), which means that (14) always holds true.

We can further see that ρrE½sgnðwkÞ=ðϵrþjwk�1jÞ� is
bounded between ð�ρr=ϵrÞ1 and ðρr=ϵrÞ1. This bound on
the second term on the right-hand side of (14) is helpful
for studying the mean convergence of the reweighted
l1�norm penalized LMS algorithm. The following theorem
establishes our main result on the mean convergence of
the reweighted l1�norm penalized LMS algorithm.

Theorem 1. If the maximal eigenvalue of the matrix I�μR is
smaller than1, then the mean coefficient error vector E½vk� is
bounded as k-1.

Proof. Let QΛQ T be the eigenvalue decomposition of R.
Eq. (13) can be rewritten as

E½ckþ1� ¼ ðI�μΛÞE½ck��w0
k ð15Þ
where

ck9Q Tvk

w0
k9ρrQ

TE
sgnðwkÞ

ϵrþjwk�1j

� �
: ð16Þ

Let also q be the vector whose i-th entry is the sum of the
absolute values of the elements in the i-th row of the
matrix Q T . The variable qm is defined as the maximum
element of the vector q. The vector Q TsgnðwkÞ is thus
bounded between qm1 and �qm1. Therefore, the variable
w0

k in (16) is bounded between ðρrqm=ϵrÞ1 and ð�ρrqm=ϵrÞ1.
It is easy to see from (15) that

E½ckþM� ¼ ðI�μΛÞME½ck�

� ∑
M�1

m ¼ 0
ðI�μΛÞmw0

kþM�m�1: ð17Þ

Moreover, since Λ and correspondingly I�μΛ are diagonal
matrices, the convergence behavior of every element of
the vector E½ckþM� can be studied separately.
Let λi be the i-th diagonal element of the matrix Λ. From

(17), we have

½E½ckþM ��i ¼ ð1�μλiÞM ½E½ck��i

� ∑
M�1

m ¼ 0
ð1�μλiÞm½w0

kþM�m�1�i: ð18Þ

Since the largest eigenvalue of I�μR is smaller than 1, then
all the diagonal elements 1�μλi are smaller than 1. Also
note that the i-th entry of the vector w0

k is bounded
between ρrqm=ϵr and �ρrqm=ϵr. Therefore, by letting
M-1, the sum on the right-hand side of (18) is a
geometric series with a common ratio of 1�μλi and is
bounded between ρrqm= ðμλiϵrÞ and �ρrqm=ðμλiϵrÞ.
The other term on the right-hand side of (18)

approaches zero as M-1. As a result, ½E½ckþM ��i as well
as the whole vector E½ckþM� are bounded when M-1.
Since according to (16) E½ck� is a rotated version of E½vk�,
the coefficient error vector vk is also bounded in mean.
Therefore, if the largest eigenvalue of I�μR is smaller than
1, then E½vk� is bounded as k-1. □

Note that the condition in Theorem 1 is the same as
the mean convergence condition for the standard LMS algo-
rithm which has the following evolution equation for E½vk�:
E½vkþ1� ¼ ðI�μRÞE½vk�: ð19Þ

4.2. Excess MSE

We now turn to the excess MSE calculation for the
reweighted l1�norm penalized LMS algorithm. Using the
expression in (11) for vkþ1, the variable vkþ1vTkþ1 can be
written as follows:

vkþ1v
T
kþ1 ¼ vk�μxkx

T
kvkþμnkxk�ρr

sgnðwkÞ
ϵrþjwk�1j

� 	

� vTk �μvTkxkx
T
k þμnkxTk �ρr

sgnðwT
k Þ

ϵrþjwT
k�1j

 !
:

ð20Þ
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Expanding the right-hand side of (20) and then taking
expectation on both sides results in the following equa-
tion:

E vkþ1vTkþ1

� �¼ E vkvTk
� ��μ E vkvTkxkx

T
k

� �þE xkxTkvkv
T
k

� �� �
þμ2E n2

kxkx
T
k

� �þμ E nkvkxTk
� �þE nkxkvTk

� �� �
�μ2 E nkxkxTkvkx

T
k

� �þE nkxkvTkxkx
T
k

� �� �þμ2E xkxTkvkv
T
kxkx

T
k

� �
�ρr E vk

sgnðwT
k Þ

ϵrþjwT
k�1j

" #
þE

sgnðwkÞ
ϵrþjwk�1j

vTk

� � !

