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Highlights 

 This paper studies a location-routing problem with profit in a supply-chain network. 

 Customer demands are price-sensitive, and delivered pricing policy is used. 

 The problem simultaneously determines location, routing, and pricing decisions. 

 Two formulations for the problem are proposed. 

 A branch-and-price algorithm is developed to efficiently solve the problem. 
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Problem: A Branch-and-Price Algorithm 
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1
, Elahe Amiri, and Mahla Meskar 
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Abstract This paper for the first time considers a profit-maximization location-routing problem with price-

sensitive demands. The problem determines the location of facilities, the allocation of vehicles and 

customers to established facilities, and the pricing and routing decisions in order to maximize the total 

profit of serving customers. A mixed-integer linear programming model is presented, which can only be 

used to solve small-size instances with commercial optimization solvers. Then, the model is reformulated 

as a set-packing model and solved by an efficient branch-and-price algorithm for large-size instances. The 

proposed algorithm can also be used to solve the more basic location-routing problem with profit where 

demands are not price-sensitive, which has not been considered by any research earlier. Our numerical 

study indicates the substantial advantage of the integrated model. 

 

Keywords. Location-Routing Problems (LRP); Vehicle Routing Problems with Profit (VRPP); Price-

sensitive demands and delivered pricing; Mixed-Integer Linear Programming (MILP); Branch-and-price 

and column generation 

 

1. Introduction 

Location Routing Problems (LRPs) involve selecting the optimal number and locations of facilities, 

allocating customers to established facilities and constructing delivery routes. This class of decision 

problems has been studied since the mid-1970s. Laporte (1988) provided a survey on deterministic LRPs 

and described various formulations of the problem, as well as the solution methods and computational 

results used up to 1988. Min et al. (1998) surveyed LRPs and used a two-way classification scheme for 

LRPs in terms of problem characteristics and solution methods. A detailed review of LRP models, 

applications and solution methods was also provided by Nagy and Salhi (2007) and Lopez et al. (2013). In 

recent studies, new variants of LRPs have been put forward, which simultaneously optimize location, 

routing and other decisions such as inventory decisions. Ahmadi-Javid and Azad (2010) presented such a 

                                                 
1 Corresponding author’s email address: ahmadi_javid@aut.ac.ir 
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model for the first time in a stochastic supply chain system. Ahmadi-Javid and Seddighi (2013) studied a 

location-routing problem with production and distribution disruption risks in a supply chain network. For a 

comprehensive review of LRPs, one can refer to the recent surveys by Prodhon and Prins (2014), and 

Drexl and Schneider (2015). 

LRP models presented in the literature typically minimize some performance metrics. The widely-used 

measures are cost functions, while some studies consider other metrics, such as the total waiting time of all 

the customers, the total length of the tour, the maximal waiting time of a typical customer, the average 

traveled length per customer, the average waiting time per customer, the average response time, the 

maximum lengths of the tours (Averbakh & Berman, 1994; Averbakh et al., 1994; Jamil et al., 1994. 

Averbakh & Berman, 1995; Averbakh & Berman, 2002). Moreover, LRP models often assume that every 

customer is visited exactly once, but there are papers where some customers may not be visited or are 

visited more than once. For example, in Nagy and Salhi (1998), two visits may be allowed to a customer, 

or in Averbakh et al. (1994) and Averbakh and Berman (1995) some random customers do not require a 

visit; while in Albareda-Sambola et al. (2007) some randomly-selected customers are not served (for more 

details see the review by Lopez et al. (2013)). 

To the best of our knowledge, there is little study on LRPs with profit-maximization objectives, where 

the visit of all customers is not mandatory. However, in the closely related context of Vehicle Routing 

Problems (VRPs) and traveling saleman problems (TSPs), there are many studies that consider routing 

problems with no restriction in serving all of the customers and that leave some customers unserved to 

increase their profit-based objective functions. In fact, it may not be profitable to satisfy all customers as 

the cost of serving some customers is higher than the revenue of serving them. In the following, we shortly 

provide an overview of this class of VRPs, which are called Vehicle Routing Problems with Profits 

(VRPPs). 

Dissimilar to the traditional VRPs, VRPPs simultaneously choose a set of customers from potential 

customers and design the routes to serve the selected customers. In these problems, visiting each customer 

has a profit that represents its relative importance compared to the other customers. Hence, there are two 

conflicting objectives in these problems: travel-cost minimization and profit maximization. Depending on 

how these objectives are compromised, three classes of VRPPs have been studied in the literature: 

Profitable Tour Problems (PTPs), Team Orienteering Problems (TOPs), and Prize Collecting Routing 

Problems (PCRPs). In PTPs, both objectives are combined in a single objective, which is to maximize the 

difference between the total collected profit and the total travel cost. In TOPs, the objective is to maximize 

the total collected profit while the total travel cost does not surpass a given threshold. In PCRPs, the 

objective is to minimize the total travel cost such that the total collected profit is greater than a 

predetermined amount. Feillet et al. (2005) surveyed TSPs with profits, a subclass of PTPs, and 

Vansteenwegen et al. (2011) and Gunawan et al. (2016) reviewed papers on TOPs. For a general survey of 

VRPPs, one can refer to Archetti et al. (2014) and the references therein. Instances of recent studies on this 

topic are Vidal et al. (2015), El-Hajj et al. (2016), Archetti et al. (2017), and Gansterer et al. (2017). 
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Incorporating price-sensitive demands has attracted considerable attention in location-allocation 

problems and studied in several papers, e.g., Hotelling (1929), Wagner and Falkson (1975), Hansen et al. 

(1981), Lederer and Thisse (1990), Hanjoul et al. (1990), Hansen et al. (1997), Pérez et al. (2004), 

Fernández et al. (2007), Vogel (2011), Pelegrín et al. (2012), Fernández et al. (2014), Ahmadi-Javid and 

Ghandali (2014), He et al. (2016), and Berger et al. (2017). Moreover, Ahmadi-Javid and Hoseinpour 

(2015a, b) integrated pricing decisions with location-inventory problems. Several other papers also studied 

problems involving both inventory and pricing decisions over the last years, see, for example, the review 

by Chen and Simchi-Levi (2012). 

However, the impact of pricing decisions has not been considered in the LRP literature to date. 

Actually, to the best of our knowledge, there is no study on any type of LRP with profit. This paper, for the 

first time, studies a Profit-Maximization LRP (PM-LRP) with price-sensitive demands. In this problem, the 

company uses a spatial pricing policy, under which different delivered prices are charged to customers (or 

spatial markets or retailers) based on their locations. The mill price (or wholesale price) of the product is 

the same at all main distribution centers, but the delivered price (or retail price) offered to customers 

(retailers) who receive their demand at their location may vary by the customers’ location, to cover part of 

the delivery cost borne by the company. 

Our PM-LRP can be applied in application areas already mentioned in the location-pricing literature 

where a fleet of vehicles are used to deliver the demands instead of direct transportation (Hanjoul et al., 

1990). In addition, an emerging application area can be for distribution companies and online stores that 

serve customers who prefer to receive their required goods at their places at higher prices, while they can 

directly buy them from the existing shopping stores. Even if the market is not segmented, these companies 

are legally allowed to discriminate delivered prices offered to different zones because the distances of 

demand zones to their distribution centers are not the same and because people in different zones may have 

different demand rates depending on factors, such as the accessibility to the physical shopping stores, 

traffic intensity, social class, etc. Spatial price discrimination is the ability to charge different prices to 

consumers at different locations (Hoover, 1937; Varian, 1989; Anderson et al., 1989; Fackler & Goodwin, 

2001; Lambrecht et al., 2012). Delivered pricing is a type of spatial price discrimination where the price 

offered to a customer is inclusive of transport charges and is dependent on the customer's location (Carlton, 

1983; Espinosa, 1992; Basu et al., 2004). In decision problems under any type of spatial price 

discrimination, demands at different locations are considered price sensitive, as in our proposed PM-LRP. 

Another important application of our PM-LRP is for the case that the demands are not price sensitive. In 

this case, we obtain the most basic LRP with profit, which can be used in designing distribution networks 

in various industrial areas of VRPPs, reviewed by Archetti et al. (2014). 

From a location-analysis perspective, the proposed PM-LRP is an extension of the two uncapacitated 

and capacitated location problems considered in Hanjoul et al. (1990), and Ahmadi-Javid and Ghandali 

(2014). From a routing perspective, the most related problem in the VRPP literature is a PTP with multiple 

capacitated vehicles, which was first studied by Archetti et al. (2009). These related problems are all NP-
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hard, so presenting exact solution algorithm for our PM-LRP seems challenging. Here, a branch-and-price 

algorithm is developed, which is an extension of the existing algorithms used in the VRPP literature. The 

nearest work to our paper has been done by Archetti et al. (2013) who presented an algorithm for PTP with 

a single uncapacitated depot and a fleet of identical capacitated vehicles where a profit was associated with 

each customer and the objective was to maximize the difference between the collected profit and the 

traveling cost. We study a similar problem, but in a more complex setting. In our problem, from a given set 

of heterogeneous capacitated distribution centers (depots), a subset must be selected. Moreover, in our 

problem demands are price sensitive. Hence, each DC can offer different prices to its allocated customers, 

which leads to different levels of profits and demands for each customer. One can retrieve the problem 

studied by Archetti et al. (2013), if in our problem there is only a single uncapacitated DC with zero 

establishment cost and a single price can be offered to each customer. 

To solve our PM-LRP in large scales, the proposed LRP is first formulated as a polynomial-size mixed-

integer linear programming model, which can be used only in small sizes. Then, the model is cast as an 

exponential-size set-packing formulation using the Dantzig-Wolfe decomposition. The resulting model is 

solved by a branch-and-price algorithm, where the pricing subproblems are variants of the elementary 

shortest path problem, which can be solved efficiently using a label-setting dynamic programming 

algorithm. It should be noted that our algorithm can also be used to solve an LRP with profit where 

demands are not price sensitive. As surveyed above, this LRP has not yet been studied and can be 

considered the closest extension of VRPPs in the location literature. 

