
Information and Software Technology 66 (2015) 58–72
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

Quantitative analysis of fault density in design patterns: An empirical
study
http://dx.doi.org/10.1016/j.infsof.2015.05.006
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +966 13 8601150.
E-mail addresses: elish@kfupm.edu.sa (M.O. Elish), mawal.mohammed@yahoo.

com (M.A. Mohammed).

Mahmoud O. Elish ⇑, Mawal A. Mohammed
Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 31 October 2014
Received in revised form 24 May 2015
Accepted 26 May 2015
Available online 1 June 2015

Keywords:
Design patterns
Software quality
Fault density
Quantitative analysis
Context: There are many claimed advantages for the use of design patterns and their impact on software
quality. However, there is no enough empirical evidence that supports these claimed benefits and some
studies have found contrary results.
Objective: This empirical study aims to quantitatively measure and compare the fault density of motifs of
design patterns in object-oriented systems at different levels: design level, category level, motif level, and
role level.
Method: An empirical study was conducted that involved five open-source software systems. Data were
analyzed using appropriate statistical test of significance differences.
Results: There is no consistent difference in fault density between classes that participate in design
motifs and non-participant classes. However, classes that participate in structural design motifs tend
to be less fault-dense. For creational design motifs, it was found that there is no clear tendency for the
difference in fault density. For behavioral design motifs, it was found that there is no significant differ-
ence between participant classes and non-participant classes. We observed associations between five
design motifs (Builder, Factory Method, Adapter, Composite and Decorator) and fault density. At the role
level, we found that only one pair of roles (Adapter vs. Client) shows a significant difference in fault den-
sity.
Conclusion: There is no clear tendency for the difference in fault density between participant and
non-participant classes in design motifs. However, structural design motifs have a negative association
with fault density. The Builder design motif has a positive association with fault density whilst the
Factory Method, Adapter, Composite, and Decorator design motifs have negative associations with fault
density. Classes that participate in the Adapter role are less dense in faults than classes that participate in
the Client role.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Design Patterns (DPs) are generic solutions to common design
problems. The objective of cataloging these solutions, including
their intent, motivation, applicability, structure, participants, con-
sequences, etc. is to make them reusable. Gamma et al. [14] classi-
fied DPs (known as GoF DPs) into three categories: creational
patterns, structural patterns, and behavioral patterns. Creational
patterns are concerned with creating collections of objects in flex-
ible ways. Structural patterns are concerned with representing col-
lections of related objects. Behavioral patterns are concerned with
capturing behavior among collections of objects. There are 23 GoF
DPs: five creational patterns, seven structural patterns, and 11
behavioral patterns. Design motifs refer to the solution parts of
DPs that are disseminated in the source code of the systems in
which DPs are applied [28,39]. In a design motif, there is one or
more participant classes that play different roles.

Since their introduction, DPs have attracted the attention of
software researchers and practitioners due to the claimed advan-
tages of their application. They are claimed to improve program-
mers’ productivity, promote best design practices, help novice
designers to acquire more experience in software design, and make
communication easier among team members. Despite these
claims, the impact of DPs on software quality is still a debatable
issue. Zhang and Budgen [49] conducted a survey of experienced
users’ perceptions about DPs to determine which patterns do
expert pattern users consider useful or not useful for software
development and maintenance. They found that only three

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.05.006&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.05.006
mailto:elish@kfupm.edu.sa
mailto:mawal.mohammed@yahoo.com
mailto:mawal.mohammed@yahoo.com
http://dx.doi.org/10.1016/j.infsof.2015.05.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

M.O. Elish, M.A. Mohammed / Information and Software Technology 66 (2015) 58–72 59
patterns (Observer, Composite, and Abstract Factory) were widely
regarded as valuable. Zhang and Budgen [50] also conducted a
mapping study to determine the scale and extent to which empir-
ical studies have been undertaken to evaluate the effectiveness of
DPs. They concluded that DPs have been subjected to limited
empirical evaluation and that more empirical evidence is very
much needed. The need for further investigations on the impact
of DPs on different software quality attributes are justifiable by
the following reasons: (i) there is no consensus among the con-
ducted studies in the literature, as discussed in the following sec-
tion, on the impact of DPs on the different quality attributes; (ii)
limited number of quality attributes have been addressed; (iii)
not all DPs have been addressed; and (iv) not all levels (i.e., design
level, category level, motif level and role level) have been
evaluated.

One of the common arguments for the applications of DPs often
relate to reducing the number of software faults [23,47]. The fault
density of an object-oriented class is a measure of the number of
confirmed and detected faults in the class divided by its size.
Class size is usually positively correlated to the number of faults,
which known as the confounding effect of class size [14]. Size mea-
sures are often used to normalize fault counts when evaluating
quality, as in measures of fault density [30]. The main objective
of this study is to quantitatively measure and compare the fault
density of design motifs in object-oriented systems. For this pur-
pose, we conducted an empirical study that:

� Measures and compares the fault density of participant versus
non-participant classes in the design motifs.
� Measures and compares the fault density of participant classes

across the different categories of design motifs in the GoF’s book
(creational, structural, and behavioral).
� Measures and compares the fault density of participant classes

across design motifs.
� Measures and compares the fault density of participant classes

across the different roles in each design motif.

Quantitative analysis of fault density in design motifs provides
software developers with valuable knowledge of which motifs
require special attention in their implementation and testing.
This knowledge serves as recommendations and guidelines for
software designers to effectively apply design motifs which, in
turns, help in producing better designs. Moreover, software testers
can utilize this knowledge to focus on the potentially troublesome
parts of designs that require more attention. Therefore, software
testers can write more useful test cases that address real design
issues.

The rest of this paper is organized as follows. Section 2 summa-
rizes the related work. Section 3 discusses the empirical study
setup. Section 4 presents the results of the empirical study, which
are then analyzed and discussed in Section 5. Section 6 discusses
threats to validity. Finally, Section 7 provides concluding remarks
and directions for future work.
2. Related work

There are many studies in the literature that have explored the
relationship between DPs and software quality attributes. A com-
prehensive literature survey was conducted by Ali and Elish [2]
on the impact of DPs on quality attributes. Only four quality attri-
butes have been investigated in the literature: maintainability,
change-proneness, performance and energy consumption, and
fault-proneness.

Prechelt et al. [42] conducted a controlled experiment to study
the relationship between DPs and maintainability. They found that
the use of DPs improves software maintainability. Vokac et al. [48]
conducted a replication of this experiment. They found that differ-
ent patterns have different impact on maintainability. Another four
replications for this experiment were conducted in several univer-
sities [42]. In each replication, different findings on the impact of
DPs on maintainability were reported: negative impacts
[27,31,41] and no impact [36]. Garzas et al. [16] investigated the
impact of three different DPs on maintainability as well. In their
experiment, maintainability was measured in terms of under-
standability and modifiability. They found that DPs make design
diagrams more difficult to understand and consequently require
more time to modify. Finally, Hegedus et al. [25] performed a case
study on a software system to evaluate the impact of DPs on main-
tainability. The reported findings show an improvement in main-
tainability with the use of DPs.

