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Abstract

Facilities layout problem is one of the important issues affecting the productivity of manufacturing systems. This prob-
lem deals with the determination of optimum arrangement of manufacturing facilities with respect to different layout pat-
terns. A two-dimensional layout is an arrangement fashion in which the manufacturing facilities are laid in a planar area.
In this paper, a mixed-integer nonlinear mathematical programming model is proposed for determining the optimum lay-
out of machines in a two-dimensional area. The parameters considered by the proposed model are (a) production capacity
of machines, (b) multiple machines of each type (machine redundancy), (c) processing route of parts, (d) dimensions of
machines. A technique is used to linearize the formulated nonlinear model. An algorithm based on branch-and-bound
approach is proposed to obtain the optimal solution of the proposed mathematical programming model. A simple illus-
trative example is discussed to demonstrate the technique, and then small-, medium-, and large-sized problems are solved.
Comparison of the layout obtained from the proposed model indicates that the proposed model considerably reduces the
total distance traveled by products as compared to an optimum process layout configuration for small- and medium-sized
problems. The paper concludes that the proposed branch-and-bound approach performs inefficient for large-sized prob-
lems. For large-sized problems, the proposed mathematical programming model should be solved through meta-heuristics
like genetic algorithms, tabu search, etc.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Some design factors such as machines dimensions, capacity of machines, production volumes, processing
routes, etc. are to be considered to achieve a good facility layout in a manufacturing environment. Regarding
these factors, a layout planner seeks to obtain a layout pattern which is effective according to some measures.
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One of the most important measures to be minimized in developing a facility layout pattern is the total mate-
rial handling distance/cost (Heragu & Kusiak, 1988).

In a manufacturing system, the material handling function includes transportation of work-in-process
(WIP), finished parts, materials and tools between machines or workstations. While developing a layout,
it is essential that the location of machines/workstations be such that the total distance traveled by per-
sonnel or material handling devices throughout the shop floor is minimized. When minimizing this mea-
sure, some design constraints are to be taken into consideration. For example, appropriate space should
be considered between machines to facilitate temporary storage of WIP. It is notable that in facility lay-
out planning the word ‘machine’ has a general meaning and may be meant as machine tools, depart-
ments, etc.

There are some layout types which are used in manufacturing systems. These layouts can be classified as
process layout, product layout, cellular layout (GT), fixed-position layout, hybrid layout, etc. In these lay-
out types, facilities can be arranged in different shapes like single-row, multi-row, circular, U-shape, etc (Sol-
imanpur, Vrat, & Shankar, 2005). However, enforcement of facilities to get arranged in a pre-specified
layout shape may increase the total distance traveled by the materials. In fact, the layout shapes mentioned
above are specific forms of a general layout problem called as two-dimensional layout (TDL) (Heragu &
Kusiak, 1991).

In TDL, the arrangement of facilities is not dictated by the layout shape. Instead, in TDL, the attempt is to
minimize the total distance so that the clearance required between the machines is maintained. A nonlinear
mathematical programming model is proposed in this paper for a two-dimensional layout problem.

2. Literature review

Love and Wong (1976a) presented a linear mixed-integer programming model for the two-dimensional lay-
out problem. Kusiak and Heragu (1987) surveyed the optimal and heuristic models and algorithms for the
two-dimensional facility layout problem. Two classes of optimal algorithms have been used to solve the facil-
ity layout problem: branch-and-bound algorithms and cutting-plane algorithms. The algorithms developed by
Lawer (1963) and Kaku and Thompson (1986) are examples of optimal branch-and-bound algorithms and
those developed by Bazzara and Sherali (1980) and Bukard and Bonniger (1983) are examples of cutting plane
algorithms that have been developed for the linear transformations of Quadratic Assignment Problem (QAP)
model. Some recent researches on layout problem are reviewed in the following.

Montreuil (1990) introduced a mixed-integer programming (MIP) model for facilities planning that has
been used as the basis for several rounding heuristics.

Meller, Narayanan, and Vance (1998) reformulated Montreuil’s model by redefining his binary variables
and tightening the department area constraints. They proposed some general classes of valid inequalities.
Using these inequalities in a branch-and-bound algorithm, they were able to moderately increase the range
of solvable problems.