Unfortunately, we cannot straightforwardly adapt the existing branch-and-price algorithms to solve our 

problem. Actually, there is no study that provides an exact solution method for a profit-maximization LRP 

where the objective is to maximize the profit and where visiting all customers are not mandatory. This 

shows that we have no efficient exact solution method for our LRP with profit even if demands are not 

price-sensitive. In fact, the price differentiation assumption enormously increases the size of the feasible 

solution space and increases the complexity level of our problem. Moreover, in our proposed set-packing 

formulation, each column simultaneously determines one route and all the prices offered to the customers 

on the route, while the columns of similar set-packing formulations developed for VRPs and LRPs only 

represent routes. This basically changes the structure of the underlying graph that is used in our label-

setting algorithm to manage pricing decisions, which shows why we cannot use the existing algorithms to 

solve our problem. 

The remainder of the paper is organized as follows. Section 2 presents the problem statement and 

required notation; and models the problem as a polynomial-size mixed-integer linear program and a set-

packing formulation. Section 3 uses the latter to propose a branch-and-price algorithm. Section 4 reports 

the computational experience. Section 5 closes the paper by providing our conclusions and possible future 

research opportunities. 
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2. Problem statement and formulation 

Our PM-LRP is formally described in Section 2.1. The notation needed throughout the paper is given in 

Section 2.2, and two formulations of the problem are presented in Sections 2.3 and 2.4. 

2.1. Problem statement 

In the PM-LRP considered in this paper, a set of customers (or spatial markets or retailers) and a set of 

main potential Distribution Centers (DCs) are given. The aim of the problem is to determine the set of 

open DCs, the allocation of customers to open DCs, the pricing decisions, and a set of vehicle routes from 

open DCs to customers in order to maximize the overall profit. 

The delivered price (retail price) offered to each customer who receives its demand at its location, is the 

sum of the mill price (wholesale price) and an additional delivery cost, which is a percentage of the mill 

price, where the percentage is here called markup. Thus, when the mill price is known and fixed, instead of 

the delivered price, the markup can be considered the unknown element that must be determined by the 

PM-LRP. To do this, a global set of markup levels is considered, and the demand corresponding to each 

markup level is assumed to be known for each customer, which may vary for different customers. 

The underlying assumptions of the PM-LRP are as follows: 

1. A finite number of potential customers and candidate locations for establishing DCs are 

scattered in a region; their locations are already identified. 

2. The distances between any two locations are symmetric and satisfy the triangle inequality. 

3. Each customer can be serviced only by one open DC and placed on only one vehicle 

route, that is, fractional assignment and split delivery is not allowed. 

4. Serving all customers are not mandatory. Customers have no priority over the service, 

and there is no time window for serving any customer. 

5. Each DC has a limited distribution capacity, which is known, and the total demand of 

customers assigned to it must not exceed its capacity. 

6. A set of identical vehicles with the same capacity is considered. Each vehicle starts and 

ends its route at only one DC and can visit any subset of customers whose total demand is 

less than or equal to the vehicle capacity. Each vehicle can perform at most one route. 

7. Vehicles have enough fuel to complete their respective transportation missions and can 

serve all of the assigned customers without having to re-fuel. 

8. Each vehicle’s travel cost is proportional to the length of the path traveled and 

independent of the vehicle speed, time of the trip, and the weight of the vehicle’s load. 

9. A single product is considered, with a known set of markup levels, which are beneficial 

for the company. The mill price of the product is known and invariable across the 

network. 
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10. The spatial pricing policy is followed by the company, under which a finite number of 

different delivered prices are charged to customers, who receive their demands at their 

locations. 

11. Each customer’s demand is price-sensitive and depends on the markup level considered 

for delivering the product. 

12. The objective is to maximize the overall profit, obtained by subtracting the total cost of 

establishing DCs, traveling, and purchasing from the total collected revenue gained by 

selling the purchased products to the customers. 

Under the spatial pricing policy, the company offers a specific delivered price to each customer based 

on its location, so different customers may be charged different markups. 

2.2 Notation 

2.2.1. Sets 

  The set of potential customers 

  The set of potential DCs 

  The set of markup levels 

   The set of available vehicles given by           |  |  

2.2.2. Auxiliary sets 

In order to model the problem, the following auxiliary sets are also defined: 

  The set of all nodes (potential customers and DCs), i.e.,    ⋃  

   The set of |  | virtual vehicles assigned to DC  ,       
     |  |

  ,     

  The union of | | vehicle sets   , i.e.,   ⋃       

  

The set of all triples         such that vehicle     can travel from node     to node    , 

i.e., 

  {                       ⋃              ⋃(            )}  

2.2.3 Parameters 

    The travel distance between nodes   and  ,       

  The travel cost per unit of distance 

     The vehicle capacity, which is the same for all vehicles 

    
   The distribution capacity of DC  ,     

  The mill price per unit of product 
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   The percentage associated with markup level  ,     

   The delivered price per unit of product associated with markup level  , which is computed by 

          ,     

    The demand of customer   who is charged markup level  ,    ,     

   The fixed cost of establishing DC  ,     

   The DC to which that virtual vehicle   is assigned, i.e.,      
,     

2.2.4. Decision variables 

     A binary variable that becomes 1 if node   is visited immediately after node   by virtual 

vehicle  , and 0 otherwise,           

     A binary variable that equals 1 if node   is selected to be visited by virtual vehicle   at markup 

level  , and 0 otherwise,    ,    ,     

   A binary variable that takes 1 if DC   is selected to be established, and 0 otherwise,     

    
An auxiliary non-negative variable defined for customer    , used in MTZ sub-tour elimination 

constraints of the route of virtual vehicle  ,    ,     

2.3. Polynomial-size formulation 

This section presents a mixed-integer linear programming (MILP) model for the proposed PM-LRP. This 

model can be used only to solve small-sized instances by means of MILP solvers. 

As indicated in Section 2.2.2,    denotes the set of |  | available identical vehicles, a copy of this set is 

denoted by    that contains identical virtual vehicles assigned to DC  . Let   designate the union of | | 

vehicle sets   , i.e.,   ⋃      . Using these additional sets, it is not necessary to define variables for 

assigning vehicles to DCs, but the total number of selected virtual vehicles must be limited to |  | by a 

constraint in the model. The proposed PM-LRP can now be formulated as the following MILP model: 

∑ ∑∑       

         

     ∑      ∑            

            

 (1) 

s.t.   

 ∑ ∑    

      

        (2) 

 ∑    

   

 ∑    

   

             (3) 

 ∑      

   

           (4) 

 ∑            ∑            ∑    

                 

          (5) 
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 ∑∑       

      

           (6) 

 ∑ ∑ ∑       

          

     
          (7) 

 ∑ ∑ ∑    

          

 |  |  (8) 

       | |           (9) 

         | |     | |                   (10) 

                        (11) 

                          (12) 

                (13) 

The objective (1) is to maximize the total profit, which is the total profit of serving customers, minus 

the total cost of establishing DCs and transportation. Note that the total profit of serving customers is the 

total revenue earned by serving them, minus the purchasing cost of the delivered products, i.e., 

∑ ∑∑          

         

     ∑ ∑∑    

         

     ∑ ∑∑      

         

      

Constraints (2) ensure that each customer can be visited at most once. Constraints (3) guarantee that the 

number of times each vehicle enters a DC is equal to the number of times it leaves it. Constraints (4) 

ensure that each virtual vehicle can cover at most one route. Constraints (5) imply the connectivity of each 

route while determining the assignment of customers to virtual vehicles. Constraints (6) are the capacity 

constraints for the virtual vehicles. Constraints (7) guarantee that the total customer demand served from a 

single DC does not exceed its capacity. Constraint (8) limits the total number of virtual vehicles used. 

Constraints (9) and (10) are Miller-Tucker-Zemlin (MTZ) sub-tour elimination constraints introduced in 

Miller et al. (1960). Note that auxiliary variables             are continuous variables. Finally, 

constraints (11), (12), and (13) force the integrality of the decision variables. 

The above model has a polynomial number of variables and constraints, but state-of-the-art MILP 

solvers such as CPLEX require several hours to solve small-size instances (see Section 4.3 for numerical 

evaluation of this model). In the next section, an exponential-size reformulation of this model is given, 

which can be solved in large scales using a branch-and-price algorithm proposed in Section 3. 

2.4. Set-packing formulation 

In order to solve the problem to optimality for large-size instances, this subsection reformulates the model 

presented in Section 2.3 as a set-packing formulation using the Dantzig-Wolfe decomposition method 

(Dantzig & Wolfe, 1960). The new model enables us to develop an efficient branch-and-price algorithm in 

the next section. To do so, the constraints of the model given in Section 2.3 must be decomposed into a 
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number of independent and connecting constraints in order to construct one master problem and some 

subproblems. Here, constraints (2), (7), and (8) are considered the connecting constraints used to define the 

master problem, and constraints (3-6) and (9-12) are the independent constraints. 

In the following a route-price is defined as any route starting and ending at the same DC and all the 

prices offered to the customers on that route. Let   be the set of all feasible route-prices, and let    be the 

set of all feasible route-prices, starting and ending at DC    . Let us define the following additional 

notation: 

   A binary variable that becomes 1 as route-price   in   is selected, and 0 otherwise,      

     A binary parameter whose value is 1 if customer   is placed on route-price   and served at 

markup level  , and 0  otherwise,             

     A binary parameter that takes 1 if node   is visited immediately after node   in route-price  , 

and 0 otherwise,      ,    . 