Aversano et al. [6] conducted a case study to address the impact
of DPs on change-proneness. They found that the impact of DPs on
change-proneness depends on the role of DPs in the functionality
of the system (i.e., if DPs are involved in the implementation of
major functionalities of the system, they will be subject to more
changes). Bieman et al. [8] conducted another study to evaluate
the impact of DPs on change-proneness at the class-level. They
found that participant classes in design motifs are more
change-prone than non-participant classes. Gatrell et al. [18]
conducted a case study to evaluate the change-proneness of
participant versus non-participant classes as well. They found that
some DPs are associated with more changes than others. Posnett
et al. [40] studied the influence of DPs roles on change-
proneness. They found that the observed associations between
change-proneness and the roles in patterns might be due to the
sizes of the classes playing those roles. Penta et al. [39] reported
an empirical study that investigated the relationship between
DPs roles and the frequency/kind of changes. The results confirmed
the intuitive behavior about changeability of many roles. Khomh
et al. [28] conducted an empirical descriptive and analytic study
of classes playing zero, one, or two roles in six different DPs.
They found a significant increase in many internal metric values
for classes playing two roles. They also found a significant increase
in the frequencies and the number of changes of classes playing
two roles.

Rudzki [43] conducted a study to evaluate the impact of two
DPs, Command and Façade, on performance. He found that
Façade performed better than Command. Afacan [1] performed
an experiment to study the impact of State design pattern on mem-
ory usage and execution time. He found that a design with the
State pattern consumes more resources than a design without
DPs. However, the DP solution leads to clearer system architecture
that can help improve other quality attributes. Some studies have
investigated the energy consumption of DPs [9,33,44]. Bunse and
Stiemer [9] presented a case study that examined the impact of
DPs application onto a systems energy consumption. They found
that the Decorator pattern has a negative impact on the energy
needs of an app. Sahin et al. [44] presented a preliminary empirical
study that investigates the impacts on energy usage of applying
DPs. They found that applying DPs can both increase and decrease
the amount of energy used by an application, and also DPs within a
category do not impact energy usage in similar ways. Litke et al.
[33] observed that the use of DPs does not necessarily impose a sig-
nificant penalty on power consumption.

The relationship between DPs and faults has been investigated
in three works. Vokac [47] investigated fault frequency (normal-
ized number of faults over time) in DPs. Five patterns were inves-
tigated in his study: Singleton, Template Method, Decorator,
Observer and Factory Method. He found that the DPs that are asso-
ciated with larger structures, such as Observer and Singleton, are
subject to more faults whereas Factory Method is loosely coupled

60 M.O. Elish, M.A. Mohammed / Information and Software Technology 66 (2015) 58–72
to other components of the system and is less subject to faults. For
Template Method and Decorator, he observed no clear tendency.
Gatrell and Counsell [17] studied the relationship between
fault-proneness and DPs. Ten GoF’s patterns were addressed in
their study. They observed that pattern-based classes were more
fault-prone than non-pattern classes. In particular, they found that
Adapter, Method, and Singleton are more fault-prone than the
other pattern classes, in terms of the numbers/sizes of changes
made to a class to fix a fault. Ampatzoglou et al. [3] conducted a
case study on software games to evaluate the impact of 11 DPs
on defect frequency. They observed that Abstract Factory,
Composite, Observer, State, Strategy, Prototype, and Proxy are neg-
atively correlated to fault frequency. However, they observed that
Adapter and Template Method are positively correlated to fault fre-
quency. The study conducted by Ampatzoglou et al. [3] is the only
study that was conducted on Java systems. The other two studies
(i.e., [17,47] that addressed faults) were conducted on C# and
C++ systems, respectively.

This research study is different from the previous work in many
aspects. In this study, we address fault density, which has not been
addressed in the literature. In addition, we target 17 patterns
whilst the maximum number of the examined patterns in the liter-
ature is 11 [3,17,47]. Furthermore, we evaluate fault density at all
levels: design level, category level, motif level, and role level.
Table 1 shows a summary of the difference between this paper
and previous works that have addressed the relationship between
DPs and faults.
3. Empirical study setup

This section presents the empirical study setup. We first state
the research questions and hypotheses. Then, we describe data col-
lection. Finally, we discuss the statistical tests.
3.1. Research questions

To accomplish the objectives of this work, we quantitatively
analyzed the fault density of design motifs at four granularity
levels: design, category, motif, and role. Based on these granularity
levels, we identified the following research questions.

� RQ1: Is the fault density of classes participating in design motifs
significantly different to that of classes not participating in
design motifs?
� RQ2: Are there significant differences in fault density among

classes that participate in the different categories of design
motifs?
� RQ3: Is the fault density of classes participating in a design

motif significantly different to that of classes not participating
in that design motif?
� RQ4: Are there significant differences in fault density among

classes that participate in the different roles in each design
motif?
Table 1
Comparison with previous work.

Reference Fault aspect

Vokac [47] Fault frequency
Gatrell and Counsell [17] Numbers/sizes of changes to fix faults
Ampatzoglou et al. [3] Fault frequency
This paper Fault density
3.2. Research hypotheses

To answer the research questions, we tested the following null
hypotheses. The alternative hypotheses are the opposite of their
corresponding null hypothesis, i.e., they state that ‘‘there is signif-
icant difference in fault density...’’

Hypothesis 1. There is no significant difference in fault density
between classes that participate in design motifs and those that do
not.

Hypothesis 2. There is no significant difference in fault density
among classes that participate in the different categories of design
motifs.
Hypothesis 3. There is no significant difference in fault density
between classes that participate in a design motif and those that
do not participate in that motif.
Hypothesis 4. There is no significant difference in fault density
among classes that participate in the different roles in each design
motif.
3.3. Data collection

We conducted our empirical investigation on the following five
open-source software systems:

� JHotDraw v5.1 is a framework for the creation of drawing edi-
tors. The creation of geometric and user defined shapes, editing
those shapes, creating behavioral constraints in the editor and
animation are supported by this framework.
� JUnit v3.7 is a simple framework for creating test cases that are

used repeatedly. It is used to write test cases for Java programs.
� Lexi v0.1.1 alpha is a word processor. It can be used in editing

many files, such as RTF and HTML files in addition to the plain
text.
� Nutch v0.4 is an extensible and scalable Web crawler. It can be

used in searching, indexing, and scoring of filers.
� PMD v1.8 is a source code analyzer. It scans the source code

searching for standard coding rules violations and other prob-
lems, such as suboptimal code and dead code.

The reason for choosing these systems is the availability of their
design motifs data in the P-Mart repository [19]. We could have
used bigger systems other than those in the P-Mart repository,
such as Eclipse, but the problem is with the collection of the design
motifs data of these systems. Before deciding to use the P-Mart
repository, we surveyed the literature searching for software
design motifs detection tools. As a result, we identified 10 tools [
5,13,20,24,26,34,37,38,45,46]. Then, we evaluated the suitability
of these tools to our work. We found that these tools are not suit-
able for several reasons. First, all of these tools detect only a small
Of examined DPs Level(s) of analysis

5 Motif
10 + 3 non-GoF Design and motif
11 Motif
17 Design, category, motif, and role

Table 2
Comparison of design motifs detection tools.

Tools # Of detectable design
motifs

Precision (%) Recall (%)

DeMIMA [24] 13 34 100
DP-Miner [26] 6 91–100 97
DPRE [34] 6 62–97 –
FUJABA [37] 23 – –
MARRPLE [5] 3 78.6 78.3
Pinot [38] 17 – –
Ptidej [20] 19 – –
Tsantalis et al.’s tool [46] 12 100 95.9
SPQR [45] 1 – –
WOP [13] 4 57.3 54.5

Table 3
Number of design motifs’ instances in the subject systems.

Category Design motif JHotDraw JUnit Lexi Nutch PMD

Creational design motifs Abs. Factory
Builder 1 2
Factory Method 3 3
Prototype 2
Singleton 2 2 2 1

Structural design motifs Adapter 1 2 1
Bridge 2
Composite 1 1 2
Decorator 1 1
Facade
Flyweight
Proxy 1

Behavioral design motifs Chain of Resp.
Command 1 2
Interpreter
Iterator 1 1 1
Mediator
Memento 2
Observer 2 3 2 2
State 2
Strategy 4 2
Template 2 3 1
Visitor 1

Total # of instances 21 8 5 15 14

Fig. 1. Percentages of participant to non-participant classes.