þμρr E xkx
T
kvk

sgnðwT
k Þ

ϵrþjwT
k�1j

" #
þE

sgnðwkÞ
ϵrþjwk�1j

vTkxkx
T
k

� � !

�μρr E nkxk
sgnðwT

k Þ
ϵrþjwT

k�1j

" #
þE nk

sgnðwkÞ
ϵrþjwk�1j

xTk

� � !

þρ2r E
sgnðwkÞ

ϵrþjwk�1j
sgnðwT

k Þ
ϵrþjwT

k�1j

" # !
: ð21Þ

It is worth noting that due to the independence of the
additive noise nk of the data and coefficient error vectors
and due to the fact that the additive noise is zero mean, we
have

E nkvkxTk
� �¼ E nk½ �E vkxTk

� �¼ 0

E nkxkvTk
� �¼ E nk½ �E xkvTk

� �¼ 0

E nkxkx
T
kvkx

T
k

� �¼ E nk½ �E xkx
T
kvkx

T
k

� �¼ 0

E nkxkvTkxkx
T
k

� �¼ E nk½ �E xkvTkxkx
T
k

� �¼ 0

E nkxk
sgnðwT

k Þ
ϵrþjwT

k�1j

" #
¼ E nk

sgnðwkÞ
ϵrþjwk�1j

xTk

� �
¼ 0:

Since for Gaussian input sequences E½xkxTkvkvTkxkxTk � can
be shown to be equal to 2RE½vkvTk �RþR trfRE½vkvTk �g (see,
for example, equation (12) of [26] and the derivation of
equation (35) in [27]) in (21), the expression for
E½vkþ1vTkþ1� can be derived as in the following equation:

E vkþ1vTkþ1

� �¼ E vkvTk
� ��μ E vkvTk

� �
RþRE vkvTk

� �� �þμ2s2nR

þμ2 2RE vkvTk
� �

RþR trfRE vkvTk
� �g� �

�ρr I�μRð ÞE vk
sgnðwT

k Þ
ϵrþjwT

k�1j

" #
þE

sgnðwkÞ
ϵrþjwk�1j

vTk

� �
I�μRð Þ

 !

þρ2r E
sgnðwkÞ

ϵrþjwk�1j
sgnðwT

k Þ
ϵrþjwT

k�1j

" # !
: ð22Þ

Let Ak and Bk be defined as

Ak9ρr I�μRð ÞE vk
sgnðwT

k Þ
ϵrþjwT

k�1j

" # 

þE
sgnðwkÞ

ϵrþjwk�1j
vTk

� �
I�μRð Þ

	
ð23Þ

and

Bk9ρ2r E
sgnðwkÞ

ϵrþjwk�1j
sgnðwT

k Þ
ϵrþjwT

k�1j

" # !
: ð24Þ

Then, (22) can be rewritten as

E½vkþ1vTkþ1� ¼ E½vkvTk �
�μðE½vkvTk �RþRE½vkvTk �Þþμ2s2nR

þμ2ð2RE½vkvTk �RþR trfRE½vkvTk �gÞ
�AkþBk: ð25Þ
Letting k-1 in (25), we obtain

Rv ¼ Rv�μðRvRþRRvÞþμ2s2nR

þμ2ð2RRvRþR trfRRvgÞþ lim
k-1

ðBk�AkÞ: ð26Þ

Crossing out Rv from both sides of (26) and then dividing
the resulting equation by μ, we find that

RvRþRRv�2μRRvR

¼ μR s2nþtrfRRvg
� �þ1

μ
lim
k-1

Bk�Akð Þ: ð27Þ

Breaking 2μRRvR into the sum of two identical terms and
then factoring out RRv and RvR, we also obtain