Then, we have the following identities:  

∑     

    

 ∑       

    

             (14) 

∑     

            

 ∑      

   

         (15) 

which imply 

∑     

    

 ∑       

   

∑     

   

 ∑      

   

 

∑ ∑ ∑    

          

 ∑ ∑ ∑     

       

 

   

∑(∑ ∑    

      

)  

   

 ∑  

   

 

∑ ∑∑       

         

     ∑ (         )
         

 ∑∑       

      

 (∑     

   

)  ∑ ∑      
      

( ∑     

           

)  ∑  

   

   

where    denotes the profit of each route-price    , given by 

   ∑∑            

      

 ∑ ∑          

      

 (16) 

Hence, by substitution of ∑          and ∑                 from (14) and (15) into the connecting 

constraints (2), (7), and (8), model (1)-(13) can be reformulated as the following set-packing formulation: 
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    ∑  

   

   ∑   

   

   (17) 

s.t.   

 
∑  (∑    

   

)

   

        (18) 

 
∑ (∑∑       

      

)  

    

     
          (19) 

 
∑   (∑    

   

)

    

             (20) 

 ∑  

   

 |  |  (21) 

                (22) 

                (23) 

The objective (17) is to maximize the difference between the total collected profit and the total DC 

establishment cost. Constraints (18) ensure that all customers can be visited at most once. Constraints (19) 

guarantee that the total customer demand served by the same DC does not exceed its capacity. Constraints 

(20) are valid inequalities that are added to strengthen the formulation (see Section 4.2 for numerical 

effectiveness of these inequalities). Constraint (21) ensures that at most |  | vehicles are available. 

Constraints (22) and (23) impose integrality restrictions on the decision variables. 

As the number of route-price variables    in model (17)-(23) exponentially grows with the problem-

instance size, the model cannot directly be solved using MILP solvers. The next section exploits the 

special structure of this model and presents an algorithm to efficiently solve it. Finally, note that we can 

generalize the above model to the case where vehicles are not homogeneous following the same method 

explained above. 

3. Branch-and-Price algorithm 

This section develops a Branch-and-Price (B&P) algorithm, in which the column generation method is 

embedded within a Branch-and-Bound (B&B) algorithm, to solve the model (17)-(23). 

From now on, the model (17)-(23) and its continuous relaxation are called the Master Problem (MP) 

and the Linear Master Problem (LMP), respectively. In our B&P algorithm developed for the MP, at each 

node a Restricted Master Problem (RMP) containing a small subset of variables is first considered, and 

then its relaxation, called Restricted Linear Master Problem (RLMP), is solved to optimality using an LP 

solver. Next, a pricing problem is defined based on the resulting solution and its corresponding optimal 

dual solution. By solving the pricing problem, a set of new columns with positive reduced costs are 

iteratively generated and added to the current RLMP, and the new RLMP is solved again until no column 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12 
 

with positive reduced cost exists (note that our problem has a maximization objective and the reduced cost 

is a quantity defined for each non-basic variable in the context of the simplex method; see Definition 3.2 in 

Bertsimas and Tsitsiklis (1997)). If the resulting solution of the RLMP, which is also an optimal solution to 

LMP, is fractional, some branching rules are applied to generate new child nodes, where the same column-

generation procedure is used until an optimal integer solution is found. 

The RLMP corresponding to our model is formulated as follows: 

RLMP: 

    ∑   

    

   ∑   

   

   (24) 

s.t.   

 
∑   (∑    

   

)

    

        (25) 

 
∑ (∑∑       

      

)  

    
 

     
          (26) 

 
∑   (∑    

   

)

    
 

             (27) 

 ∑   

    

 |  |  (28) 

             (29) 

              (30) 

where    is the set of initially selected columns, which is dynamically updated in the next iterations of 

the B&P algorithm. The set   
  denotes the subset of columns in    whose corresponding routes start at 

DC   ,    . Note that the upper bound “1” provided by the continuous relaxation of constraints (22) is 

dominated by constraints (18), so it is eliminated in the RLMP formulation. As a consequence, basic 

columns of the RLMP solution which are set to “1 ” are not generated again in the pricing problem and the 

set    will be free of any duplicate member. 

The master routine of our B&P algorithm is as follows: 

Step BP.1. Initialization of B&B tree. 

Create a root node. Generate all two-length columns, which are defined as any combination of a route with 

two arcs to serve a single customer and any price that can be offered to the customer. Include the generated 

columns into      

Step BP.2. Column generation. 
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Step CG.1. Initialization of column generation. Include all columns previously generated in   , 

except for columns that are infeasible with respect to the branching constraints of the current node. In 

each node, initialize the active set as the set of all DCs apart from those DCs that cannot be established 

according to restrictions imposed by the branching constraints of the current node, i.e., their 

corresponding variables must be set to zeroes (the active set is only used in CG.2). In the root node, set 

the parameter  ̅ to ⌈   ⌉ for all DCs (  denotes the number of customers, | |), while in the other nodes, 

set the parameter  ̅ to ⌈   ⌉ for all DCs (the parameter  ̅ will be defined and used only in the heuristic 

label-setting algorithm given in Section 3.1.2; hence, it appears only in CG.2). Moreover, consider the 

critical sets for all DCs to be empty (critical sets will be defined and used only in the exact label-setting 

algorithm given in Section 3.1.1; hence, they are considered only in CG.3). 

Step CG.2. Generate columns using the heuristic label-setting algorithm.  

Step CG.2.1. For each DC that is a member of the active set, using the heuristic label-setting 

algorithm developed in Section 3.1.2, generate columns with positive reduced costs. Then, add these 

columns to the set   , and solve the updated RLMP (note that both of the heuristic and exact label-

setting algorithms generate columns that are feasible with respect to the branching restrictions as 

these constraints are incorporated into the pricing problem before column generation). 

Step CG.2.2. From the active set, remove DCs for which 1) no column has been generated in the last 

try and 2) their associated parameter  ̅ has reached to  . Then, double the parameter  ̅ for those DCs 

existing in the active set for which 1) no column has been generated in the last try and 2) the 

parameter  ̅ is less than  . Go to Step CG.3 if the active set is empty; otherwise go back to Step 

CG.2.1. 

Step CG.3. Generate columns using the exact label-setting algorithm. List all DCs in descending 

order based on the number of columns generated in the last try. In the ordered DC list, find the first DC 

for which at least one column can be generated using the exact label-setting algorithm proposed in 

Section 3.1.1 (when two DCs have the same priority in the list, randomly select one of them). Then, add 

the newly generated column(s) to the set    , solve the updated RLMP, and update the critical set 

associated with the selected DC. If no such DC can be found, go Step BP.3; otherwise, repeat this step 

from the beginning.  

Step BP.3. Deciding the current node. In the root node, solve the RMP with the present columns 

in    and update the best lower bound. At all nodes, if the resulting solution of the RLMP is an integer, 

fathom the node, save the solution, and update the best lower bound. If the RLMP is infeasible, fathom the 

node. If the resulting solution of the RLMP is fractional, classify the node as unexplored node and save its 

corresponding upper bound. If the parent node of the current node has another unsolved child node, select 

it as the current node, and go to Step BP.2 to solve it using column generation. Otherwise, go to the next 

step. 
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Step BP.4. Exploring the B&B tree. Choose an unexplored node with the largest upper bound among all 

unexplored nodes. Then, generate new branching nodes based on the rules and priorities determined in 

Section 3.2. Randomly select one of its two branching nodes, select it as the current node, and go to Step 

BP.2 to solve it using column generation. Stop whenever all nodes of the tree are fathomed, and return the 

integer solution that corresponds to the best lower bound. 

The heuristic and exact label-setting algorithms used to solve our pricing problem in Step BP.2 are 

given in Sections 3.1.1 and 3.1.2, and the branching rules used in Step BP.4. are given in Section 3.2. 

3.1 Pricing problem for generating columns 

Our pricing problem for generating columns with positive reduced costs after solving the current RLMP is 

decomposable into a set of independent pricing subproblems, one for each DC. To present these 

subproblems, let   ,   ,    , and    be the non-negative dual variables associated to the inequality 

constraints of LMP: (18), (19), (20), and (21), respectively. Then, the reduced cost of variable   ,     , in 

the LMP is equal to 

 ̃     ∑∑      

      

 ∑∑         

      

 ∑∑       

      

     
(31) 

Thus, the optimality condition for any feasible solution of LMP is given by 

   ∑∑      

      

 ∑∑         

      

 ∑∑       

      

      (32) 

for           By multiplying both sides of (32) by -1 and substituting    from (16) into (32), the 

optimality condition can be stated as 

∑ ∑          
        

 ∑∑                         

      

      (33) 

for         . Therefore, given the values of   ,   ,    , and    by solving RLMP, the pricing 

subproblem corresponding with DC     is presented as follows: 

Pricing subproblem associated with DC  : 

   ∑ ∑         
        

 ∑∑                        

      

    (34) 

s.t.   

 ∑     

   

  (35) 

 ∑     ∑     ∑   

           

      (36) 
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 ∑   

   

  

 
     (37) 

 ∑∑      

      

       (38) 

      | |       (39) 

       | |    | |                (40) 

                    (41) 

                     (42) 

where    is designated as a set including DC     and all potential customers, i.e.,     ⋃   . 

The next two subsections propose the exact and heuristic label-setting algorithms used here for solving 

the pricing subproblem corresponding with each DC. These algorithms are applied in Steps CG.2 and 

CG.3 of our B&P algorithm explained earlier in this section. 

3.1.1 Exact label-setting algorithm for solving pricing subproblems 

The pricing subproblem corresponding with DC    , i.e., (34)–(42), is actually an Elementary Shortest 

Path Problem with Resource Constraints (ESPPRC), which is called here ESPPRC with Price-sensitive 

Demands (ESPPRC-PD). The ESPPRC-PD simultaneously determines the best elementary path and 

pricing decisions. In the last years, this has become more and more common to tackle ESPPRCs by means 

of labeling algorithms developed based on dynamic programming, in column-generation approaches to 

capacitated routing problems. Here, we similarly solve our ESPPRC-PD (34)–(42) using a label-setting 

algorithm that extends the ones presented in Feillet et al. (2004) and Righini and Salani (2006, 2008). 