M.O. Elish, M.A. Mohammed / Information and Software Technology 66 (2015) 58–72 61

set of design motifs. Secondly, their precision and recall are either
unknown or unsatisfactory. Finally, they do not detect all the roles
in each design motif. Table 2 provides a comparison of design
motifs detection tools in terms of the number of detectable design
motifs, precision, and recall if known. Consequently, we searched
for another source of design motifs data. As a result, we identified
the P-Mart repository, which is a reliable source of design motifs
data that has been used in several works [4,7,11,12,21]. It is consid-
ered a benchmark and golden standard in the literature [7]. The
P-Mart repository contains design motifs data for nine systems.
Table 4
Descriptive statistics of the subject systems.

Systems # Of classes Total LOC

JHotDraw 155 8891
JUnit 78 4773
Lexi 24 7045
Nutch 165 23,507
PMD 446 41,486
All systems 868 85,702
We performed our analysis on five of them because we did not find
the faults data for the other four systems.

We collected faults data from the development CVS files
(Concurrent Versions System) associated with each subject system.
Our subject systems are hosted with their CVS files in SourceForge.
CVS files contain the commits entries associated with each class
file in the systems. Unlike change logs that are automatically gen-
erated from the CVS commits, release notes are produced manually
to include only important/main changes and thus usually incom-
plete and inaccurate. We found that the release notes for the sub-
ject systems are incomplete. For example, the number of reported
bugs in the release notes of the PMD subject system is only about
80, whereas the number of reported bugs in the CVS files of the
same system is about 580. The same conclusion is also supported
with the findings of Chen et al. [10]. So, we used CVS commits
instead of release notes. To collect faults data, we examined each
commit for each class in each subject system looking for the fol-
lowing keywords: fault, bug, error, defect, flaw, and issue. We
excluded few cases where these words are mentioned for other
purposes, such as clarification. After counting the number of faults
in each class, we calculated the fault density of each class by divid-
ing the number of faults by KLOC (Thousands Lines of Code) in each
class. Only logical lines in method bodies were counted, while
comments and blank lines were excluded.

We considered only main (top-level) classes. Nested classes
(inner classes and static member classes) were treated as contents
of the enclosing top-level classes. They were not treated as individ-
ual observations (data points) because none of them play any role
in design motifs in the analyzed subject systems [22].

Table 3 reports the number of instances of each design motif in
each one of the subject systems and Table 4 provides descriptive
statistics for each subject system. The number of design motifs,
the percentage of the participating classes in design motifs, and
the percentage of faulty classes (i.e., classes that have at least
one fault) are different from one system to the other. The numbers
of design motifs range from 5 to 21 in the different systems and the
percentages of the participating classes range from 10.6% to 74%, as
shown in Fig. 1. The numbers and percentages of faulty classes
range from 9 (11.5%) to 233 (52.2%) in the subject classes, as shown
in Fig. 2. Table 5 provides descriptive statistics of fault density in
Of faulty classes # Of participating classes in design motifs

45 (29.0%) 115 (74.0%)
9 (11.5%) 45 (57.6%)
11 (44.0%) 7 (28.0%)
74 (44.8%) 22 (13.3%)
233 (52.2%) 49 (10.6%)
372 (42.8%) 238 (27.4%)

Fig. 2. Percentages of faulty to non-faulty classes.

Table 6
Tests of normality.

Data set Groups Kolmogorov–Smirnov
(Significance)

Shapiro–Wilk
(Significance)

Fault density Non-participant <0.001 <0.001
Participant <0.001 <0.001

62 M.O. Elish, M.A. Mohammed / Information and Software Technology 66 (2015) 58–72

each subject systems, and Fig. 3 shows box-plots of fault density in
each subject system.
3.4. Statistical tests

We used the Mann–Whitney U test to measure the difference
between two groups and the Kruskal–Wallis test to measure the
difference among more than two groups.
40

60

80

100

120

 D
en

si
ty

 Mean ±SD
3.4.1. Mann–Whitney test
The Mann–Whitney U test is a non-parametric test used to

compare the differences between two independent groups [35].
We used this test to evaluate the differences between the different
groups. For example, we used it to compare the difference in fault
density between classes that participate in design motifs and
non-participant classes. As other example, we used this test to
evaluate the difference in fault density between classes that partic-
ipate in structural design motifs and classes that participate in cre-
ational design motifs. There are four assumptions that must be
held to perform this test. These assumptions are as follows:

1. Dependent variables should be either ordinal or continuous. In
our case, fault density is a continuous variable.

2. Independent variable should consist of two categorical groups.
In our case, the values of the class participation in design motifs
are either 0 or 1; where 0 refers to the first group and 1 refers to
the second group.

3. There should be an independence of observations. In our case,
there is no relationship between the different observations so
one observation does not affect another observation (i.e., if a
class is a participant in one design motif does not imply or
require to be or not to be a participant in another motif).

4. The two independent variables (i.e., groups) should not be nor-
mally distributed. To test the normality of the data, we per-
formed two tests: Kolmogorov–Smirnov and Shapiro–Wilk
tests. These tests are performed on fault density data of partic-
ipant versus non-participant classes when all systems are com-
bined together. Table 6 provides the results of these tests. The
assumption in evaluating the normality is ‘‘the data are not nor-
mally distributed’’ and it was found that the p-value associated
with evaluating the normality is less than 0.05.
Table 5
Descriptive statistics of fault density in each subject system.

JHotDraw JUnit Lexi Nutch PMD All systems

Mean 13.5 6.6 5.1 10.1 34.1 22.6
Minimum 0 0 0 0 0 0
Maximum 285.7 375.0 31.3 125.0 800.0 800.0
Std. dev. 36.1 43.0 8.4 18.9 62.5 51.2
3.4.2. Kruskal–Wallis test
The Kruskal–Wallis test is a non-parametric test used to com-

pare the differences between two or more independent groups
[32]. We used this test to evaluate the differences among the dif-
ferent roles in each design motif. Because we are comparing more
than two groups using this test, we used Bonferroni method for
correcting the obtained p-values. There are two assumptions that
must be held to perform this test. These assumptions are as
follows:

1. Dependent variables should be either ordinal or continuous. In
our case, fault density is a continuous variable.

2. Independent variable should consist of more than two categor-
ical groups. In our case, this variable consists of more than two
groups (roles) in all of the addressed design motifs except for
one, which is Singleton that consists of one role only. All other
motifs consist of more than two roles.

4. Empirical study results

We conducted the quantitative analysis of fault density in
design motifs at four levels (design level, category level, motif level
and role level) as follows.

4.1. Design level

At the design level, we evaluated the difference in fault density
between classes that participate in any design motif and classes
that do not participate in any design motif (i.e., participant vs.
non-participant). This comparison gives a general insight into the
association between design motifs and fault density. The obtained
results, from the Mann–Whitney test, show only two significant
(<0.05) p-values in the case of Lexi and when we combine all sys-
tems, as provided in Table 7. The test is also significant in JHotDraw
but at 0.1 level of significance.

Fig. 4 shows box-plots of the fault density of design motifs’ par-
ticipant vs. non-participant classes in each subject system. These
plots are interpreted by the location of the median, and the loca-
tion and size of the box and whiskers (i.e., the lines above and
JHotDraw
Junit

Lexi
Nutch

PMD
All Systems

-60

-40

-20

0

20

Fa
ul

t

Fig. 3. Box-plots of fault density in each subject system.