Mir and Imam (2001) presented a hybrid optimization approach for the layout design of unequal-area facil-
ities. Simulated annealing was used to optimize a randomly generated initial placement on an ‘‘extended
plane” considering the unequal area facilities enclosed in magnified envelops blocks. An analytical method
was then applied to obtain the optimum placement of each envelop block. Stepwise reduction of sizes of
the envelop blocks allowed controlled convergence in a multi-phase optimization process.

Heragu and Alfa (2003) experimentally analyzed performance of simulated annealing-based algorithms for
the layout problem. In their research, results from an experimental analysis involving the two-way and three-
way exchange algorithms, a modified penalty algorithm, the simulated annealing algorithm and a hybrid sim-
ulated annealing algorithm were presented. The hybrid simulated annealing algorithm uses the modified pen-
alty algorithm to generate an initial solution and then improves it using simulated annealing. It was tested on
one-dimensional layout problem with facilities of unequal area and two-dimensional layout problem with
facilities of equal area.

Sherali, Fraticelli, and Meller (2003) presented an improved mixed-integer programming (MIP) model
with effective solution strategies for the facility layout problem motivated by the work of Meller et al.
(1998).
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Konak, Kulturel-Konak, and Bryan (2004) developed a mixed-integer programming formulation to find
optimal solutions for the block layout problem with unequal departmental areas arranged in flexible bays.
The nonlinear department area constraints were modeled in a continuous plane without using any surrogate
constraints.

Amaral (2006) considered the layout of arranging a number of departments on a line and presented an
exact solution methodology. In this research, a new mixed-integer linear programming model was proposed
for the problem.

Tavakkoli-Moghaddam, Javadian, Javadi, and Safaei (2007) presented a new mathematical model to solve
a facility layout problem in cellular manufacturing systems (CMSs) with stochastic demand. The objective was
to minimize the total costs of inter and intra-cell movements in both machine and cell layout problem
simultaneously.

Urban, Chiang, and Russel (2000) proposed a model that did not require the machines to be placed in
a functional layout or in a cellular arrangement, but allowed the material flow requirements to dictate the
machine placement. They assumed: (i) there is more than one product each with a deterministic demand
rate, (ii) there are various types of machines to produce each product, (iii) the time required to process
each product on a given machine and the capacity of each machine are known, and (iv) the processing
route of each product is known. We have also considered these factors in the model presented in this
paper. However, the model formulated in Urban et al. (2000) assumes that the location of sites is known
a priori. The formulation presented in this paper is more general because the locations of sites are not
required to be known in advance.

3. Problem formulation

3.1. Assumptions

The mathematical model proposed in this paper has been developed with respect to the following
assumptions:

(i) machines are to be arranged in a planar area,
(ii) machines are to be oriented in only one given direction,

(iii) each machine has a predetermined rectangular shape,
(iv) machines are to be located in a restricted area,
(v) the capacity of machines is limited,

(vi) the processing route of each product is known in advance,
(vii) the demand for each product is known.

3.2. Notation

The following notation is used in this paper to describe the formulated mathematical programming model:
I number of machine types,
Ni number of machines of type i,
M total number of machines; M ¼

PI
i¼1Ni,

P number of products to be manufactured,
Dp demand of product p,
Ci capacity of each machine of type i,
bip machine requirement parameter, which is 1 if product p needs machine type i, and zero, otherwise.
ap

ij processing route parameter, which is 1 if machine type j is needed just after machine type i in the pro-
cessing route of product p; and zero, otherwise.

Zinp a decision variable, which is 1 if product p should be produced by the nth machine of type i; and zero,
otherwise.

tip processing time of product p on machine type i,
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li length of machines of type i,
bi width of machines of type i,
xin horizontal coordinates of the centroid of nth machine of type i,
yin vertical coordinates of the centroid of nth machine of type i,
dij minimum centroid-to-centroid distance required between machines of type i and j,
h horizontal length of available area,
v vertical length of available area.

 

3.3. Proposed mathematical models

3.3.1. Model M1

This model is a two-dimensional extension of the ABSMODEL presented by Heragu and Kusiak (1991).
However, in the proposed model, we use a pair (i,n) of indices (rather than a single index) to address the
nth machine of type i and that the flow between each pair of machines is not fixed.