This algorithm assigns labels to each vertex, which save the required information about (partial) paths 

from the start node   to that vertex. The labels of each vertex are extended along the outgoing arcs of that 

vertex (if it is feasible) to generate new labels. This operation is continued until all labels are extended in 

all feasible ways or they are fathomed by some rules. 

In order to improve the efficiency of the label-setting algorithm, we use the Decremental State Space 

Relaxation (DSSR) acceleration method introduced by Righini and Salani (2008), which is enhanced by 

the 2-cycle elimination procedure proposed by Houck et al. (1980). Let us briefly describe the idea used in 

the DSSR method. An elementary path satisfies the elementary condition, that is, each node cannot be 

visited more than once. A relaxation of the ESPPRC in which the path may visit some nodes more than 

once is called Shortest Path Problem with Resource Constraints (SPPRC). In this relaxation, stronger 

dominance rules can be used such that the SPPRC is solvable in pseudo-polynomial time (Irnich & 

Desaulniers, 2005). Using this fact, in the DSSR method, the elementary condition, which is necessary for 

a feasible path in the ESPPRC, is relaxed at the beginning, and the corresponding SPPRC is solved. If the 

optimal path obtained by solving the SPPRC is elementary, the search procedure is terminated. Otherwise, 

the customers on the optimal path that are visited twice or more will be added to a set, which is called the 
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critical set (for each DC, one critical set is used). The search procedure is continued while the elementary 

condition is checked for customers contained in the critical set henceforth. 

There are two policies for label generation: mono-directional (Desrochers, 1988; Feillet et al., 2004) 

and bounded bidirectional (Ahuja et al., 1993; Righini & Salani, 2006). We will use both policies and 

evaluate their performance.  

A detailed description of the steps of our DSSR-based label-setting algorithm for solving the ESPPRC 

corresponding to DC   under the mono-directional label-generation policy is provided in the following. 

The changes required under the bounded bidirectional policy will be discussed after. 

 

Step LS.1. Graph construction: For our ESPPRC-PD, based on the instructions explained below, 

construct a graph where for each customer in  , a set of | | vertexes are defined, one for each markup 

level. The set of these | | virtual vertexes associated with customer   is called cluster  , and each vertex   

in cluster   is denoted by    . Moreover, a single vertex for DC   is defined. Each vertex     is weighted by 

demand    , and vertex   is weighted by 0. Between any two clusters in the graph, all | |  | | possible 

arcs are considered. Also, between vertex   and each cluster, all | | possible arcs are considered. Figure 1 

schematically indicates the arcs for an instance with | |    and | |   . The arcs are also weighted in 

order to calculate the opposites of reduced costs. Let     
   

 be the weight of the arc outgoing from vertex      

to vertex     , and            
   be the arc weight of the arc outgoing from vertex   (   ) to vertex     ( ). 

These arc weights are defined as follows: 

    
   

                           (43) 

    
             

          (44) 
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Figure 1. An illustrative example of the graph for an instance of the ESPPRC with | |    and | |   . 

If there is a vertex in a cluster with less demand delivery and a greater profit in comparison to another 

vertex in the same cluster, remove the latter from the graph (because the corresponding price cannot appear 

in an optimal solution). 

Step LS.2. Starting label generation: Start any feasible elementary path from vertex   and gradually 

develop it to other vertexes based on the instructions explained below, such that the path finally returns to 

vertex  , and such that for those customers in the critical set     at most one vertex from its corresponding 

cluster is visited (the critical set     is first set to empty and then will be updated during Step B.P.2). As a 

partial path gets to a vertex, one label is created. For a partial path getting to vertex     (or vertex   at the 

end), label               (or              ) is constructed. In this label,    is the set of clusters visited 

by the path,   is the total number of times that the path visits the clusters in   (for an elementary path it is 

equal to the number of vertexes in   ,   denotes the total arc weight of the path, and   is the total vertex 

weight of the corresponding path. 

Create the first label for vertex   as                and set the control parameter   to 0. A label is 

called untreated if it has not been used yet by the label-setting algorithm to develop a new label. Note that 

when a label is extended, it becomes treated and it is not considered anymore in the next iterations. In fact, 

by extending a label, a new untreated label is created. 

Step LS.3. Label selection: Find all of the untreated labels with parameter    , and then sort them in 

ascending order of  . Then, apply Step L.S.4 and Step L.S.5 below for each one of these labels according 

to the determined order. 
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Step LS.4. Label extension: Extend each label               found in Step L.S.3 along the outgoing arcs 

of its corresponding vertex     such that the next vertex     satisfies      ⋂  ⋃            

where           denotes the predecessor of vertex     on the partial path corresponding to the label (the 

two-cycle elimination rule). When an untreated label               is extended to a new label whose 

corresponding vertex is     ( ), define the new label as                   (or                  ) with 

    ⋃     

       

         

   {
      

   
       

      
        

. 

Step LS.5. Label elimination and storage: Maintain a newly generated label              , unless it can 

be eliminated by one of the following rules: 

i) Feasibility rule. Eliminate the label if the resource constraint        is violated (this constraint 

guarantees that the total demand of the corresponding route satisfies the vehicle capacity). 

ii) Bounding rule. Eliminate the label if the following condition holds: 

                               
      . 

(The quantity    is a lower bound for the total arc weight of any complete path that can be extended 

from the current label              , which corresponds to the ideal case where the remaining capacity 

of the vehicle can be sold at the maximum price and the path can directly return to DC   to have the 

minimum travel cost; note that the distances satisfy the triangle inequality, and for any          we 

have                as dual variables   ,   , and     are all non-negative).  

iii) Dominance rule. Eliminate the label if there is another label                   with the following 

properties: 

    ⋂      ⋂    

        

         

        

               

where at least one of the first four relations must be held strictly. The set    denotes the union of the set   

and the set of unreachable clusters for the label, where a cluster is considered unreachable for the label if 

the vehicle capacity constraint is certainly violated by visiting the cluster at any price level (the reason is 

that if such a label                   exists, then extending it results in better columns).  
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Step LS.6. Stopping label generation: Set the parameter   to the minimum value of the total demands of 

the paths corresponding to the untreated labels. If there is no untreated label or parameter   reaches     , 

include all labels               with     and     into the set      (recall that for each completed 

label              , the quantity   is the opposite of the reduce cost of the column determined by that 

label). Otherwise, go back to Step LS.3. 

Step LS.7. Updating the critical set: Among the labels in the set      , find the label               

with minimum  . If this label does not determine an elementary path, find those customers on the path that 

are visited more than once and add them to the critical set    , and go back to Step LS.2. Otherwise, 

terminate the algorithm and return columns associated with the labels in       whose corresponding paths 

are elementary. 

 

In the above algorithm, the mono-directional label-generation policy is used. Under the bounded 

bidirectional label-generation policy, labels are extended both forwardly from the initial vertex and 

backwardly from the terminal vertex unless half of a critical resource with monotonic consumption along 

paths has been consumed (in our case, the vehicle capacity is considered the critical resource). Then, full 

paths are built by joining pairs of forward and backward labels. This policy may reduce the computational 

effort required for label generation. Now we describe how our algorithm can be adapted under this policy. 

In each one of our pricing subproblems, source and destination vertexes are the same DC   , and 

traveling costs are symmetric. Thus, there is no need to backwardly extend labels from the destination 

vertex, and we can only merge each pair of forward labels satisfying feasibility and uniqueness conditions, 

explained below, to generate all columns with positive reduced cost. 

The feasibility condition checks that the sum of the demands on a merged route is not greater than the 

vehicle capacity, and that the vertexes in the critical sets are not located on the routes corresponding to the 

both labels. The uniqueness condition checks that a merged route is saved only once. To algorithmically 

control this, two labels are merged if the absolute deviation between the total demands of their 

corresponding half routes cannot be reduced, by two new routes obtained by excluding the last vertex from 

one route and attaching it to the other route (for more details see Righini and Salani (2006)). 

Steps L.S.1-L.S.5 and L.S.7 of the label-setting algorithm under the bounded bidirectional policy 

remain intact, but Step L.S.6 must be modified as follows: 

Step LS.6 (under bounded bidirectional label-generation policy). Set the parameter   to the 

minimum value of the total demands of the paths corresponding to untreated labels. If there is no untreated 

label or parameter   is strictly greater than       , create new labels by joining each pair of forward 

labels that satisfy both feasibility and uniqueness conditions, and include all new labels               

with     and     into the set     . Otherwise, go back to Step L.S.3. 
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3.1.2 Heuristic label-setting algorithm for solving pricing subproblems 

To increase the speed of the column-generation algorithm, the ESPPRC problem can first be solved 

heuristically by considering a subgraph of the graph constructed in Step L.S.1 to decrease its size. Let us 

now explain our heuristic in the following. This heuristic is iteratively used in Step CG.2 of our B&P 

algorithm. 

Assume that  ̅    is a given positive integer defined for each DC  . The heuristic label-setting 

algorithm searches for columns with positive reduced costs in a smaller graph in which each vertex has at 

most  ̅  | | outgoing arcs. Figure 2 presents how this graph reduction can be applied for the illustrative 

example depicted in Figure 1 for  ̅   . When running Step CG.2, the parameter  ̅ is here set to a greater 

value, if no column with positive reduced cost can be generated by the pricing subproblem associated with 

DC  . This reduction can accelerate generating some columns with positive reduced costs in the first 

iterations. 
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Figure 2. A graph reduction for the example given in Figure 1 for  ̅   . 