Table 7
Comparison evaluation results (p-values) of design motifs’ participant vs. non-
participant classes in each subject system.

Participant vs. non-participant

JHotDraw 0.057677
JUnit 0.386525
Lexi 0.011515
Nutch 0.788716
PMD 0.971235
All systems 0.000006

Bold values are significant at the 0.05 level (95% confidence level).

M.O. Elish, M.A. Mohammed / Information and Software Technology 66 (2015) 58–72 63
below the box). The group that is less dense in faults will have its
median point in relatively lower position, its box should be nar-
rower, and its whiskers should be smaller than the other group.
In case of JHotDraw, PMD, and when we combine all systems, we
found that participant classes are less fault-dense than
JHotDraw

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Non-Participant
Participant

-20

0

20

40

60

80

100

120

Fa
ul

t-d
en

si
ty

JUnit

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Non-participant
Participant

-2

-1

0

1

2

Fa
ul

t-d
en

si
ty

Lexi

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Non-participant
Participant

-2

0

2

4

6

8

10

12

Fa
ul

t-d
en

si
ty

Fig. 4. Box-plots of the fault density of participant an
non-participant classes. In case of Lexi, we found an opposite
result, i.e., participant classes are more fault-dense than
non-participant classes. In case of JUnit, the two groups seem sim-
ilar. In case of Nutch, the participating classes group has higher
median but narrower boxes and smaller whisker than the
non-participating classes group. Based on these results, we con-
clude that there is no clear tendency for the difference in fault den-
sity between participant and non-participant classes in design
motifs. We therefore cannot accept or reject the null Hypothesis 1.

4.2. Category level

The objective of this section is to evaluate the differences in
fault density of classes that participate in the different categories
of design motifs, i.e., creational, structural and behavioral. We
identify six pairs of categories (creational vs. non-participant,
Nutch

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Non-participant
Participant

-5

0

5

10

15

20

25

30

35

Fa
ul

t-d
en

si
ty

PMD

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Participant
Non-participant

-20

0

20

40

60

80

100

120

140

Fa
ul

t-d
en

si
ty

All Systems

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Participant
Non-participant

-20

0

20

40

60

80

100

Fa
ul

t-d
en

si
ty

d non-participant classes in each subject system.

Table 8
Comparison evaluation results (p-values) of the different categories of design motifs
in each subject system.

Creational Structural Behavioral

JHotDraw
Non-participant 0.040954 0.074557 0.190715
Creational – 0.623715 0.010846
Structural – 0.089498

JUnit
Non-participant 0.129812 0.094472 1.000000
Creational – 0.005415 0.204005
Structural – 0.116530

Lexi
Non-participant 0.011515 – 0.036336
Creational – – 1.000000
Structural – –

Nutch
Non-participant – 0.309721 0.113882
Creational – – –
Structural – 0.024861

PMD
Non-participant 0.201336 0.774087 0.091711
Creational – 0.476195 0.041217
Structural – 0.299755

All systems
Non-Participant 0.082337 0.000000 0.000480
Creational – 0.000135 0.194804
Structural – 0.005921

Bold values are significant at the 0.05 level (95% confidence level).

64 M.O. Elish, M.A. Mohammed / Information and Software Technology 66 (2015) 58–72
structural vs. non-participant, behavioral vs. non-participant, cre-
ational vs. structural, creational vs. behavioral, and structural vs.
behavioral) for evaluation in each subject system and when we
combine all systems. In the evaluation cases that involve creational
design motifs, we ignored Nutch because only one of its classes
participates in creational design motifs. We also ignored Lexi in
the cases that involve structural design motifs because it has no
structural design motifs. Table 8 summarizes the evaluation results
of these pairs by providing the p-values of the Mann–Whitney tests
where significant values are in boldface. Based on these results, we
reject the null Hypothesis 2 and accept its alternative hypothesis.

4.2.1. Creational vs. non-participant
We obtained two significant Mann–Whitney test p-values in

different directions in measuring the fault density of
non-participant classes versus classes that participate in creational
design motifs. These values are associated with JHotDraw and Lexi,
as shown in Table 8. Fig. 5 shows that non-participant classes are
more fault-dense than classes that participate in creational design
motifs in JHotDraw and less fault-dense than classes that partici-
pate in creational design motifs in Lexi. The tendency for the differ-
ence in fault density for non-participant classes versus creational
classes is not clear. In addition to the different directions for the
significant p-values, we found that non-participant classes in
PMD and JUnit are less fault-dense than classes that participate
in creational design motifs and more fault-dense when we com-
bine all systems.

4.2.2. Structural vs. non-participant
We obtained one significant Mann–Whitney test p-value in

evaluating the fault density of non-participant classes versus
classes that participate in structural design motifs, as shown in
Table 8, when we combine all systems. Fig. 5 shows that
non-participant classes are more fault-dense than classes that par-
ticipate in structural design motifs. For JHotDraw and JUnit, the
differences are not significant at the 0.05 level. However, they
are significant at the 0.1 level, as shown in Table 8. They also
support the results obtained when we combine all systems. The
same thing can be said about the tendency for the difference in
fault density in the cases of Nutch and PMD, even though the
p-values associated with them are not significant. Therefore,
non-participant classes tend to be more fault-dense than classes
that participate in structural design motifs.

4.2.3. Behavioral vs. non-participant
The evaluation of the difference in fault density of

non-participant classes compared to classes that participate in
behavioral design motifs resulted in two significant Mann–
Whitney test p-values in two different directions. The first value
is associated with Lexi and the second value was obtained when
we combine all systems, as shown in Table 8. Fig. 5 shows that
non-participant are less fault-dense than classes that participate
in behavioral design motifs in Lexi and more fault-dense than
classes that participate in behavioral design motifs when we com-
bine all systems. It is difficult to decide which group tends to be
more fault-dense: non-participant classes or classes that partici-
pate in behavioral design motifs because the conclusion drawn
from JHotDraw, PMD, JUnit, and when we combine all systems is
in one direction and the conclusion drawn from Lexi and Nutch
is in the other direction, as shown in Fig. 5.

4.2.4. Creational vs. structural
We obtained only two significant p-values as a result of com-

paring the fault density of classes that participate in creational
design motifs and classes that participate in structural design
motifs. These values were obtained in JUnit and when we combine
all systems, as shown in Fig. 5. In these cases, classes that partici-
pate in creational design motifs are more fault-dense than classes
that participate in structural design motifs. This finding is sup-
ported by JHotDraw and PMD. Although the p-values associated
with these two systems are not significant, they provide support
for the results obtained in JUnit and when we combine all systems.
Therefore, classes that participate in creational design motifs tend
to be more fault-dense than classes that participate in structural
design motifs.

4.2.5. Creational vs. behavioral
We found two significant p-values in two different directions in

evaluating the difference in fault density between classes that par-
ticipate in creational design motifs and classes that participate in
behavioral design motifs, as shown in Table 8. These values are
associated with JHotDraw and PMD. In JHotDraw, classes that par-
ticipate in creational design motifs are less fault-dense than classes
that participate in behavioral design motifs, as shown in Fig. 5. In
PMD, classes that participate in creational design motifs are more
fault-dense than classes that participate in behavioral design
motifs. It is difficult to decide which group tends to be more
fault-dense: classes that participate in creational design motifs or
classes that participate in behavioral design motifs because the dif-
ferences in JHotDraw and Lexi are in one direction and in PMD,
JUnit, and when we combine all systems are in the other direction.