The objective function for this problem is to minimize the total distance traveled by the materials in the
shop floor. This objective can be mathematically represented as follows:
XP

p¼1

XI

i¼1

XI

j¼1ðj 6¼iÞ

XNi

n¼1

XNj

r¼1

ap
ijDpZinpZjrpðjxin � xjrj þ jyin � yjrjÞ ð1Þ
The constraints set includes the following:
C1. Ensure the location of each machine is feasible:
0 6 jxin � xjrj 6 h ð2Þ
0 6 jyin � yjrj 6 v ð3Þ
C2. Ensure that no two facilities in the layout overlap:
jxin � xjrj þMainjr P :5 � ðli þ ljÞ þ dij ð4Þ
jyin � yjrj þMð1� ainjrÞP :5 � ðbi þ bjÞ þ dij ð5Þ
ainjrð1� ainjrÞ ¼ 0 i ¼ 1; . . . I & j ¼ iþ 1; . . . ; I & n ¼ 1; . . . ;Ni & r ¼ 1; . . . ;Nj ð6Þ
where M is an arbitrary large positive number.
Constraint (6) ensures that only one of the constraints (4) and (5) holds. It should be noted that the solution

of this model may result in a layout in which there is empty space between machines, which is unavoidable in
practical machine layout.

C3. Ensure that product p visits all the machine types required in its route:
XNi

n¼1

Zinp ¼ bip i ¼ 1; . . . ; I & p ¼ 1; . . . ; P ð7Þ
C4. Ensure that the capacity of each machine is maintained:
XP

p¼1

ZinptipDp 6 Ci i ¼ 1; . . . ; I & n ¼ 1; . . . ;Ni ð8Þ
3.3.2. Model M2

The model M1 is a nonlinear mixed-integer programming model with an absolute operator in the
objective function and constraints (2)–(5). Presence of absolute function in the model makes it difficult
to optimally solve the problem. The technique applied in Kusiak (1990) is used here to linearize the
absolute terms in the objective function and constraints. The modified model is named as model M2.
Let us define  
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xþinjr ¼
xin � xjr if xin P xjr

0 if xin < xjr

�
ð9Þ

x�injr ¼
�ðxin � xjrÞ if xin 6 xjr

0 if xin > xjr

�
ð10Þ

binjr ¼
1 if xin < xjr

0 if xin P xjr

�
ð11Þ

yþinjr ¼
yin � yjr if yin P yjr

0 if yin < yjr

(
ð12Þ

y�injr ¼
�ðyin � yjrÞ if yin 6 yjr

0 if yin > yjr

(
ð13Þ

cinjr ¼
1 if yin < yjr

0 if yin P yjr

(
ð14Þ

 

By substituting the variables defined above in the model M1, the following mixed-integer nonlinear program-
ming model is derived:
Min :
XP

p¼1

XI

i¼1

XI

j¼1ðj 6¼iÞ

XNi

n¼1

XNj

r¼1

ap
ijDpZinpZjrpðxþinjr þ x�injr þ yþinjr þ y�injrÞ ð15Þ
Subject to:
XNi

n¼1

Zinp ¼ bip; i ¼ 1; . . . ; I ; p ¼ 1; . . . ; P ð16Þ

XP

p¼1

ZinptipDp 6 Ci; i ¼ 1; . . . ; I ; n ¼ 1; . . . ;N i ð17Þ

ðxin � xjrÞ þMainjr þMbinjr P :5 � ðli þ ljÞ þ dij ð18Þ
� ðxin � xjrÞ þMainjr þMð1� binjrÞP :5 � ðli þ ljÞ þ dij ð19Þ
xin � xjr ¼ xþinjr � x�injr ð20Þ
ðyin � yjrÞ þMð1� ainjrÞ þMcinjr P :5 � ðbi þ bjÞ þ dij ð21Þ
� ðyin � yjrÞ þMð1� ainjrÞ þMð1� cinjrÞP :5 � ðbi þ bjÞ þ dij ð22Þ
yin � yjr ¼ yþinjr � y�injr ð23Þ
0 6 �ðxin � xjrÞ 6 hþMbinjr ð24Þ
0 6 �ðxin � xjrÞ 6 hþMð1� binjrÞ ð25Þ
0 6 ðyin � yjrÞ 6 vþMcinjr ð26Þ
0 6 �ðxin � xjrÞ 6 hþMð1� binjrÞ ð27Þ
ainjr; binjr; cinjr 2 f0; 1g i ¼ 1; . . . ; I ; j ¼ iþ 1; . . . ; I ; n ¼ 1; . . . ;N i; r ¼ 1; . . . ;Nj ð28Þ
There are two difficulties to obtain the optimum solution of the model M2. These difficulties are: (i) non-
linearity of the objective function, (ii) the large number of binary variables for a real-sized problem.