In the heuristic label-setting algorithm, we do not use the DSSR method, that is, we do not generate any 

labels that correspond to non-elementary partial paths, so the critical sets include all customers in the 

heuristic. Moreover, the first and last conditions of dominance rule are relaxed. As a consequence of these 

relaxations, a greater number of labels are fathomed, but we may lose the guarantee of solving the 

ESPPRC to optimality. 

Steps L.S.2, L.S.3, L.S.6, and L.S.7 of the exact label-setting algorithm similarly exist in the heuristic 

label-setting algorithm after setting each critical set to the set of all customers (note that under bounded 
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bidirectional label-generation policy, Step L.S.6 must be modified along the lines mentioned above). The 

other steps require modifications. Step L.S.1 is adjusted as follows: 

Step L.S.1 (in heuristic label-setting algorithm). Apply Step L.S.1 of the exact label-setting 

algorithm. Additionally, for each cluster    , find  ̅ clusters with the least    
    values, keep their arcs 

outgoing to cluster  , and remove the other arcs, where    
                 

   
 . Note that the parameter  ̅ is 

updated during the column-generation procedure (see Step CG.2.2). 

Moreover, only the first sentence of Step L.S.4 is changed to 

“ Extend each label               selected in Step L.S.3 along the outgoing arcs of its corresponding 

vertex     such that the next vertex     satisfies    .”,   

and the rest remains the same. In Step L.S.5, the conditions checked by the dominance rule are restricted to 

         

          

        . 

3.2 Branching rules 

If the optimal solution of the LMP (which is found by solving the current RLMP) is fractional, a branching 

decision is required. Let  ̂ be the optimal fractional solution of the current RLMP, and le.t    stand for the 

set of columns that have already been considered in the current RLMP. Then, the following branching 

scheme with six hierarchical levels is applied to create two new child nodes: 

BR-1. If there is a DC     with a fractional variable   , apply the dichotomy branching by 

enforcing      on one branch and      on the other. 

 

Explanation of BR-1. In one branch, enforcing      does not change the pricing subproblems since they 

are independent of   . In the other branch, we force DC   to be closed, so there is no need to solve the 

pricing subproblem corresponding to DC  . 

 

BR-2. If there is a DC     whose number of vehicles, denoted by  ̂ , is fractional, then consider 

the constraint    ⌊ ̂ ⌋ on one branch, and    ⌈ ̂ ⌉ on the other, where    is a non-negative 

variable that satisfies the constraint 

   ∑  ̂ 

    
 

  (45) 

 

Explanation of BR-2. To add each of the above branching constraints such that the pricing problem is not 

affected, we need to impose the constraint using an auxiliary variable    (Appleget & Wood, 2000). Let 
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   be the dual variable associated with the constraint (45) for DC h . Then, the objective function of the 

pricing subproblem corresponding to DC   is updated as follows: 

∑ ∑     
        

    ∑∑                        

      

       (46) 

Since    is independent of the customers on the route, the pricing-subproblem structure remains 

unchanged. Moreover, for the pricing subproblem corresponding to DC   , the quantity    used in the 

dominance rule in Step LS.5 and the weight of the arc outgoing from vertex     to vertex   are modified by 

for any         

          
   

                  
         (47) 

    
             . (48) 

 

BR-3. If there is a customer     that is served partially, i.e., the value of  ∑  ∑         ̂        is 

fractional, first remove the constraint (25) corresponding to customer  , and instead consider 

∑    ∑                on one branch and ∑    ∑                on the other. 

 

Explanation of BR-3. Since in the child node, the inequality (25) corresponding to customer   is replaced 

by an equality constraint, its associated dual variable    can become negative, so in the pricing subproblem 

corresponding to any DC     , the quantity    used in the dominance rule in Step LS.5 is given by for 

any         

          
   

                  
                (49) 

In addition, we remove the cluster corresponding to customer   in the second child node. 

 

BR-4. If there is a customer     that is served partially by a DC    , i.e., the value of 

 ∑  ∑         ̂      
   is fractional, add the constraint ∑    ∑             

    on one branch and 

∑    ∑             
    on the other. 

 

Explanation of BR-4. Let     be the dual variable associated with ∑    ∑             
     In the pricing 

subproblem corresponding with DC    we add     to the weight of any arc entering cluster   as follows: 

    
                                         . 

Dual variable     can become negative, so in the pricing subproblem associated with DC    quantity    

used in the dominance rule in Step LS.5 is modified for any         

          
   

                  
                 (50) 

In the other child node, we delete the cluster corresponding to customer   and its related arcs in the 

pricing subproblem associated with DC  . 
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BR-5. If there is a customer     that is served partially with a delivered price    , i.e., the value 

of  ∑            is fractional, add the constraint ∑              on one branch and ∑            

  on the other. 

 

Explanation of BR-5. Let     be the dual variable associated to ∑               In the pricing 

subproblems  we add     to the weight of any arc entering cluster     i.e., 

    
                                 . 

As dual variable     can become negative, in the pricing subproblem corresponding to any DC     , the 

quantity    used in the dominance rule in Step LS.5 is modified as for any         

          
   

                  
                 (51) 

In the second child node, we remove the vertex     and its related arcs from the graph used in the 

pricing subproblem of any DC    . 

 

BR-6. If the total flow on some arc       is fractional, i.e., ∑      ̂      is fractional for some       

(the symbol         means that the arc       is a part of the route corresponding to the column  ), 

then consider ∑              on one branch and ∑              on the other. 

 

Explanation of BR-6. This branching rule was first suggested by Desrochers and Soumis (1989), which is 

a modified version of the well-known rule given by Ryan and Foster (1981).To keep the structure of the 

pricing subproblems unchanged, the branching constraint is not explicitly added to the RLMP. For one 

child node, all existing columns whose corresponding routes include arc           are deleted from   . 

Then, the constraints (25) corresponding to       are removed, and constraints 

∑    ∑                and ∑   (∑        )       

are added to the RLMP. During the label generation, a label               is extended only along the arcs 

outgoing from cluster   to cluster   and we delete all the arcs from other clusters     to cluster  . 

Observing the fact that the above two constraints are structurally similar to those considered in BR.3, the 

quantity    used in the dominance rule in Step LS.5 is modified in a similar way explained in BR.3. 

In the other child node, while running the label-generation procedure, we control that a label 

              is not extended along the arcs outgoing from cluster   to cluster  . Moreover, all existing 

columns whose corresponding routes include arc        are deleted from   . 

 

The above branching rules together ensure that solving the model can be continued until all nodes of the 

B&B tree are fathomed. Moreover, branching rules are presented in the order of priority, and whenever 

there are multiple candidates for the branching rules at the same priority level, the one whose fractional 

part is the closest to 0.5 is chosen. Note that modifications forced by branching rules are inherited from the 

parent nodes across the B&B tree. 
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4. Computational experiments 

This section is organized as follows: Section 4.1 explains how our problem instances (test problems) are 

generated. Section 4.2 reports computational results of the B&P algorithm under both mono-directional 

and bounded bidirectional label-generation policies. This subsection also assesses the impact of valid 

inequalities proposed in Section 2.3. Section 4.3 provides numerical results to compare the polynomial-

size model and set-packing formulation. Section 4.4 evaluates the effect of differential pricing. Finally, 

Section 4.5 analyzes the value of integrating location, pricing and routing decisions. 

The proposed algorithm was coded in C++, and RLMPs and the polynomial-size model are solved by 

CPLEX 12.3. Computations were performed on a computer with a 1.7 GHz CPU and 4GB of RAM, 

running on a 64-bit Windows operating system.  

4.1 Sets of problem instances 

As our problem is newly introduced and there is no standard dataset in the literature for it, the performance 

of the proposed B&P algorithm is evaluated using two set of adapted problem instances. The first set is 

based on the 14 LRP instances available in Barreto (2003), and the second set is based on 7 instances taken 

from Archetti et al. (2013) that were created from benchmark instances for the VRP proposed by 

Christofides et al. (1979). 

In both sets, the customers’ demands are modified to be dependent on delivered prices. To do so, the 

demand of customer   at markup level   is computed by 

                   
           (52) 

where    is the demand value for customer   in the original instance, and    is the delivered price of the 

product at markup level  . The quantities   ,    and   are positive parameters of the demand function, 

which is a negatively sloped function of the delivered price (Greenhut et al., 1975). Depending on the 

values selected for parameter  , the demand curves would be convex, linear, or concave. Here, the 

parameters  ,  , and   have been set to 10.1, 1.5, and 0.25 in the first set of instances; and 10.74, 1.68, and 

0.25 in the second set, respectively. As defined in Section 2.2.3, delivered price    is given by        

   , in which   is the final cost (wholesale price) of one product unit, which is here set to $5; and where    

is the markup percentage at level  . (markup level     For the first set of instances, the parameter   varies 

with the vehicle capacity      as follows: for         ,     (except for the cases P06-50×5×6, P06-

50×5×11, P06-50×10×6, P06-50×10×11, P07-50×5×6, P07-50×5×11, P07-50×10×6 and P07-50×10×11 

where   is set to 1.25 to have non-trivial solutions); for              ,          ; for      

    ,           . 

For each original instance in both data sets, two instances with 6 and 11 markup levels ranging from 0.1 to 

0.2 are considered in the interval, i.e., 0.1, 0.12,…,0.2 and 0.1, 0.11,…,0. 2. We need more adjustments to 

make the instances used by Archetti et al. (2013) applicable for our problem because they are used to test a 
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VRP with single depot, not an LRP. For each new instance, we consider four available vehicles with 

capacity 100, 5 and 10 DCs where their locations are determined randomly. The capacity and fixed cost of 

establishment of each DC are set to 200 and 40, respectively. Tables 1 and 2 summarize the metadata for 

the two adjusted benchmark sets used here. The full data of all instances are freely available at the link: 

http://bit.ly/EJOR-D-15-0159-data
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Table 1. The metadata of the first set of problem instances generated based on 

Barreto (2003).  