4.2.6. Structural vs. behavioral
We obtained two significant p-values in the same direction in

evaluating the difference in fault density between classes that par-
ticipate in structural design motifs and classes that participate in
behavioral design motifs, as shown in Table 8. These values are
associated with Nutch and when we combine all systems. In both
cases, classes that participate in structural design motifs are less
fault-dense than classes that participate in behavioral design
motifs, as shown in Fig. 5. The p-value associated with JHotDraw
is insignificant though it provides further support for the same
conclusion. In PMD, the obtained result is in the opposite direction

JHotDraw

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Non-participant
Creational

Structural
Behavioral

-20

0

20

40

60

80

100

120
Fa

ul
t-d

en
si

ty

JUnit

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Non-participant
Creational

Structural
Behavioral

-50

0

50

100

150

200

250

300

350

400

Fa
ul

t-d
en

si
ty

Lexi

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Non-participant
Creational

Behavioral
-4

0

4

8

12

16

20

24

28

Fa
ul

t-d
en

si
ty

Nutch

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Non-participant
Creational

Structural
Behavioral

-5

0

5

10

15

20

25

30

35

Fa
ul

t-d
en

si
ty

PMD

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Non-participant
Creational

Structural
Behavioral

-20

0

20

40

60

80

100

120

140

Fa
ul

t-d
en

si
ty

All Systems

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Non-participant
Creational

Structural
Behavioral

-20

0

20

40

60

80

100

Fa
ul

t-d
en

si
ty

Fig. 5. Box-plots of the fault density in the different categories of design motifs in each subject system.

M.O. Elish, M.A. Mohammed / Information and Software Technology 66 (2015) 58–72 65

but it is not significant, as shown in Fig. 5. Moreover, in JUnit, we
did not observe a difference in fault density. We conclude that
classes that participate in structural design motifs tend in general
to be less fault-dense than classes that participate in behavioral
design motifs.

4.3. Motif and role levels

In measuring and comparing the fault density of each design
motif, we evaluate:

� The difference in fault density of classes that participate in a
design motif and classes that do not participate in that design
motif using the Mann–Whitney test.
� The overall difference among the different roles in each design

motif using the Kruskal–Wallis test.
� The differences between each pair of roles in a design motif if
we find differences among the different roles.

We used the data from all systems combined to measure and
compare the fault density of each design motif and its roles. We
did not conduct this analysis for each subject system because the
set of design motifs in each system is different and, thus, we cannot
compare results across systems. Although the ‘client’ role is not
one of the application roles, we consider it because it is listed as
one of the patterns’ participants in the GoF’s book [15].

In our dataset, 46.2% of classes that participate in design motifs
play more than one role. We accordingly investigated the possible
correlation between the number of roles played by classes and
their fault density. The results of a Spearman correlation analysis
indicate very weak correlation (coefficient: �0.0753 and p-value:
0.2472). We therefore did not perform further analysis based on

66 M.O. Elish, M.A. Mohammed / Information and Software Technology 66 (2015) 58–72
the number of roles. Khomh et al. [28], however, found that the
number of roles do impact the number and frequencies of changes.
There are several reasons that may explain why their observations
are different from ours. First of all, they investigated the impact on
change-proneness, but not on fault density. Second, they selected
six design motifs and considered only their main roles. Third, they
analyzed different systems. Finally, they identified design motifs
using automatic detection technique, DeMIMA, which produces
false positives.

4.3.1. Creational design motifs
Table 9 provides summary of the p-values of the tests of signif-

icance differences in fault density that we conducted for each cre-
ational design motif and its roles. Significant p-values are in
boldface. The ‘‘overall roles comparison’’ in this table refers to
the result of the Kruskal–Wallis test that measures the significance
difference among the different roles in the corresponding design
motif. We report the observations for each creational design motif
next.

� Builder. The Builder motif classes are significantly more
fault-dense than the non-Builder motif classes. This result is
also supported by Fig. 6(a) that shows box-plots of the fault
density in Builder and non-Builder classes. Although there are
some differences in the fault density among the participating
classes in the different roles in the Builder design motif, as
shown in Fig. 6(b), these differences are not significant at the
0.05 level but they are significant at the 0.1 level. The Director
role, which is responsible of notifying the Builder whenever a
part of a product should be built, is more dense in faults than
other roles, and thus should be implemented carefully. For the
Builder design motif, we reject the null Hypothesis 3 and accept
its alternative hypothesis. We also accept the null Hypothesis 4.
� Factory Method. There is a significant difference in the fault

density between the Factory Method classes and the
non-Factory Method classes. As shown in Fig. 7(a), the Factory
Method classes are less fault-dense than the non-Factory
Method classes. In addition, there are significant differences in
the fault density among classes that participate in the different
roles in the Factory Method design motif. The only pair of roles
that shows a significant difference is: Concrete-Product vs.
non-participant, where classes that participate in the
Concrete-Product role are less fault-dense than non-participant
classes, as shown in Fig. 7(b). For the Factory Method design
motif, we reject the null Hypothesis 3 and accept its alternative
hypothesis. We also reject the null Hypothesis 4 and accept its
alternative hypothesis.
� Prototype. There is no significant difference in the fault density

between the Prototype classes and the non-Prototype classes.
Moreover, there are no significant differences in the fault
density among classes that participate in the different roles in
the Prototype design motif. For the Prototype design motif, we
accept the null Hypothesis 3 and also that of Hypothesis 4.
Table 9
Comparison evaluation results of creational design motifs and their roles.

Design motif Pairs p-value

Builder Builder classes vs. Non-Builder classes 0.043
Overall roles comparison 0.074

Factory Method Factory Method Classes vs. Non-Factory classes 0.037
Overall roles comparison 0.034
Concrete-Product vs. Non-Participant 0.003

Prototype Prototype classes vs. Non-Prototype classes 0.221
Overall roles comparison 0.665

Singleton Singleton classes vs. Non-Singleton classes 0.773

Bold values are significant at the 0.05 level (95% confidence level).
� Singleton. There is no significant difference in the fault density
between the Singleton classes and the non-Singleton classes.
Roles evaluation is not applicable for this design motif because
it has only one role. For the Singleton design motif, we accept
the null Hypothesis 3.

4.3.2. Structural design motifs
Table 10 summarizes the p-values of the tests of significance

differences in fault density for each structural design motif and
its roles, where significant p-values are in boldface. We report
the observations for each structural design motif next.

� Adapter. The Adapter motif classes are significantly less
fault-dense than the non-Adapter motif classes. Fig. 8 shows
box-plots of the fault density in the Adapter design motif and
its roles. At the role level, there are two pairs of roles that have
significant differences in fault density between themselves. The
first pair is Adapter vs. non-participant, where classes that par-
ticipate in the Adapter role are less fault-dense than
non-participant classes. The second pair is Adapter vs. Client,
where classes that participate in the Adapter role are less
fault-dense than the Client role. For the Adapter design motif,
we reject the null Hypothesis 3 and accept its alternative
hypothesis. We also reject the null Hypothesis 4 and accept
its alternative hypothesis.
� Bridge. There is no significant difference in the fault density

between the Bridge classes and the non-Bridge classes. In addi-
tion, there are no significant differences in the fault density
among classes that participate in the different roles in the
Bridge design motif. For the Bridge design motif, we accept
the null Hypothesis 3 and also that of Hypothesis 4.
� Composite. There is a significant difference in the fault density

between the Composite motif classes and the non-Composite
motif classes. As shown in Fig. 9(a), the Composite motif classes
are less fault-dense than the non-Composite motif classes. In
addition, there are significant differences in the fault density
among classes that participate in the different roles in the
Composite design motif. The only pair of roles that shows a sig-
nificant difference is: Leaf vs. non-participant, where classes
that participate in the Leaf role are less fault-dense than
non-participant classes, as shown in Fig. 9(b). For the
Composite design motif, we reject the null Hypothesis 3 and
accept its alternative hypothesis. We also reject the null
Hypothesis 4 and accept its alternative hypothesis.
� Decorator. There is a significant difference in the fault density