RRv I�μRð Þþ I�μRð ÞRvR

¼ μR s2nþtrfRRvg
� �þ1

μ
lim
k-1

Bk�Akð Þ: ð28Þ

Multiplying both sides of (28) by ðI�μRÞ�1 from right, the
following can be derived:

RRvþ I�μRð ÞRvRðI�μRÞ�1

¼ μRðI�μRÞ�1 s2nþtrfRRvg
� �

þ1
μ
lim
k-1

Bk�Akð ÞðI�μRÞ�1: ð29Þ

Note that s2nþtrfRRvg here is a scalar. Taking the trace of
the two sides of (29), we have

trfRRvgþtrf I�μRð ÞRvRðI�μRÞ�1g
¼ μ s2nþtrfRRvg
� �

trfRðI�μRÞ�1g

þ1
μ
lim
k-1

trf Bk�Akð ÞðI�μRÞ�1g: ð30Þ

trfðI�μRÞRvRðI�μRÞ�1g equals trfRvRðI�μRÞðI�μRÞ�1g
which in turn is equal to trfRvRg. Therefore, Eq. (30) can
be simplified as follows:

trfRRvgþtrfRvRg
¼ μ s2nþtrfRRvg
� �

trfRðI�μRÞ�1g

þ1
μ
lim
k-1

trf Bk�Akð ÞðI�μRÞ�1g: ð31Þ

Since trfRRvg ¼ trfRvRg, we can further rewrite (31) as

trfRRvg 2�μ trfRðI�μRÞ�1g

 �

¼ μs2ntrfRðI�μRÞ�1g

þ1
μ
lim
k-1

trf Bk�Akð ÞðI�μRÞ�1g: ð32Þ

Having in mind that the excess MSE ξ is found to be
ξ¼ trfRRvg, we obtain from (32) the following expression
for ξ:

ξ¼ trfRRvg ¼
η

2�η
s2nþ

β�α

μð2�ηÞ ð33Þ

where η9μ trfRðI�μRÞ�1g, β9 limk-1βk, α9 limk-1αk,
βk9trfBkðI�μRÞ�1g, and αk9trfAkðI�μRÞ�1g.

We now further examine variables βk and αk. The
matrix BkðI�μRÞ�1 can be expressed as

BkðI�μRÞ�1

¼ ρ2r E
sgnðwkÞ

ϵrþjwk�1j
sgnðwT

k Þ
ϵrþjwT

k�1j

" #
ðI�μRÞ�1

 !
: ð34Þ
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Using (34), we obtain

βk ¼ trfBkðI�μRÞ�1g

¼ ρ2r E tr
sgnðwkÞ

ϵrþjwk�1j
sgnðwT

k Þ
ϵrþjwT

k�1j
ðI�μRÞ�1

( )" # !
: ð35Þ

Moreover, βk in (35) can also be written as

βk ¼ ρ2r E tr
sgnðwT

k Þ
ϵrþjwT

k�1j
ðI�μRÞ�1 sgnðwkÞ

ϵrþjwk�1j

( )" # !
: ð36Þ

The matrix I�μR is symmetric, and its eigenvalue
decomposition can be written as I�μR¼UΓUT with U
being an orthonormal matrix of eigenvectors and Γ being
a diagonal matrix of eigenvalues. Therefore, ðI�μRÞ�1 ¼
UΓ�1UT and βk from Eq. (36) can be written as

βk ¼ ρ2r E tr
sgnðwT

k Þ
ϵrþjwT

k�1j
UΓ�1UT sgnðwkÞ

ϵrþjwk�1j

( )" # !