Instance 
name 

Name of 
original 
instance 

# of 
Customers 

| | 

# of 
DCs 
| | 

# of 
Markup 
levels 
| | 

DC 
Capacity 
    

   

Fixed 
cost of 

establish
ment 
DCs 

Vehicle 
Capacity 
     

C-50×5×6 
C-50×5×11 

Christofides69
-50×5 50 5 6 

11 10000 40 160 

C-75×10×6 
C-75×10×11 

Christofides69
-75×10 75 10 6 

11 10000 40 140 

C-100×10×6 
C-100×10×11 

Christofides69
-100×10 100 10 6 

11 10000 40 200 

Pe-85×7×6 
Pe-85×7×11 Perl83-85×7 85 7 6 

11 850 373 160 

Pe-55×15×6 
Pe-55×15×11 Perl83-55×15 55 15 6 

11 550 240 120 

Pe-12×2×6 
Pe-12×2×11 Perl83-12×2 12 2 6 

11 280 100 140 

G-21×5×6 
G-21×5×11 

Gaskell67-
21×5 21 5 6 

11 15000 50 6000 

G-22×5×6 
G-22×5×11 

Gaskell67-
22×5 22 5 6 

11 15000 50 4500 

G-29×5×6 
G-29×5×11 

Gaskell67-
29×5 32 5 6 

11 15000 50 4500 

G-1-32×5×6 
G-1-32×5×11 

Gaskell67-
32×5 11 5 6 

11 35000 50 8000 

G-2-32×5×6 
G-2-32×5×11 

Gaskell67-
32×5-2 32 5 6 

11 35000 50 11000 

G-36×5×6 
G-36×5×11 

Gaskell67-
36×5 36 5 6 

11 15000 50 250 

M-134×8×6 
M-134×8×11 Min92-134×8 134 8 6 

11 3000 268 850 

M-27×5×6 
M-27×5×11 Min92-27×5 27 5 6 

11 3000 272 2500 

 

 

 

Table 2. The metadata of the second set of problem instances generated based 

on Archetti et al. (2013). 

Instance name 
Name of 
original 
instance 

# of 
Customers 

| | 

# of 
DCs 
| | 

# of 
Markup 
levels 
| | 

DC 
Capacity 
    

   

Fixed 
cost of 

establish
ment 
DCs 

Vehicle 
Capacity 
     

P03-100×5×6 
P03-100×5×11 P03-5 100 5 6 

11 200 40 100 

P03-100×10×6 
P03-100×10×11 P03-10 100 10 6 

11 200 40 100 

P06-50×5×6 
P06-50×5×11 P06-5 50 5 6 

11 200 40 100 

P06-50×10×6 
P06-50×10×11 P06-10 50 10 6 

11 200 40 100 

P07-75×5×6 
P07-75×5×11 P07-5 75 5 6 

11 200 40 100 

P07-75×10×6 
P07-75×10×11 P07-10 75 10 6 

11 200 40 100 

P09-150×5×6 
P09-150×5×11 P09-5 150 5 6 

11 200 40 100 

P09-150×10×6 
P09-150×10×11 P09-10 150 10 6 

11 200 40 100 

P10-199×5×6 
P10-199×5×11 P10-5 199 5 6 

11 200 40 100 

P10-199×10×6 
P10-199×10×11 P10-10 199 10 6 

11 200 40 100 

P13-120×5×6 
P13-120×5×11 P13-5 120 5 6 

11 200 40 100 

P13-120×10×6 
P13-120×10×11 P13-10 120 10 6 

11 200 40 100 

P14-100×5×6 
P14-100×5×11 P14-5 100 5 6 

11 200 40 100 

P14-100×10×6 
P14-100×10×11 P14-10 100 10 6 

11 200 40 100 
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4.2 Computational results for evaluating the B&P algorithm 

Table 3 and Table 4 summarize the computational results for assessing the B&P algorithm on the first and 

second sets of problem instances used here, respectively. All instances are solved to optimality in both 

tables. In Table 3, each instance is solved by the algorithm under three different settings: M, MV, and BV. 

Letters M and B, respectively, stand for the cases that mono-directional and bounded bidirectional label-

generation policies are used in the column generation phase; and letter V refers to the case that valid 

inequalities proposed in Section 2.4 are considered in RLMPs. In Table 4, each instance is only solved by 

the algorithm under two settings M and MV as the setting BV is found inefficient for our problem (see the 

discussion below). After solving the root node of the B&P algorithm, solving the RMP with the present 

columns in     using the CPLEX leads to a feasible solution whose objective value is a lower bound for 

the problem, denoted by       . In both tables, the next columns present       , relative improvement of 

the exact solution over       , the run time required for solving the root node, the upper bound        

provided by solving the RLMP at the root node, the total run time for solving each problem instance, the 

percent of the total run time consumed in column generation, and the number of nodes of the B&B tree. 

Table 3 indicates that settings M and MV have the least total run times among the three algorithm 

settings in 85.71% and 14.29% of instances, respectively. In addition, in 53.57% of cases, setting M results 

to less total run times, compared to setting BV; and setting MV always outperforms setting BV. This 

reveals that in both datasets, using the bounded bidirectional policy is not an accelerator for label-

generation (a similar observation was reported before in Archetti et al. (2013) for a VRPP). Hence, in 

Table 4, the results are only reported for settings M and MV for sake of shortness. In Table 4, the setting 

MV similarly performs better and has less total run times in 92.86% of the problem instances, rather than 

setting M. Hence, from Tables 3 and 4, one may conclude that the best algorithm setting is MV.  

As expected, run times often increase as the number of markup levels or the number of potential DCs 

increase, excepting for two pairs of instances: P13-120×10×11 and P13-120×10×6, and P14-100×10×11 

and P14-100×5×11. On average 97.71% of the total run time was consumed by column generation. Both 

Tables 3 and 4 confirm that adding the valid inequalities (20) significantly decreases the run times by 

reducing the number of explored nodes in 96% of instances, while it increases the time required for solving 

the root node in 77% of cases.  

Moreover, the results approve that the lower bound provided by solving the root node is optimal in 89% 

of instances. The relative improvements obtained by solving the instances to optimality compared to the 

solutions obtained at the root nodes, are at most 16.60% and 2.84% under settings M and MV, 

respectively. Thus, a very promising heuristic for our problem can be to apply the column generation only 

to the root node under setting MV and to solve the resulting RMP with CPLEX, which can save 69.76% of 

run time on average. 
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Table 3. Numerical results for evaluating the proposed B&P algorithm on the first set of problem instances under different settings. 

 

Instance 
Optimal 

value 

Algorithm 

setting        

      

error 
bound

% 

       
run time 
(Seconds) 

       
Total run 

time 
(Seconds) 

% of 

CG run 

time 

# of  

nodes 

C-50×5×6 276.76 

MV 276.76 0.00 3 276.76 3 100.00 1 

BV 276.76 0.00 29 276.76 29 100.00 1 

M 276.76 0.00 2 367.67 63 93.65 19 

C-50×5×11 294.16 

MV 294.16 0.00 9 294.16 9 88.89 1 

BV 294.16 0.00 1209 294.16 1209 100.00 1 

M 294.16 0.00 6 382.28 171 98.83 17 

C-75×10×6 288.39 

MV 287.43 0.33 7 288.99 22 90.91 3 

BV 288.39 0.00 66 288.99 215 98.60 3 

M 280.75 2.65 5 376.16 359 98.05 41 

C-75×10×11 301.41 

MV 301.41 0.00 17 305.26 84 96.43 3 

BV 301.41 0.00 479 305.26 3041 99.87 3 

M 292.64 2.91 13 373.18 887 99.21 39 

C-100×10×6 344.00 

MV 344.00 0.00 406 344.44 1066 99.25 3 

BV 344.00 0.00 4279 344.44 5596 99.84 3 

M 339.32 1.36 40667 458.22 71624 99.99 145 

C-100×10×11 350.19 

MV 350.19 0.00 1733 350.19 1734 99.71 1 

BV 350.19 0.00 5760 350.19 5761 99.88 1 

M 347.28 0.83 767 459.27 50075 99.99 85 

Pe-85×7×6 53.40 

MV 52.51 1.66 223 137.43 1921 99.17 15 

BV 52.51 1.66 1113 137.43 9344 99.90 15 

M 52.51 1.66 119 180.61 1351 99.70 17 

Pe-85×7×11 68.85 

MV 68.85 0.00 1949 141.84 4085 99.27 15 

BV 68.85 0.00 8176 141.84 17158 99.82 15 

M 57.42 16.60 329 188.04 2006 99.30 17 

Pe-55×15×6 107.35 
MV 107.35 0.00 255 132.30 672 96.88 13 

BV 107.35 0.00 4320 132.30 14868 99.76 13 

Instance 
Optimal 

value 

Algorithm 

setting        

      

error 
bound

% 

       
run time 
(Seconds) 

       
Total run 

time 
(Seconds) 