between the Decorator motif classes and the non-Decorator
motif classes. As shown in Fig. 10(a), the Decorator motif classes
are less fault-dense than the non-Decorator motif classes. At the
role level, there are two pairs of roles that have significant dif-
ferences in fault density between themselves. The first pair is
Concrete-Decorator vs. non-participant, where classes that par-
ticipate in the Concrete-Decorator role are less fault-dense than
non-participant classes, as shown in Fig. 10(b). The second pair
is Concrete-Component vs. non-participant, where classes that
participate in the Concrete-Component role are less
fault-dense than non-participant classes, as shown in
Fig. 10(b). For the Decorator design motif, we reject the null
Hypothesis 3 and accept its alternative hypothesis. We also
reject the null Hypothesis 4 and accept its alternative
hypothesis.
� Proxy. There is no significant difference in the fault density

between the Proxy classes and the non-Proxy classes.
Moreover, there are no significant differences in the fault den-
sity among classes that participate in the different roles in the
Proxy design motif. For the Proxy design motif, we accept the
null Hypothesis 3 and also that of Hypothesis 4.

Builder

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Non-Builder Classes
Builder Classes

-20

0

20

40

60

80

100
Fa

ul
t-d

en
si

ty

Builder Roles

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Builder
ConcreteBuilder

Director
Non-Participant

-15

0

15

30

45

60

75

90

Fa
ul

t-d
en

si
ty

(a) (b)

Fig. 6. Box-plots of the fault density in the Builder design motif and its roles.

Factory Method

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Non-Factory Method Classes
Factory Method Classes

-15

0

15

30

45

60

75

90

Fa
ul

t-d
en

si
ty

Factory Method Roles

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

ConcreteCreator
ConcreteProduct

Creator
Product

Non-Participant
-50

0

50

100

150

200

250

300

350

Fa
ul

t-d
en

si
ty

(a) (b)

Fig. 7. Box-plots of the fault density in the Factory Method design motif and its roles.

Table 10
Comparison evaluation results of structural design motifs and their roles.

Design motif Pairs p-value

Adapter Adapter classes vs. Non-Adapter classes 0.001
Overall roles comparison 0.003
Adapter vs. Non-participant 0.000
Adapter vs. Client 0.019

Bridge Bridge classes vs. Non-Bridge classes 0.400
Overall roles comparison 0.758

Composite Composite classes vs. Non-Composite classes 0.000
Overall roles comparison 0.001
Leaf vs. Non-participant 0.000

Decorator Decorator classes vs. Non-Decorator classes 0.000
Overall roles comparison 0.001
Concrete-Decorator vs. Non-participant 0.036
Concrete-Component vs. Non-participant 0.000

Proxy Proxy classes vs. Non-Proxy classes 0.153
Overall roles comparison 0.563

Bold values are significant at the 0.05 level (95% confidence level).

M.O. Elish, M.A. Mohammed / Information and Software Technology 66 (2015) 58–72 67

4.3.3. Behavioral design motifs
Table 11 provides summary of the p-values of the tests of signif-

icance differences in fault density for each behavioral design motif
and its roles, where significant p-values are in boldface. We found
no significant differences in fault density in any behavioral design
motif neither at the motif level nor at the role level. Therefore, for
each of behavioral design motifs, we accept the null Hypothesis 3
and also that of Hypothesis 4.

5. Summary and discussion

In this section, we summarize and discuss the obtained results.
5.1. Design level

Table 12 is a summary for the results described in Section 4.1.
There are no commonalities on the association between design
motifs and fault density. To deduce a general summary, we allow,
at most, one insignificant case anomaly from the derived conclu-
sion and we ask for, at least, one significant case that supports
the derived conclusion and the rest of the cases must support the
derived conclusion even if they are not significant. In Table 12, in
four cases, participant classes are more fault-dense ‘‘(>)’’ than
non-participant classes. One of these cases is associated with sig-
nificant ‘‘(S)’’ p-value. In the other three cases, the associated
p-values are not significant ‘‘(N)’’. Also, in two cases, participant
classes are less fault-dense ‘‘(<)’’ than non-participant classes.
One of these cases is associated with significant p-value ‘‘(S)’’. In
the other case, the associated p-value is not significant ‘‘(N)’’. The
number between the parentheses ‘‘(6)’’ refers to the number of
applicable cases.

Based on the above results, the answer to RQ1 is that there is no
clear tendency for the difference in fault density between partici-
pant and non-participant classes in design motifs. The absence of
commonalities among the different cases might be due to the
intentional uses of design motifs and the level of experience in
implementing them. It is mentioned in the documentation of two
systems (JHotDraw and JUnit) that developers used design motifs.
It is however unknown if developers used design motifs intention-
ally in the other subject systems. Among other possible reasons for
the absence of commonalities are the sizes and complexities of the
subject systems and the numbers and types of design motifs
instances in them. A controlled experiment may be conducted in
the future to study possible cause-and-effect relationships.

Adapter

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Non-Adapter Classes
Adapter Classes

-15

0

15

30

45

60

75

90
Fa

ul
t-d

en
si

ty

Adapter Roles

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Adaptee
Adapter

Client
Target

Non-Participant
-20

0

20

40

60

80

100

120

Fa
ul

t-d
en

si
ty

(a)
(b)

Fig. 8. Box-plots of the fault density in the Adapter design motif and its roles.

Composite

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Non-Composite Classes
Composite Classes

-15

0

15

30

45

60

75

90

Fa
ul

t-d
en

si
ty

Composite Roles

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Client
Component

Composite
Leaf

Non-Participant
-15

0

15

30

45

60

75

90

Fa
ul

t-d
en

si
ty

(a) (b)

Fig. 9. Box-plots of the fault density in the Composite design motif and its roles.

Decorator

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Non-Decorator Classes
Decorator Classes

-15

0

15

30

45

60

75

90

Fa
ul

t-d
en

si
ty

Decorator Roles

 M
ed

ia
n

 2
5%

-7
5%

 N

on
-O

ut
lie

r R
an

ge

Component
ConcreteComponent

ConcreteDecorator
Decorator

Non-Participant
-15

0

15

30

45

60

75

90

Fa
ul

t-d
en

si
ty

(a) (b)

Fig. 10. Box-plots of the fault density in the Decorator design motif and its roles.

68 M.O. Elish, M.A. Mohammed / Information and Software Technology 66 (2015) 58–72

5.2. Category level

We evaluated the difference in fault density of the different cat-
egories of design motifs to find if there is an association between
the different categories of design motifs and the fault density
and consequently to answer RQ2. Tables 13 and 14 provide brief
and detailed summaries, respectively, of the differences among
the different categories of design motifs on fault density. The num-
ber of applicable cases is different from one pair to the other. It
ranges from four to six because the number of classes that partic-
ipate in creational category of Nutch is one, and because Lexi has
no structural design motifs.
We found that structural design motifs are less fault-dense than
classes that participate in creational and behavioral design motifs
and also less fault-dense than non-participant classes. This obser-
vation suggests that the adoption of structural design motifs might
result in more reliable software because these design motifs tend
to be less fault-dense. The reason might be due to that structural
design motifs are related to the structure of the system, which
may be less prone to change [28,40]. In addition, we think the idea
of these design motifs are easy to grasp and consequently easy to
apply in software design. Based on our teaching experience, we
found that students find it easier to understand structural design
motifs compared to behavioral design motifs.