¼ ρ2r E tr Γ�1UT sgnðwkÞ
ϵrþjwk�1j

sgnðwT
k Þ

ϵrþjwT
k�1j

U

( )" # !
: ð37Þ

Let λmax be the largest eigenvalue of the covariance
matrix R. Also, let μ be small enough such that ð1�μ
λmaxÞ�1 is positive. In (37), since Γ�1 is a diagonal matrix
whose diagonal elements are all non-negative and less
than or equal to ð1�μλmaxÞ�1, we have

βkr
ρ2r

1�μλmax

� E tr UT sgnðwkÞ
ϵrþjwk�1j

sgnðwT
k Þ

ϵrþjwT
k�1j

U

( )" # !
: ð38Þ

Note that

tr UT sgnðwkÞ
ϵrþjwk�1j

sgnðwT
k Þ

ϵrþjwT
k�1j

U

( )

¼ tr
sgnðwT

k Þ
ϵrþjwT

k�1j
UUT sgnðwkÞ

ϵrþjwk�1j

( )

¼ sgnðwT
k Þ

ϵrþjwT
k�1j

sgnðwkÞ
ϵrþjwk�1j

rsgnðwT
k ÞsgnðwkÞ
ϵ2r

rN
ϵ2r
: ð39Þ

Substituting (39) in (38), the following bound on βk can
be finally obtained:

βkr
Nρ2r

ϵ2r ð1�μλmaxÞ
: ð40Þ

Moreover, βk in (37) can also be written as

βk ¼ ρ2r ðE½trfzTkzkg�Þ ¼ ρ2r ðE½Jzk J22�Þ ð41Þ
Table 1
Value of α0 for different sparsity levels.

S 1 2 3 4

α0 3.23 2.99 2.74 2.45

S 9 10 11 12

α0 0.39 �0.17 �0.79 �1.46
where zk is defined as

zk9Γ�1=2UT sgnðwkÞ
ϵrþjwk�1j

ð42Þ

and J � J2 stands for the Euclidean norm of a vector.
Therefore, it can be seen from (41) that βk is non-negative.
Since, βk is upper bounded and non-negative, so is β.

The variable αk can be derived as

αk ¼ trfAkðI�μRÞ�1g ¼ ρr E tr vk
sgnðwT

k Þ
ϵrþjwT

k�1j
þ sgnðwkÞ
ϵrþjwk�1j

vTk

( )" # !

¼ 2ρr E tr vk
sgnðwT

k Þ
ϵrþjwT

k�1j

( )" # !

¼ 2ρr E tr wk
sgnðwT

k Þ
ϵrþjwT

k�1j

( )" #
�E tr w

sgnðwT
k Þ

ϵrþjwT
k�1j

( )" # !
: ð43Þ

Assuming that limk-1E½sgnðwkÞ� ¼ sgnðwÞ which is a
common assumption and it is, for example, the same as in
[7], αk in (43) can be written as

αk ¼ 2ρr E
wk

ϵrþjwk�1j

����
����
1

� �
�E

w
ϵrþjwk�1j

����
����
1

� �� 	
: ð44Þ

Defining β09β=ρ2r , and α09α=ρr, the excess MSE equa-
tion of (33) can be rewritten as

ξ¼ η

2�η
s2nþ

β0ρr
μð2�ηÞ ρr�

α0

β0

� 	
ð45Þ

where β0 is non-negative and upper bounded by
N=ϵ2r ð1�μλmaxÞ, and α0 is given as

α0 ¼ lim
k-1

2 E
wk

ϵrþjwk�1j

����
����
1

� ��

�E
w

ϵrþjwk�1j

����
����
1

� �	
: ð46Þ

It can be seen from (45) that if α0 is positive, then
choosing ρr in a way that ρroα0=β0 can lead to the excess
MSE of the reweighted l1�norm penalized LMS algorithm
being smaller than that of the standard LMS algorithm
given in (6). The following example shows how the value
of α0 varies with respect to the sparsity level of the CIR that
is being estimated.