The nonlinearity of model M2 is due to the multiplication of binary variables Z in the objective function.
To rectify the nonlinear term, all the possible combinations of values of these variables are enumerated. Since
these values only affect constraints (16) and (17), those combinations which satisfy these constraints are con-
sidered and the rest are eliminated from further consideration.

The constraints (16) and (17) largely reduce the number of feasible combination of values. Therefore, for
each feasible combination of values of variables Z, a mixed-integer linear programming model is resulted. The 
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branch-and-bound technique is then applied to the resulted linear models to obtain the optimal solution of
model M2.

4. Branch-and-bound approach

An algorithm based on branch-and-bound approach is proposed to solve the linear mixed-integer models.
Elements of the proposed branch-and-bound approach are discussed in the following sections.

A simple example called as Example 1 is considered to describe the proposed approach. Let us consider
layout of three machine types to be arranged in a two-dimensional area. It is assumed that there is only
one product with a demand of five parts per day. There is only a single machine of each type. The dimensions
and capacity of machines and the processing times are given in Table 1. The minimum clearance required
between machines 1–2 is 4 m and it is 2m between machines 1–3 and 2–3. The product initially visits machine
1, then goes to machines 2 and 3, respectively.

4.1. Initialization

The procedure is initiated by relaxing constraint (28), and substituting them with the following constraints:

 

Table
The pr

Machi

1
2
3

0 6 ainjr 6 1 ð29Þ
0 6 binjr 6 1 ð30Þ
0 6 cinjr 6 1 i ¼ 1; . . . ; I ; j ¼ 1; . . . ; I ; n ¼ 1; . . . ;N i; r ¼ 1; . . . ;N j ð31Þ
UB =1 and the lower bound of new model, LB0 = 0.

4.2. Branching

As one can see in constraints 18, 19, 21 and 22, there are two integer variables in each constraint. Thus,
every node must be branched to four new nodes. In each step, the node with minimum LB is selected. This
node is then branched to four nodes. Out of four nodes, two nodes are with:
ainjr P 1 ð32Þ

and other two nodes with:
ainjr 6 0 ð33Þ

The first two branches satisfy constraints (21) and (22) and ignore constraints (18) and (19). Therefore,

there is no need to consider variable binjr since it appears in constraints (18) and (19). These two branches
are distinguished by second new constraints as:
cinjr 6 0 ð34Þ
and

cinjr P 1 ð35Þ
The second two branches satisfy constraints (18) and (19) and ignore constraints (21) and (22). Thus, there
is no need to consider variable cinjr since it appears in constraints (21) and (22). These two branches are dis-
tinguished by second new constraints as:
binjr 6 0 ð36Þ
1
oblem data of Example 1

ne type Length (m) Width (m) Processing time (min) Capacity (min/day)

6 6 5 300
4 6 5 300
8 4 3 400
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and
No
so
binjr P 1 ð37Þ 
In the example, the branching is initiated with (a11216 0,b11216 0), (a11216 0,b1121 P 1), (a11216 0,c11216 0)
and (a1121 6 0,c1121 P 1). As shown in Fig. 1, the initial branching corresponds to branch k = 1(a1121 =
0,b1121 = 0), branch k = 2(a1121 = 0,b1121 = 1), branch k = 3(a1121 = 1,c1121 = 0) and branch k = 4(a1121 =
1,c1121 = 1). Each branch is a simple linear model which can be solved optimally by the Simplex method.