% of 

CG run 

time 

# of  

nodes 

M 93.99 12.45 8 172.72 179 96.65 17 

Pe-55×15×11 117.39 

MV 117.39 0.00 243 142.44 1333 97.75 19 

BV 117.39 0.00 3614 142.44 15992 99.79 19 

M 109.05 7.11 23 174.57 645 97.83 23 

Pe-12×2×6 71.08 

MV 70.86 0.31 1 84.30 1 100.00 5 

BV 71.08 0.00 7 84.30 10 90.00 5 

M 70.86 0.31 1 87.29 1 100.00 5 

Pe-12×2×11 96.66 

MV 96.66 0.00 1 98.67 3 33.33 7 

BV 96.66 0.00 28 98.67 41 100.00 7 

M 96.66 0.00 1 99.16 2 50.00 7 

G-21×5×6 17859.00 

MV 17859.00 0.00 3 17859.00 3 66.67 1 

BV 17859.00 0.00 70 17859.00 70 100.00 1 

M 17859.00 0.00 2 17932.20 8 75.00 7 

G-21×5×11 18391.90 

MV 18391.90 0.00 4 18391.90 4 100.00 1 

BV 18391.90 0.00 105 18391.90 105 100.00 1 

M 18391.90 0.00 5 18463.40 23 91.30 11 

G-22×5×6 8927.72 

MV 8927.72 0.00 8 8927.72 8 87.50 1 

BV 8927.72 0.00 242 8927.72 242 100.00 1 

M 8927.72 0.00 3 9068.46 21 95.24 9 

G-22×5×11 9097.83 

MV 9097.83 0.00 13 9097.83 13 92.31 1 

BV 9097.83 0.00 4470 9097.83 4470 100.00 1 

M 9097.83 0.00 19 9238.24 123 98.37 9 

G-29×5×6 11264.90 

MV 11165.00 0.89 250 11325.80 246 98.37 3 

BV 11165.00 0.89 1075 11325.80 1008 99.70 3 

M 11112.70 1.35 111 11416.20 2372 99.66 23 

G-29×5×11 11324.40 MV 11315.60 0.08 781 11370.20 4791 99.71 7 
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Instance 
Optimal 

value 

Algorithm 

setting        

      

error 
bound

% 

       
run time 
(Seconds) 

       
Total run 

time 
(Seconds) 

% of 

CG run 

time 

# of  

nodes 

BV 11315.60 0.08 3357 11370.20 19809 99.98 7 

M 11271.71 0.47 1161 11460.52 18634 90.25 25 

G-1-32×5×6 23670.60 

MV 23670.60 0.00 31 23670.60 31 100.00 1 

BV 23670.60 0.00 668 23670.60 668 100.00 15 

M 23670.60 0.00 31 23775.40 299 99.67 11 

G-1-32×5×11 23994.10 

MV 23994.10 0.00 138 24003.40 724 99.72 5 

BV 23994.10 0.00 401 24003.40 2084 99.95 5 

M 23994.10 0.00 138 24149.40 18301 99.96 15 

G-2-32×5×6 29843.30 

MV 29843.30 0.00 239 29917.50 810 99.75 3 

BV 29843.30 0.00 601 29917.50 2349 99.91 3 

M 29843.30 0.00 881 30005.50 2739 99.85 9 

G-2-32×5×11 30543.70 

MV 30543.70 0.00 4841 30543.70 4843 99.92 1 

BV 30543.70 0.00 19490 30543.70 19491 99.98 1 

M 30543.73 0.00 4157 30631.00 Out of memory - - 

G-36×5×6 300.67 
MV 300.67 0.00 3 300.67 3 66.67 1 

BV 300.67 0.00 47 300.67 47 100.00 1 

Instance 
Optimal 

value 

Algorithm 

setting        

      

error 
bound

% 

       
run time 
(Seconds) 

       
Total run 

time 
(Seconds) 

% of 

CG run 

time 

# of  

nodes 

M 295.20 1.82 2 446.14 61 96.72 47 

G-36×5×11 319.92 

MV 319.92 0.00 7 322.62 129 98.45 17 

BV 319.92 0.00 65 322.62 875 99.31 17 

M 315.62 1.34 5 450.98 223 95.52 49 

M-134×8×6 

 

72.77 

 

MV 72.77 0.00 27 72.77 27 92.59 1 

BV 72.77 0.00 93 72.77 93 97.85 1 

M 72.77 0.00 31 644.49 919 99.67 15 

M-134×8×11 164.44 

MV 164.44 0.00 81 164.44 81 97.53 1 

BV 164.44 0.00 282 164.44 282 99.29 1 

M 164.44 0.00 102 704.13 3079 99.84 15 

M-27×5×6 2927.16 

MV 2927.16 0.00 1 2927.16 1 100.00 1 

BV 2927.16 0.00 3 2927.16 3 100.00 1 

M 2927.16 0.00 1 3210.10 6 83.33 5 

M-27×5×11 3543.58 
MV 3543.58 0.00 1 3543.58 1 100.00 1 

BV 3543.58 0.00 4 3543.58 4 100.00 1 

  M 3543.58 0.00 1 3802.43 9 100.00 5 

 

Table 4. Numerical results for evaluating the proposed B&P algorithm on the second set of problem instances under different settings. 
 

Instance 
Optimal 

value 

Algorithm 

setting        

      

 error 
bound 

% 

       
run time 
(Seconds) 

       
Total run 

time 
(Seconds) 

% of 

CG run 

time 

# of  

nodes 

P03-100×5×6 68.75 
MV 68.75 0.00 48 72.99 369 99.10 7 

M 68.75 0.00 45 84.55 871 99.85 11 

P03-100×5×11 77.02 
MV 77.02 0.00 313 77.87 1432 99.91 7 

M 77.02 0.00 153 88.35 2361 99.92 9 

P03-100×10×6 91.85 MV 91.85 0.00 84 94.23 731 99.09 7 

Instance 
Optimal 

value 

Algorithm 

setting        

      

 error 
bound 

% 

       
run time 
(Seconds) 

       
Total run 

time 
(Seconds) 

% of 

CG run 

time 

# of  

nodes 

M 91.85 0.00 125 110.93 4049 99.85 21 

P03-100×10×11 101.74 
MV 101.74 0.00 391 102.30 2597 99.64 5 

M 99.12 2.57 395 116.13 8028 99.94 15 

P06-50×5×6 71.22 
MV 71.22 0.00 17 73.92 54 97.53 5 

M 68.54 3.77 17 80.39 226 99.71 11 
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Instance 
Optimal 

value 

Algorithm 

setting        

      

 error 
bound 

% 

       
run time 
(Seconds) 

       
Total run 

time 
(Seconds) 

% of 

CG run 

time 

# of  

nodes 

P06-50×5×11 83.48 
MV 83.48 0.00 67 84.04 142 99.53 3 

M 81.75 2.06 91 90.02 953 99.86 9 

P06-50×10×6 80.62 
MV 80.62 0.00 29 81.03 76 99.12 3 

M 77.94 3.33 23 91.39 387 99.66 9 

P06-50×10×11 89.79 
MV 89.79 0.00 316 89.94 656 99.80 3 

M 89.79 0.00 163 97.05 1950 99.86 11 

P07-75×5×6 70.72 
MV 70.72 0.00 166 73.73 481 99.31 5 

M 65.76 7.02 53 85.08 960 99.72 15 

P07-75×5×11 76.03 
MV 76.03 0.00 642 78.11 1803 99.85 5 

M 75.88 0.19 207 87.78 4004 99.90 13 

P07-75×10×6 97.16 
MV 97.16 0.00 163 98.19 647 99.59 3 

M 89.42 7.97 71 109.97 1777 99.89 15 

P07-75×10×11 105.20 
MV 105.20 0.00 731 105.52 2635 99.90 5 

M 100.74 4.24 424 112.89 6283 99.94 11 

P09-150×5×6 51.08 
MV 51.08 0.00 125 52.99 1056 99.68 11 

M 51.08 0.00 111 64.95 1558 99.87 9 

P09-150×5×11 57.92 
MV 57.92 0.00 523 58.91 1625 99.84 5 

M 57.92 0.00 577 68.10 2757 99.95 5 

P09-150×10×6 97.01 
MV 94.26 2.84 454 99.70 4511 99.85 9 

M 96.67 0.35 546 115.58 9735 99.93 17 

P09-150×10×11 108.79 
MV 108.79 0.00 5819 109.20 12289 99.85 5 

M 108.32 0.43 2012 121.10 27612 99.98 13 

P10-199×5×6 106.10 MV 106.10 0.00 2059 106.12 3028 99.91 3 

Instance 
Optimal 

value 

Algorithm 

setting        

      

 error 
bound 

% 

       
run time 
(Seconds) 

       
Total run 

time 
(Seconds) 

% of 

CG run 

time 

# of  

nodes 

M 104.57 1.44 723 119.11 8849 99.94 11 

P10-199×5×11 109.60 
MV 109.60 0.00 2890 109.97 15014 99.03 5 

M 106.92 2.44 2505 120.45 26334 99.95 11 

P10-199×10×6 115.65 
MV 115.65 0.00 1775 115.79 10153 99.94 5 

M 115.65 0.00 1033 124.22 20452 99.97 17 

P10-199×10×11 118.67 
MV 118.67 0.00 12629 119.21 36853 99.89 5 

M 118.67 0.00 3673 128.58 114766 99.98 21 

P13-120×5×6 35.11 
MV 35.11 0.00 807 35.80 2083 99.84 7 

M 35.11 0.00 644 54.46 2359 99.83 9 

P13-120×5×11 41.90 
MV 41.90 0.00 3608 41.96 7449 99.93 5 

M 41.80 0.24 2693 55.16 11191 99.95 7 

P13-120×10×6 35.11 
MV 35.11 0.00 1271 36.04 12545 99.86 11 

M 34.04 3.05 496 64.64 10839 99.92 23 

P13-120×10×11 43.89 
MV 43.89 0.00 6289 43.89 6289 99.89 1 

M 43.89 0.00 2013 66.28 19568 99.96 9 

P14-100×5×6 69.25 
MV 69.25 0.00 85 71.04 569 99.65 7 

M 67.48 2.56 97 73.00 971 99.86 7 

P14-100×5×11 75.45 
MV 75.45 0.00 405 75.96 2219 99.91 7 

M 75.40 0.07 492 76.71 3059 99.89 7 

P14-100×10×6 100.38 
MV 100.38 0.00 150 101.04 918 99.13 7 

M 99.60 0.77 57 101.95 761 99.82 7 

P14-100×10×11 104.83 
MV 104.83 0.00 210 105.65 2207 99.73 5 

M 104.83 0.00 240 106.37 2038 99.93 5 
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4.3 Evaluating polynomial-size model 

This subsection compares the B&P algorithm with an alternative method that uses CPLEX to directly solve 

the polynomial-size model (1)-(13); the latter is here called the CPLEX method. For the first set of 

instances, Table 5 summarizes the numerical results required to compare the B&P algorithm under setting 

MV and CPLEX method. The columns of this table report the run times, the upper bounds provided by 

optimally solving the continuous relaxation of the polynomial-size and set-packing formulations, the value 

of the best feasible solution found, the error bound, and the number of nodes explored. The run-time limit 

for the CPLEX method is set to 10 hours. 