Example 1: A time sparse CIR of length N¼16 whose
sparsity level varies from S¼1 to S¼16 is considered in
this example. The nonzero entries of the CIR take the
values of 1 or �1 with equal probabilities each equal to half.
In order to ensure a constant value for the term ηs2n=ð2�ηÞ
in the excess MSE equation of (45) for different values of
sparsity S, s2n is a constant set to 0.01. The step size μ is set to
0.05, while ρr ¼ 5� 10�4 and ϵr ¼ 0:05 in (10). Elements of
the training sequence xk are chosen with equal probability
from the set f1; �1g. Table 1 shows the value of α0 after 250
5 6 7 8

2.11 1.74 1.32 0.89

13 14 15 16

�2.23 �3.10 �4.07 �5.20
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iterations of the reweighted l1�norm penalized LMS algo-
rithm for different sparsity levels.

The results in Table 1 show that as the CIR becomes less
and less sparse, i.e., as S increases, α0 becomes smaller to a
point that it takes a negative value. Therefore, based on (45)
we can expect a smaller excess MSE for the reweighted
l1�norm penalized LMS algorithm compared to that of the
standard LMS algorithm providing that the sparsity level is
small enough so that α0 is positive.

5. Simulation results

In this section we compare the performance of different
channel estimation algorithms for several scenarios. The
algorithms being considered here are the ZA-LMS and RZA-
LMS algorithms of [7] as well as the proposed reweighted
l1�norm penalized LMS algorithm and the lp-pseudo-norm
penalized LMS algorithm [24]. The standard LMS algorithm is
also included for comparison in our simulation figures. The
performance of the so-called oracle LMS is reported in the
first simulation example as a lower bound for all sparsity-
aware algorithms. In oracle LMS, the positions of the nonzero
taps of the CIR are assumed to be known before hand.

The cost function of ZA-LMS can be written as LZAk 9
ð1=2Þe2kþγZA Jwk J1, where γZA is the weight associated
with the penalty term. The CIR is assumed to be sparse
in the time domain and the cost function LZAk is convex. The
algorithm has the following update equation:

wkþ1 ¼wkþμekxk�ρZA sgnðwkÞ ð47Þ
where ρZA9μγZA.

The RZA-LMS algorithm uses a logarithmic penalty term.
The modified cost function of the algorithm is LRZAk 9 ð1=2Þ
e2kþγRZA∑N

i ¼ 1 logð1þ½wk�i=ϵ0RZAÞ, where ½wk�i is the i-th ele-
ment of the vector wk and γRZA and ϵ0RZA are some positive
numbers. Note that the same penalty term is also used, for
example, in [28]. The update equation for the RZA-LMS is

wkþ1 ¼wkþμekxk�ρRZA
sgnðwkÞ

1þϵRZAjwkj
ð48Þ

where ρRZA9μγRZAϵRZA and ϵRZA91=ϵ0RZA. Note that the cost
function of the RZA-LMS method is not convex that makes
the convergence and consistency analysis problematic.

Although only time domain sparsity is considered in
[7], the ZA-LMS algorithm, for example, can be easily
extended to an arbitrary sparsity basis. Let Ψ be the N � N
orthonormal matrix denoting a specific sparsity basis. The
CIR w is sparse in the sparsity domain Ψ if its representa-
tion in Ψ, that is, the vector Ψw, has only few nonzero
components. The ZA-LMS cost function can be rewritten
then as LZAk 9 ð1=2Þe2kþγZA JΨwk J1, and the update equa-
tion becomes

wkþ1 ¼wkþμekxk�ρZA sgnðΨwkÞΨ ð49Þ
where sgnðΨwkÞ as well as sgnðΨwkÞΨ are row vectors.

In [24], we considered the lp-pseudo-norm of wk with
0opo1 as the penalty term introduced into the cost
function of the standard LMS. The cost function of the
lp-pseudo-norm penalized LMS is then expressed as Llpk 9
ð1=2Þe2kþγp Jwk Jp, where J � Jp stands for the lp-pseudo-
norm of a vector and γp is the corresponding weight term.
Using gradient descent, the update equation based on (5)
can be derived as

wkþ1 ¼wkþμekxk�ρp
ðJwk JpÞ1�psgnðwkÞ

jwkjð1�pÞ ð50Þ

where ρp ¼ μγp. In practice, we need to impose an upper
bound on the last term in (50) in the situation when an
entry of wk approaches zero, which is the case for a sparse
CIR. Then the update equation (50) is modified as

wkþ1 ¼wkþμekxk�ρp
ðJwk JpÞ1�psgnðwkÞ

ϵpþjwkjð1�pÞ ð51Þ

where ϵp is a value which is used to upper bound the last
term in (50).