4.3. Labeling

For each of the four new branches the label (lower bound) LBk is determined by solving the model with the
new constraints associated with each branch. As the branching goes deeper, the model is further restricted and
thus lower bound for each node increases. This fact is obviously clear from Fig. 1. The node with k = 0 has
LBk = 0. In this case, all variables a,b,c are continuous variables within zero and one. While branches go dee-
per in the search tree, the lower bound LBk increases accordingly.

4.4. Setting bounds

Branch k is bounded if:

(1) lower bound LBk is greater than UB (e.g. node k = 6 is bounded since UB has already been updated to
85 at node k = 13),

(2) there is no feasible solution (e.g. at node k = 3),
45

45 45

80

45
80

80 80 45
135

# #

80

No feasible 
solution

No feasible solution

#80 85 125 170 170 135 80 80 125 85

Zl = 0 

 feasible 
lution

Fig. 1. Branch-and-bound tree search of example problem.  
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(3) a feasible (integer) solution is obtained (e.g. at node k = 13). In this case, it is set as LBk = UB.
The proposed branch and bound algorithm terminates when all nodes are fathomed. Obviously, the final
solution of current sub-problem will be the solution corresponding to the last UB.

4.5. Branch selection

Considering all nodes in each step, the one with smallest LB is selected. The information for other branches
is recorded. If a branch is bounded, the jump tracking procedure is launched to find the next node with the
lowest LB.

The lower bound of branch k = 1 is LB1 = 45, for k = 2 is LB2 = 45, for k = 3 is LB3 =1 and for k = 4 is
LB4 =1. Thus, branch k = 1 and k = 2 are selected (Fig. 1). The branching process is continued with
LB1 = 45.

4.6. Updating of the upper bound

When all variables a,b,c take integer values (0 or 1) the solution obtained is a feasible complete solution to
the facility layout problem. If the value of the objective function for this solution, LBk, is less than UB (the
current best value of the objective function), then UB is updated, i.e. UB = LBk.

For the example (at node k = 13), LB = 85, all variables a,b,c have integer values and hence, this is a fea-
sible solution. Up to this point, the UB was equal to 1, and hereafter, the UB is updated to be equal to 85.

4.7. Jump tracking

This procedure is used when a node is branched and a new lower bound value is obtained. The jump track-
ing procedure sorts the LB for all obtained nodes and selects the lowest of them. If there are two or more
nodes with lowest value of LB, then the deepest node would be selected. If there are more than one branch
with lowest LB in the same level the one with smaller node number is selected. Referring to Fig. 1, the nodes
2 and 3 have the same LB, and hence node 2 is branched prior to node k = 3.

4.8. Final solution

When the algorithm based on branch-and-bound approach is applied to all feasible sets of variables Z the
solution with lowest UB is selected as the final solution. There might be several solutions with lowest UB. In
this case, the layout designer can consider the real aspects not captured in the model, and then select the most
practically applicable solution. The optimal layout of facilities for the example problem is shown in Fig. 2,
which corresponds to node 15 in Fig. 1.

 

Fig. 2. The final layout obtained by the proposed method for the illustrative example.  
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5. Flowchart

The steps of the proposed approach are illustrated in Fig. 3. The first step is to find all possible sets of vari-
ables Z, satisfying constraints (16) and (17). For the illustrative example, the only feasible values for variables
Z are Z111 = 1, Z121 = 1, Z131 = 1. By fixing variables Z, the problem becomes a linear mixed-integer model
instead of a nonlinear one and can be solved with the proposed branch-and-bound algorithm. Therefore, cor-
responding to each set of feasible values for variables Z, there will be a linear mixed-integer model. The next
step is to determine the optimum location of each machine (variables xin,yin). The optimum location of cen-
troids of machines in Example 1 is (x1,y1) = (9,7) for machine 1, (x2,y2) = (0, 7) for machine 2, and
(x3,y3) = (0, 0) for machine 3 as shown in Fig. 2.

 

Determine the set of feasible values for variables Z

            Have all the possible values for
Z been considered?

   Yes 
Next set of values Z

Answer and variables 

inx  and iny

  No 

                                  No =
=

iN

n
ipinp bZ

1
?