Table 11
Comparison evaluation results of behavioral design motifs and their roles.

Design motif Pairs p-value

Command Command classes vs. Non-Command classes 0.338
Overall roles comparison 0.671

Iterator Iterator classes vs. Non-Iterator classes 0.785
Overall roles comparison 0.549

Memento Memento classes vs. Non-Memento classes 0.830
Overall roles comparison 0.829

Observer Observer classes vs. Non-Observer classes 0.149
Overall roles comparison 0.235

State State classes vs. Non-State classes 0.602
Overall roles comparison 0.238

Strategy Strategy classes vs. Non-Strategy classes 0.094
Overall roles comparison 0.182

Template Method Template Method classes vs. Non-Template
classes

0.575

Overall roles comparison 0.725
Visitor Visitor classes vs. Non-Visitor classes 0.994

Overall roles comparison 0.407

M.O. Elish, M.A. Mohammed / Information and Software Technology 66 (2015) 58–72 69
5.3. Motif level

To answer RQ3, we evaluated the difference in fault density
between classes that participate in each design motif and classes
that do not participate in that motif. We found that, in all of struc-
tural design motifs that show significant difference (i.e., Adapter,
Composite and Decorator), classes that participate in the design
motifs are less fault-dense than non-participant classes, as shown
in Table 15. This observation explains the obtained results in evalu-
ating the different categories in the previous section. Also, we found
that behavioral design motifs have no association with fault density.
Furthermore, only five design motifs out of the 17 examined design
motifs have significant associations with fault density. The Builder
design motif shows a positive association with fault density whilst
the Factory Method, Adapter, Composite, and Decorator design
motifs show negative associations with fault density.

The observed associations between the Builder, Factory Method,
Adapter, Composite, and Decorator design motifs and fault density
can be explained as follows. The positive association between the
Builder design motif and fault density might be due to that the
Builder design pattern is one of the unfamiliar and least favored
patterns based on a survey of experienced user perceptions about
software DPs by Zhang and Budgen [49]. The negative association
between the Factory Method design motif and fault density could
be because it has simple structure and relatively small amounts
of code that is loosely coupled to the rest of the system [47]. The
negative association between the Adapter design motif and fault
density might be due to its structure is simple and it is straightfor-
ward to implement [15]. The negative association between the
Composite design motif and fault density could be because the
use of Composite design pattern should not be problematic accord-
ing to a summary of pervious qualitative assessments [50].
Extension to a Composite design motif should not introduce faults
because newly defined Composite and Leaf subclasses work auto-
matically with its existing structure [15]. Furthermore, the
Table 12
Detailed summary for the results at the design level.

First group Fault density Second group
Direction > <
Significance S N S N

Participants (6) 1 3 1 1 Non-participants

S: # of significant cases and N: # of insignificant cases; (#) is the number of
applicable cases.
Composite design pattern is one of the patterns that are very well
known, liked, and highly valued according to Zhang and Budgen’s
survey [49]. The negative association between the Decorator
design motif and fault density was surprising because the call
graph of a Decorator pattern structure is difficult to understand
and maintain [3,47]. However, in this study, there is only one
instance of the Decorator in JHowDraw and another in JUnit that
seem to be well applied.

Although previous work [3,17,47] addressed other attributes of
faults, such as fault-proneness and frequency, we generally com-
pare their results to ours with respect to the relationship between
design motifs and faults. In comparing our results to the results
obtained by other studies, we find some similarities and some dif-
ferences. Table 16 compares our observed associations between
design motifs and fault density with previous work, where an
empty cell means that the corresponding design motif was not
examined by the corresponding study, and the ‘+’, ‘�’, and ‘�’ sym-
bols indicate positive association, negative association, and no
association, respectively. Some of the contradictions and diversi-
ties in Table 16 can be explained as follows. In case of the
Adapter design motif, there is extensive use of it (many instances)
in the analyzed systems in [3,17], but there are few instances of it
in our study. The extensive use of the Adapter design motif might
insert faults in the system either because the developers of the sys-
tem are often not familiar with the adapted code or the faults of
the adapted code are added to the faults of the target system [3].
In case of the Decorator design motif, there is no enough instances
of it in the analyzed system in [47] to yield statistically significant
results. Although, in our study, there are also few instances of the
Decorator design motif, they are from JHotDraw and JUnit where
design motifs were intentionally used in these two systems, and
thus expected to be of good quality. In case of the Observer design
motif, Vokac [47] explained the high fault frequency in this design
motif by its complex structure and usage in situations with cou-
pling between multiple, nontrivial classes. However, Ampatzoglou
et al. [3] argued that because the Observer design motif has
complex structure, it is probably applied by more experienced
developers, leading to less faults.

5.4. Role level

To answer RQ4, we summarized the differences in fault density
among the different roles in each design motif. Table 17 shows that
only a few design motifs show significant difference in fault den-
sity among their roles. Only one pair of roles shows significant dif-
ference: Adapter vs. Client. In this pair, classes that participate in
the Client role are more fault-dense than classes that participate
in the Adapter role. We think this observation might be due to
Client role classes being more involved in implementing complex
functionality than the Adapter role classes. The Adapter role
classes are of less complexity because that they are only responsi-
ble for adapting other classes’ methods to be used by the client.
Other than this pair, all the other differences, in Table 17, are asso-
ciated with evaluating the differences between non-participant
classes and some design motif roles.
Table 13
Summary of the differences among the different categories of design motifs on fault
density.

First group Fault density Second group

Creational – Non-participant
Structural < Non-participant
Behavioral – Non-participant
Creational > Structural
Structural < Behavioral
Behavioral – Creational

Table 14
Detailed summary for the results at the category level.

First group Fault density Second group

Direction > <

Significance S N S N

Creational (5) 1 2 1 1 Non-participant
Structural (5) 0 0 1 4 Non-participant
Behavioral (6) 1 1 1 3 Non-participant
Creational (4) 2 2 0 0 Structural
Creational (5) 1 2 1 1 Behavioral
* Structural (5) 0 1 2 1 Behavioral

S: # of significant cases and N: # of insignificant cases; (#) is the number of
applicable cases; ⁄means that the absent case in evaluating the fault density has no
differences between structural and behavioral groups.

Table 15
Summary of the differences among the different design motifs on fault density.

Design motifs
category

First group Fault
density

Second group

Creational Builder classes > Non-Builder classes
Factory Meth.
classes

< Non-Factory Meth.
classes

Prototype classes – Non-Prototype classes
Singleton classes – Non-Singleton classes

Structural Adapter classes < Non-Adapter classes
Bridge classes – Non-Bridge classes
Composite classes < Non-Composite classes
Decorator classes < Non-Decorator classes
Proxy classes – Non-Proxy classes

Behavioral Command classes – Non-Command classes
Iterator classes – Non-Iterator classes
Memento classes – Non-Memento classes
Observer classes – Non-Observer classes
State classes – Non-Participant classes
Strategy classes – Non-Strategy classes
Template Meth.
classes

– Non-Template Meth.
classes

Visitor classes – Non-Visitor classes

Table 16
Summary of observed associations between design motifs and fault density: comparison w

Category Design motif Vokac [47]

Creational design motifs Abs. Factory
Builder
Factory Method –
Prototype
Singleton +

Structural design motifs Adapter
Bridge
Composite
Decorator �
Facade
Flyweight
Proxy

Behavioral design motifs Chain of Resp.
Command
Interpreter
Iterator
Mediator
Memento
Observer +
State
Strategy
Template �
Visitor

70 M.O. Elish, M.A. Mohammed / Information and Software Technology 66 (2015) 58–72
6. Threats to validity

6.1. Construct validity

Construct validity is concerned with the measures used in the
evaluation. Faults data can be a threat to the construct validity of
this study. To alleviate this risk, we have collected the faults data
from the CVS files and not the release notes, and we have examined
every commit. However, there might be other unreported faults,
but we believe such cases (if any) to be very limited and thus do
not affect the results significantly because the subject systems
are popular, open-source, and widely used systems and their bug
tracking systems are very active.