5.1. Simulation example 1: time sparse channel estimation

In this example, we consider the problem of estimating a
CIR of length N¼16. The CIR is assumed to be sparse in the
time domain. Two different sparsity levels of S¼1 and S¼4
are considered. The positions of the nonzero taps in the CIR
are chosen randomly. The value of each nonzero tap is a zero
mean Gaussian random variable with a variance of 1.

Two different signal-to-noise ratio (SNR) values of
10 dB and 20 dB are considered. For the lp-pseudo-norm
penalized LMS algorithm, p is chosen to be 1/2 with
ϵp ¼ 0:05 and ρp ¼ 2� 10�4. The parameters of the
reweighted l1�norm penalized LMS algorithm are set to
ρr ¼ 2� 10�4 and ϵr ¼ 0:05. For the ZA-LMS and the RZA-
LMS algorithms, ρZA ¼ 5� 10�4, ρRZA ¼ 4� 10�3, and
ϵRZA ¼ 25. Parameter values for the ZA-LMS and RZA-LMS
algorithms are optimized through simulations. The step
size is set to μ¼ 0:05 for all algorithms. The measure of
performance is the MSE between the actual and estimated
CIR. Simulation results are averaged over 10 000 simula-
tion runs to smooth out the curves.

Fig. 2 shows the MSE versus the number of iterations for
different estimation algorithms for the case when the sparsity
level is S¼1. It is expected that the oracle LMS outperforms all
sparsity-aware algorithms as well as the standard LMS. The
simulation results conform it. Outside the oracle LMS, it can be
seen that for both SNR values tested, the lp-pseudo-norm
penalized LMS algorithm has the best performance followed
by the reweighted l1�norm penalized LMS algorithm, and
then by the RZA-LMS, ZA-LMS, and standard LMS algorithms.
The MSEs of the RZA-LMS and reweighted l1�norm penalized
LMS algorithms are close to each other. As the SNR increases,
the performance of all the algorithms tested improves as
expected. Also, it can be seen in Fig. 2 that the performance
gap between the MSE of the standard LMS algorithm and the
MSEs for the rest of the algorithms increases as SNR increases.
The lp-pseudo-norm penalized LMS and reweighted l1�norm
penalized LMS algorithms have faster convergence rate com-
pared to the standard LMS algorithm.

Fig. 3 shows the simulation results for the case when
the sparsity level is set to S¼4. The parameter choices for
all the algorithms tested are the same as in the previous
case. Most of the observations from Fig. 2 also hold for this
case of increased sparsity level. However, increasing the
sparsity level of the CIR leads to a decrease in the
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Fig. 2. Example 1, Case 1: MSEs of different estimation algorithms versus
number of iterations (S¼1). (a) 10 dB SNR. (b) 20 dB SNR.

25 50 75 100 125 150 175 200

10−2

Number of Iterations

M
S

E

Standard LMS
Oracle LMS
ZA−LMS
RZA−LMS
lp−norm penalized LMS (p=0.5)
Reweighted l1−norm penalized LMS

25 50 75 100 125 150 175 200

10−3

10−2

Number of Iterations

M
S

E

Standard LMS
Oracle LMS
ZA−LMS
RZA−LMS
lp−norm penalized LMS (p=0.5)
Reweighted l1−norm penalized LMS
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performance gap between the sparsity-aware LMS algo-
rithms and the standard LMS algorithm.