PpIi ,..,1,,..,1 ==

   Yes 

                                    No ≤
=

P

p

i
pipinp CDtZ

1
?

iNnIi ,..,1,,..,1 ==

   Yes 

Solve the model using
branch-and-bound approach 

and obtain the Objective function Value (OFV) of the model 

                                                     Is OFV< Answer? 
                                             No 

    Yes 

Set Answer =OFV 

∑

∑

Fig. 3. Flowchart of the proposed algorithm.  
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6. Computational results

The proposed algorithm has been coded in C++ and run on a PC with a Pentium IV, 2.4 GHz processor. In
programming the model, all feasible sets of variables Z are found. Each feasible set of variables Z is then
exported to a program coded in LINGO Software to solve the associated linear programming model. The
solution obtained from LINGO is then exported to the original program coded in C++ to proceed the branch-
ing and bounding process discussed in Section 4.

In this section, small-, medium-, and large-sized problems are solved using the proposed approach to eval-
uate the effectiveness and efficiency of the proposed approach. The results are compared with the arrangement
of machines based on process layouts.

 

6.1. Small problem

Suppose four types of machines are to be laid out in a manufacturing system; the type L which includes two
lathe machines, the type M which includes three milling machines, the type G which includes one grinding
machine, and finally the type A which includes three assembling machines. Three products A, B, and C must
be processed in this system. Each product has its own process route. The product A must be processed on the
lathe machine, milling machine, grinding machine and assembly machine, respectively. The route of product B

includes lathe machine, grinding machine and assembly machine, respectively. The product C must be pro-
cessed on the milling machine followed by the lathe machine and then is processed on assembly machine.
The daily demand for products A, B, and C is 15, 15, and 17, respectively.

Dimensions of each type of machines is presented in Table 2. The processing time of each product on each
machine type is presented in Table 3. The minimum distance required between different machine types is pre-
sented in Table 4.

This problem has been solved by the proposed approach and the optimum coordinates of centroids of
machines are shown in Table 5. Fig. 4 shows the layout of machines based on the optimum solution obtained
Table 2
Dimensions of machines in Example 2

Machine type Length (m) Width (m)

Lathe machine 6 2
Milling machine 2 2
Grinding machine 5 2
Assembly machine 5 4

Table 3
Processing time of each product on each machine type in Example 2 (min)

Product machine type A B C

Lathe machine 5 5 5
Milling machine 5 5 2
Grinding machine 3 5 3
Assembly machine 3 3 3

Table 4
The minimum distance needed between the machines in the Example 2 (m)

Lathe Milling Grinding Assembly

Lathe 0 4 2 2
Milling 4 0 2 2
Grinding 2 2 0 2
Assembly 2 2 2 0

 



Table 5
Coordinates of the centroids of machines of Example 2 obtained by the proposed method

Machine X (m) Y (m)

First assembly machine 0 4
Second assembly machine 13.5 9
Third assembly machine 21 1
First lathe machine 5.5 10
Second lathe machine 13.5 0
First milling machine 5.5 4
Second milling machine 21 6
Third milling machine 21 10
Grinding machine 13.5 4

Fig. 4. The global optimum layout obtained by the proposed method for Example 2.
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by the proposed algorithm. The solution (optimum values obtained for variables Z) obtained for this example
indicates that one of the assembly machines and two milling machines are not visited by any product. This is
because of the fact that these machines are redundant. Since the capacity of milling machine and two assembly
machines is sufficient to produce the amount of interest for each product, the model has decided to put the rest
of these machines in the rightmost side of Fig. 4. Therefore, the proposed model has the advantage to identify
the minimum number of machines of each type required.

Fig. 5 shows the optimum arrangement of these machines based on a process layout configuration. The
total distance traveled by the products in the layout obtained by the proposed model (Fig. 4) is 615.5 m
per day and it is 1057.5 m per day for the process layout (Fig. 5). Therefore, the proposed model has reduced
the total distance traveled by the products about 41.8%.
6.2. Medium- and large-sized problems

The raw data for a medium-sized problem are presented in Tables 6 and 7. This problem was solved by the
proposed approach. The solution process was interrupted several times to study the reduction in the objective
function. The objective function value after 1, 4, 8, 16, and 24 h, was recorded as 3421, 3421, 2829, 1834, and
1012, respectively. The proposed algorithm obtained the optimum solution after 24 h. The objective function
value (total distance) for a process layout was 1834. Therefore, the proposed algorithm has reduced the total
distance traveled daily by the materials by 44.8% within 24 h computation. Although this time is too much, it 



Fig. 5. The process layout of Example 2.