Table 5. Numerical results of solving the polynomial-size model by CPLEX on the first set of problem 

instances. 

Instance 
Run time (Seconds) Upper bound Best solution’s objective 

value 
Error bound 

% # of nodes 

CPLEX 
method 

B&P 
algorithm 

CPLEX 
method 

B&P 
algorithm 

CPLEX 
method 

B&P 
algorithm 

CPLEX 
method 

B&P 
algorithm 

CPLEX 
method 

B&P 
algorithm 

C-50×5×6 

 

32171 3 1878.08 276.76 273.25 276.76 506.34 0.00 42077 1 
C-50×5×11 

 

25492 9 1889.61 294.16 289.11 294.16 481.05 0.00 29661 1 
C-75×10×6 

 

>36000 22 3585.37 288.99 117.46 288.39 >1000 0.00 748 3 
C-75×10×11 

 

>36000 84 3607.29 305.26 129.16 301.41 >1000 0.00 1134 3 
C-100×10×6 

 

>36000 1066 4429.21 344.44 172.47 344.00 >1000 0.00 900 3 
C-100×10×11 

 

>36000 1734 4444.68 350.19 160.27 350.19 >1000 0.00 649 1 
Pe-85×7×6 

 

17237 1921 1314.27 137.44 0.00 53.40 NA 0.00 7705 15 
Pe-85×7×11 

 

22129 4085 1347.65 141.84 0.00 68.85 NA 0.00 7639 15 
Pe-55×15×6 

 

>36000 672 1248.72 132.30 0.00 107.35 NA 0.00 6250 13 
Pe-55×15×11 

 

>36000 1333 1248.72 142.44 0.00 117.39 NA 0.00 5340 19 
Pe-12×2×6 

 

17108 1 182.10 84.30 71.08 71.08 0 0.00 2694865 5 
Pe-12×2×11 

 

2766. 3 186.16 98.67 96.66 96.66 0 0.00 262497 7 
G-21×5×6 12730 3 56577.20 17859.00 17775.06 17859.00 205.95 0.00 252361 1 

G-21×5×11 >36000 4 56850.00 18391.90 18290.59 18391.90

000 

202.20 0.00 772750 1 
G-22×5×6 11625 8 41905.49 8927.72 8667.44 8927.72 137.31 0.00 237007 1 

G-22×5×11 10488 13 42051.33 9097.83 9097.83 9097.83 135.85 0.00 227398 1 
G-29×5×6 >36000 246 47167.21 11325.80 10572.10 11264.90 233.16 0.00 96932 3 

G-29×5×11 16881 4791 47351.89 11370.20 10861.99 11324.40 238.27 0.00 114681 7 
G-1-32×5×6 26710 31 104743.71 23670.60 21291.95 23670.60 329.65 0.00 106410 1 

G-1-32×5×11 >36000 724 104781.00 24003.40 22481.34 23994.10 331.82 0.00 76915 5 
G-2-32×5×6 >36000 810 107879.00 29917.50 28086.30 29843.30 267.78 0.00 182313 3 

G-2-32×5×11 >36000 4843 108271.00 30543.70 28284.30 30543.70 267.92 0.00 183489 1 
G-36×5×6 18323 3 2411.49 300.67 260.20 300.67 658.42 0.00 52797 1 

G-36×5×11 >36000 129 2411.49 322.62 304.04 319.92 564.79 0.00 35132 17 
M-134×8×6 >36000 27 12875.67 72.77 0.00 72.77 NA 0.00 21486 1 
M-134×8×11 >36000 81 12938.50 164.44 0.00 164.44 NA 0.00 12933 1 
M-27×5×6 22888 1 24423.73 2927.16 2927.16 2927.16 477.32 0.00 189118 1 

M-27×5×11 11215 1 24537.94 3543.58 3543.58 3543.58 473.39 0.00 132592 1 

 

As one can realize from Table 5, only two instances Pe-12×2×11 and Pe-12×2×6 can be solved exactly by 

the CPLEX method. For three other instances G-22×5×11, M-27×5×11, and M-27×5×6, this method is 

capable to find the exact solutions, but it cannot approve their optimality as the reported error bounds for 

these instances are large numbers 135.83, 473.39 and 477.32, respectively. Excluding the two instances 

Pe-12×2×11 and Pe-12×2×6, for the half of the instances, CPLEX reported “out  of memory” status, before 

reaching 10-hour run-time limit. The average time consumed by the CPLEX method is 26848.86 seconds 
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(within which only two instances can be solved optimally), while it is 808.86 seconds for the B&P 

algorithm that can solve all instances exactly. Moreover, the average relative improvement in the upper 

bound obtained by the set-packing formulation is 81.60%, which clearly explains why the number of B&B 

nodes drastically decreases for the B&P algorithm. 

4.4 Advantage of differential pricing 

To evaluate the effect of price differentiation, for each customer one fixed markup level is considered, 

whose corresponding markup percentage is set to the average of the markup percentages, i.e.,     . Figure 

3 displays the relative improvements (RIs) obtained by using the proposed PM-LRP, which integrates 

price, location, and routing decisions; over the case where the markup percentage is fixed to      before 

optimizing routing and location decisions for in the first set of our test problems with | |    . The average 

RI is 43.03%, which evidently shows why one should incorporate pricing decisions into determining 

location decisions when the demands are price sensitive. 

It worth noting that if the number of the markup level is set to 1, the problem actually becomes a special 

PM-LRP with demands that are not price sensitive. In this case, the average run time of solving the 

instances is 7 seconds, which is considerably smaller than 808.86 seconds, the average run time required 

for solving the instances with six markup levels. This discloses the complexity degree of the PM-LRP with 

price-sensitive demands compared to the non-price-sensitive case. 

 

Figure 3. Relative improvement of the proposed PM-LRP with differential pricing over the case with fixed 

prices. 

4.5. Advantage of integrating routing 

In the location-routing literature, it is traditional to compare applying the integrated model developed for 

an LRP to the sequential approach where the location of facilities, together with other related long-term 

decisions, is decided first, and the routing aspects are determined next (Salhi & Rand, 1989; Ahmadi-Javid 
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& Azad, 2010). To apply the sequential approach to our problem; the location, allocation, and pricing 

decisions are determined first, and the routing of vehicles is decided next. Hence, in the first phase, the 

locations of DCs, the number of vehicles assigned to each open DC, the set of customers allocated to each 

open DC (on the simple basis of the distance from DCs), prices offered to the allocated customers are 

determined so as to maximize the total profit of serving customers. In the second phase, a VRPP is solved 

for each open DC and its assigned customers, whose demands and profits are known and fixed based on 

the pricing decisions determined in the first phase.  

Figure 4 plots the relative improvements (RIs) obtained by using our integrated approach that integrates 

location, pricing, and routing over the sequential approach described above. The average RI is 51.23%. In 

an extreme case, the output of using the sequential approach is that establishing any DC is not profitable 

for two instances Pe-85×7×11 and M-134×8×6 whose RIs are 100%. This analysis clearly shows why one 

should incorporate routing decisions into determining location decisions when the customer demands are 

price sensitive. 

 

Figure 4. Comparison of the integration approach and sequential approaches to solve the proposed PM-

LRP. 

5. Concluding remarks 

This paper proposes an integrated profit-maximization location-routing problem with price-sensitive 

demands that optimizes location, routing and pricing decisions simultaneously. The problem determines 

the location of facilities, the allocation of vehicles and customers to the facilities, the delivered pricing, and 

the routing decisions, in order to maximize the total profit of serving the customers. 

The problem is modeled as a mixed-integer linear program. A branch-and-price algorithm is used as the 

solution method after reformulating the model to a set-packing master problem and a series of elementary 

shortest path subproblems, by employing the Dantzig-Wolfe decomposition. A label-setting dynamic 

programming algorithm is used to solve subproblems.  
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Computational results are discussed on instances based on Barreto’s data set (2003) for LRPs and the 

instances of Christofides et al. (1979) for VRPs, but with some modifications to suit our specific problem. 

The numerical study indicates a significant increase in the total profit collected by applying the proposed 

integration approach, compared to the traditional approach, which considers a fixed price for the product, 

and consequently, fixed demands for the customers, and then solves the associated LRP. All instances are 

solved both in the existence and absence of the valid inequalities. Results report great improvement of the 

total CPU time by considering the inequalities. Another numerical study is done, to compare the branch-

and-price algorithm with the polynomial-size model. Outcomes confirm the excellence of the branch-and-

price algorithm for solving the instances. To compare the proposed model to one where routing 

information is not made use of in the locational decision, another model known as the sequential approach 

is solved, which proves the importance of incorporating routing decisions into determining location 

decisions when demands are price sensitive. 

Many suggestions for future research can be offered inspired by different types of LRPs. It is 

sometimes claimed that location-routing has a temporal inconsistency, as location is a long-term 

investment, while routes can change frequently, especially when the demands vary over time. A way to 

counter this criticism is considering LRPs with multiple planning periods, also known as dynamic LRPs. 

Hence, an important future study is to investigate dynamic PM-LRPs. Another way to enhance our model 

is to incorporate the uncertainty of the customer demands using methods such as robust optimization or 

stochastic programming. Extending PM-LRPs that consider other relevant decisions such as inventory 

decisions remains another open research area. This research could also be continued by considering other 

routing settings, such as considering routing with split delivery. 
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