Overall, the proposed reweighted l1�norm penalized LMS
algorithm performs better than the RZA-LMS and signifi-
cantly better than the RA-LMS. Both the proposed reweighted
l1�norm penalizes LMS and the RA-LMS algorithms use
l1�norm penalty for enforcing sparsity, but the proposed
algorithm uses the reweighting on the top. Thus, the corre-
sponding performance improvement of the proposed algo-
rithm as compared to the RA-LMS algorithm is due to the
reweighting only. The RZA-LMS algorithm uses a different
nonconvex penalty term, and it is proper to compare it to the
other proposed lp-pseudo-norm (po1) penalized LMS algo-
rithm, where the penalty term is also nonconvex. We can see
the significant performance improvement for the other
proposed algorithm versus the RZA-LMS algorithm.

5.2. Simulation example 2: arbitrary sparsity basis

The ZA-LMS and RZA-LMS algorithms in the form
derived in [7] are only applied to the case when the
channel is sparse in the time domain. However, these
algorithms as well as the lp-pseudo-norm penalized LMS
and reweighted l1�norm penalized LMS algorithms can be
modified to accommodate the case of an arbitrary sparsity
basis. Consider the ZA-LMS algorithm in the case when the
CIR is sparse in a sparsity domain denoted by Ψ. The CIR
representation in Ψ, i.e., the vector wΨ ¼Ψw, is a sparse
vector and it has a few nonzero entries. The corresponding
update equation for the ZA-LMS algorithm is given by (49).

The update equation for the reweighted l1�norm
penalized LMS algorithm becomes

wkþ1 ¼wkþμekxk�ρr
sgnðΨwkÞΨ
ϵrþjΨwk�1j

: ð52Þ

Finally, the modified update equation of the lp-pseudo-
norm penalized LMS algorithm can be derived as

wkþ1 ¼wkþμekxk�ρp
ðJΨwk JpÞ1�psgnðΨwkÞΨ

ϵpþjΨwkjð1�pÞ : ð53Þ

In this simulation example, a CIR of length N¼16 with
the sparsity level of S¼2 is being estimated which is sparse
in the discrete cosine transform (DCT) domain. The posi-
tions of nonzero taps in the DCT domain are chosen
randomly. The values of the nonzero elements in the DCT
domain are set to 1 or �1 with the same probabilities each



50 75 100 125 150 175 200
10−3

10−2

10−1

Number of Iterations

E
xc

es
s 

M
S

E

Standard LMS
Reweighted l1−norm penalized LMS
Sparsity level: 2
Sparsity level: 4
Sparsity level: 6
Sparsity level: 8

Fig. 5. Example 3: Excess MSE versus number of iterations.

O. Taheri, S.A. Vorobyov / Signal Processing 104 (2014) 70–7978
equal to half. The algorithms being compared here are
the ZA-LMS, RZA-LMS, lp-pseudo-norm penalized LMS,
reweighted l1�norm penalized LMS, and standard LMS
algorithms. As in the first simulation scenario, two different
SNR values of 10 and 20 dBs are tested. Parameter choices
for the 10 dB SNR case are as follows. For the lp-pseudo-
norm penalized LMS algorithm, p¼1/2, ϵp ¼ 0:05, and ρp ¼
2� 10�4. Parameters of the reweighted l1�norm penalized
LMS algorithm are ρr ¼ 2� 10�4 and ϵr ¼ 0:05. For the ZA-
LMS and the RZA-LMS algorithms, the values are ρZA ¼ 5�
10�4, ρRZA ¼ 4� 10�3, and ϵRZA ¼ 25. The step size μ is set
to 0.05. For the 20 dB SNR case, ρr, ρp, and ρRZA are reduced
by half.

The MSE curves in Fig. 4 are averaged over 10 000
simulation runs. The same conclusions as in Simulation
Example 1 hold here as well. For the SNR of 10 dB SNR, the
lp-pseudo-norm penalized LMS algorithm outperforms all
the other algorithms followed by the reweighted l1�norm
penalized LMS algorithm, and then by the RZA-LMS and
ZA-LMS algorithms. However, when the SNR is set to
20 dB, the reweighted l1�norm penalized LMS and RZA-
LMS algorithms show a better performance than the
lp-pseudo-norm penalized LMS algorithm.