Table 6
Medium-sized problem data

Machine type Number of machines Dimension (X) Dimension (Y)

1 2 2 3
2 1 2 3
3 1 2 3
4 2 2 3
5 3 2 2
6 1 2 1
7 1 2 2
8 2 1 3
9 1 2 1

10 1 2 1

Table 7
The demand and process route of each product type for medium-sized problem

Product type Demand Required sequence

1 15 1–2–4–8–10
2 13 5–1–4
3 12 3–6–7–9
4 11 2–1–3
5 14 4–5–10
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is notable that the layout of machines is not a frequent problem and it may arise for a company once at the
beginning or when reconfiguration of manufacturing facilities is needed. On the other hand, the 44.8% reduc-
tion in total distance is attained everyday and the company can be benefited from this reduction daily for its
life time. Hence, it can be judged that the performance of the proposed approach for medium-sized problems
is acceptable.

Tables 8 and 9 show the data for a large-sized problem. The solution process for this problem was inter-
rupted after 1, 4, 8, 16, and 24 h. The solution process was terminated after 24 h before its completion. Even
after four hours, the proposed approach could not obtain a feasible solution for this problem. After 8, 16, and
24 h, the objective function value yet obtained by the proposed approach was 11345, 11345, and 9187, respec-
tively. This value for a process layout, however, was 3467. Hence, it may be stated that the proposed approach
can not be used for large-sized problems.
7. Conclusion

In this paper, a new nonlinear mixed-integer programming model is presented for the facility layout prob-
lem in a two-dimensional area to minimize the total distance traveled by the material in the shop floor. A tech-
nique is used to linearize the proposed model. An algorithm based on branch-and-bound approach is 



Table 8
Large-sized problem data

Machine type Number of machines Dimension (X) Dimension (Y)

1 2 2 3
2 1 2 3
3 1 2 3
4 2 2 3
5 3 2 2
6 1 2 1
7 1 2 2
8 2 1 3
9 1 2 1

10 1 2 1
11 1 2 1
12 1 2 2
13 1 2 1
14 2 3 1
15 2 2 1
16 3 2 2
17 1 1 1
18 1 1 1
19 2 2 1
20 1 1 2

Table 9
The demand and process route of each product type for large-sized problem

Product type Demand Required sequence

1 15 11–2–4–8–10
2 13 5–12–4
3 12 3–16–7–19
4 11 2–1–3
5 14 4–5–10
6 11 13–14–15
7 12 20–18
8 14 7–11–17
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developed to optimally solve the proposed mathematical programming model. An illustrative example is
solved and then the obtained result is compared to the configuration obtained from the process layout with
respect to the total material handling distance. It is shown that the presented model decreases the total dis-
tance traveled by the products about 41.8% for small-sized and about 44.8% for medium-sized problems as
compared to the process layouts for the example problems. Since the process layouts are special cases of
the general two-dimensional layout (TDL) modeled in this paper and with respect to the fact that the proposed
branch-and-bound based algorithm determines the optimal solution of TDL, obviously the solutions obtained
by the proposed algorithm will be better than or at least as good as the configurations arranged based on pro-
cess layouts.

The computational results reveal that the proposed approach can not be used for large-sized problems.
Since the solution approach is an exact method, this finding however was already expected. The exact algo-
rithms can not be applied for solving large-sized combinatorial optimization problems in a reasonable time.
It is therefore a scope for future researches to develop heuristic and meta-heuristic methods for solving the
proposed mathematical programming model. In the case of single row layout, the proposed branch-and-
bound algorithm will solve the equivalent of Love and Wong’s (1976b) model, which was shown to be inferior
to the model presented in Amaral (2006).

The proposed model can also be applied to determine the processing route of products in an existing layout.
When the location of each machine in an existing manufacturing system is known, then the variables xin and 
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yin will be fixed in Eq. (1) and the model can be solved to obtain variables Z. These variables determine the
processing routes of each product so that the total distance is minimized.
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