5.3. Simulation example 3: effect of sparsity level on the
performance of the reweighted l1�norm penalized LMS
algorithm

In this example, we study the effect that the increasing
sparsity level of CIR has on the performance of the
reweighted l1�norm penalized LMS algorithm. A CIR is
assumed to be sparse in the time domain and it is of length
N¼16. The sparsity level varies from 2 to 8. The positions
of the nonzero taps of the CIR are chosen randomly and
the values of nonzero taps are set to 1 or �1 with equal
probability each equal to half. Parameters of the
reweighted l1�norm penalized LMS algorithm are ρr ¼ 2�
10�4 and ϵr ¼ 0:05. The step size μ is set to 0.05. Variance
of the additive noise term nk is s2n ¼ 0:01. Excess MSE is
used as a performance measure in this example. We have
chosen a constant variance s2n for the noise in order to
make sure that the standard LMS algorithm has the same
25 50 75 100 125 150 175 200

10−3

10−2

Number of Iterations

M
S

E

Standard LMS
ZA−LMS
RZA−LMS
lp−norm penalized LMS (p=0.5)
Reweighted l1−norm penalized LMSSNR = 10 dB

SNR = 20 dB

Fig. 4. Example 2: MSEs of estimation algorithms versus number of
iterations for a DCT sparse channel with S¼2.
excess MSE regardless of the sparsity level of the channel.
The excess MSE curves are averaged over 10 000 simula-
tion runs. According to (5), the excess MSE can be derived
as ξk ¼ trfRE½vkvTk �g. In this simulation example with xk
being an i.i.d. binary phase-shift keying (BPSK) sequence,
the covariance matrix R becomes identity, and therefore, ξk
can be evaluated as trfE½vkvTk �g.

Fig. 5 shows the excess MSE versus the number of
iterations for the standard LMS and reweighted l1�norm
penalized LMS algorithms when the CIR sparsity level is
varied from 2 to 8. It can be seen that the standard LMS
algorithm results in the same excess MSE regardless of the
sparsity level of the CIR. However, the excess MSE of the
reweighted l1�norm penalized LMS algorithm increases
with increasing sparsity level which is due to the fact that
the value of α0 in Eq. (46) is decreasing. For example, α0 is
equal to 2.7, 2.3, 2.0, and 1.6 for sparsity levels of 2, 4, 6,
and 8, respectively, after 150 iterations. It can be also seen
that in all cases, the reweighted l1�norm penalized LMS
algorithm outperforms the standard LMS algorithm.

6. Conclusions

Sparse channel estimation problem has been consid-
ered in this paper and the reweighted l1�norm penalized
LMS algorithm has been introduced and analyzed. Quanti-
tative analysis of the reweighted l1�norm penalized LMS
algorithm and the attainable excess MSE have been pre-
sented. The excess MSE result shows that the reweighted
l1�norm penalized LMS algorithm outperforms the stan-
dard LMS algorithm for the case of sparse CIR. The analysis
has enabled us also to answer the question of what is the
maximum sparsity level in the channel for which the
reweighted l1�norm penalized LMS algorithm is better
than the standard LMS. Update equations of the reweighted
l1�norm penalized LMS, ZA-LMS, and the lp-pseudo-norm
penalized LMS algorithms have been generalized to the case
of an arbitrary sparsity basis. Simulation results for the DCT
sparse channel are given along with simulation results for
the time sparse channel. The performance of the
reweighted l1�norm penalized LMS algorithm has been
compared to that of the standard LMS, ZA-LMS, RZA-LMS
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algorithms, and our earlier proposed lp-pseudo-norm pena-
lized LMS algorithm through computer simulations. These
results show that the reweighted l1�norm penalized LMS
algorithm outperforms the standard LMS, ZA-LMS, and
RZA-LMS algorithms in all examples. It is also worth
mentioning that variable step size is known to lead to
better steady state error and therefore, better performance.
Thus, as a further extension, the variable step size feature
can be easily added to the proposed algorithm in the same
way as it has been added to the RA-LMS in [29].
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