P-Mart repository has been created using different sources:
studies in the literature [8]; Ptidej (pattern trace identification,
detection, and enhancement in Java) tool for identifying design
motifs [20]; and validation assignments for students in undergrad-
uate and graduate courses. These different sources alleviate the
possibility of false positive and negative instances of design motifs
in the P-Mart repository. Another threat to construct validity is
whether ‘client’ role should be considered or not among partici-
pant classes in design motifs. Future work may exclude this role
from analysis.

6.2. Internal validity

Internal validity is the degree to which the observed effects
depend only on the intended experimental variables. One threat
is the number of roles that a class might be playing in design
motifs. We did not find a correlation between the number of roles
played by the classes and their fault density. Another threat to the
internal validity emerges from the developers’ background. We do
not know whether the developers are trained to work with DPs or
not. However, we are not studying cause-and-effect relationship
because we cannot control each variable that affect the relation-
ships among the different groups. We are only trying to see if
there is a significant association between the addressed variables
or not.
ith previous work.

Gatrell and Counsell [17] Ampatzoglou et al. [3] This paper

–
� +
� –

– �
+ � �

+ + –
�

– –
� –

� – �

� �

� �

�
– �

� – �
� – �

+ �
� �

Table 17
Summary of the difference among the different roles in design motifs on fault density.

Design motif First group Fault density Second group

Factory Method Concrete-Product < Non-participant
Adapter Adapter < Non-participant

Adapter < Client
Composite Leaf < Non-participant
Decorator Concrete-Decorator < Non-participant

Concrete-Component < Non-participant

M.O. Elish, M.A. Mohammed / Information and Software Technology 66 (2015) 58–72 71
6.3. External validity

External validity is concerned with generalizability. The nature
of the subject systems is a threat to the external validity of this
study. All subject systems are open-source systems and developed
using one programming language-Java. To generalize the obtained
results in this study, we must investigate the design motifs further
by including commercial systems and systems developed using
other programming languages. However, this study can be consid-
ered as a step that can be strengthened later with more
replications.

6.4. Conclusion validity

Conclusion validity is the degree to which the conclusions that
are obtained about the relationships in the testing data are reason-
able. We performed our analysis at the design level and the cate-
gory level on six cases (i.e., five subject systems and when all of
these systems are combined together). 70% of the classes in all sys-
tems are from PMD and Nutch; and 82% of faulty classes in all sys-
tems are from PMD and Nutch. However, only 30% of participant
classes in design motifs in all systems are from PMD and Nutch.
For this reason, the obtained results show that there is no consen-
sus among the six cases. Moreover, two cases (Lexi and JUnit) have
relatively few classes and instances of design motifs. To draw con-
clusions on the general tendencies for the differences in fault den-
sity, we allow only for one case anomaly at most, from the
direction of the obtained conclusion, which is not associated with
significant p-value. Also, there should be at least one case that
shows significant difference in the direction of the obtained con-
clusion. The other cases should be in the same direction of the
obtained conclusion. This approach is better and more restricted
than the majority voting and less restricted than the consensus.
Considering more cases or more systems may lead to different con-
clusions based on these criteria.

7. Conclusion and future work

The objective of conducting this study was to quantitatively
analyze the fault density in design motifs at different levels:
design, category, motif, and role. First, we measured and compared
the fault density of participant classes and non-participant classes
in design motifs. We found that there is no clear tendency for the
difference in fault density between participant and non-participant
classes. We then measured and compared the fault density of par-
ticipant classes across the different categories of design motifs. We
found that classes that participate in structural design motifs are
less dense in faults than the other categories and less than
non-participant classes as well. Next, we measured and compared
the fault density of participant classes across design motifs. We
found that only five design motifs show significant differences:
Builder, Factory Method, Adapter, Composite, and Decorator.
Classes that participate in each of these design motifs are less
dense in faults than non-participant classes except for the
Builder design motif. Classes that participate in the Builder are
more dense in faults than non-participant classes. Finally, we mea-
sured and compared the fault density of participant classes across
the different roles in each design motif. We found that only one
pair of roles shows significant difference, which is Adapter vs.
Client. In this pair, classes that participate in the Adapter role are
less dense in faults than classes that participate in the Client role.

There are many directions for future works. First, we performed
our analysis on five systems that are developed in Java. We cannot
generalize our results to other systems that are developed in differ-
ent programming languages. The different programming languages
have different levels of expressiveness, which might affect the
application of DPs. We must replicate our study on software sys-
tems that are developed in different programming languages.

Second, we performed our analysis on open-source software
systems. These systems are developed by many developers from
different backgrounds. Their levels of patterns experience are not
controlled. This situation is different in commercial companies
where the developers of software systems can be trained and pre-
pared to work with DPs. So, we must replicate our study on com-
mercial systems to improve the generalizability of the obtained
results.

Third, our study was performed on the motifs of 17 GoF DPs out
of 23 that exist in five systems. The other six patterns (i.e., Abstract
Factory, Façade, Flyweight, Mediator, Chain-of-Responsibility, and
Interpreter) are not applied in the subject systems that we used
in this study. They should be addressed in the future. More motif
instances and more subject systems can be considered as well.

Finally, we performed our study on motifs of object-oriented
DPs. In the future, we think of addressing DPs that are developed
in other paradigms, such as aspect-oriented paradigm [29] because
the representations of these patterns are different from one para-
digm to the other which might affect their applicability.

Acknowledgment

The authors would like to acknowledge the support provided by
the Deanship of Scientific Research at King Fahd University of
Petroleum & Minerals (KFUPM) under Research Grant IN121056.
We sincerely thank the anonymous reviewers for their insightful
comments and suggestions, which have substantially improved
the paper.
References

[1] T. Afacan, State Design Pattern Implementation of a DSP processor: a case
study of TMS5416C, in: 6th IEEE International Symposium on Industrial
Embedded Systems (SIES), 2011, 2011, pp. 67–70.

[2] M. Ali, M. Elish, A comparative literature survey of design patterns impact on
software quality, in: 4th International Conference on Information Science and
Applications (ICISA), 2013, pp. 1–7.

[3] A. Ampatzoglou, A. Kritikos, E.-M. Arvanitou, A. Gortzis, F. Chatziasimidis, I.
Stamelos, An empirical investigation on the impact of design pattern
application on computer game defects, in: Proceedings of the 15th
International Academic MindTrek Conference: Envisioning Future Media
Environments, Tampere, Finland, 2011.

[4] F. Arcelli Fontana, S. Maggioni, C. Raibulet, Understanding the relevance of
micro-structures for design patterns detection, J. Syst. Softw. 84 (12) (2011)
2334–2347.

[5] F. Arcelli Fontana, M. Zanoni, A tool for design pattern detection and software
architecture reconstruction, Inf. Sci. 181 (7) (2011) 1306–1324.

[6] L. Aversano, G. Canfora, L. Cerulo, C.D. Grosso, M.D. Penta, An empirical study
on the evolution of design patterns, in: Proceedings of the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Dubrovnik, Croatia,
2007.

[7] M.L. Bernardi, M. Cimitile, G.A. Di Lucca, A model-driven graph-matching
approach for design pattern detection, in: 20th Working Conference on
Reverse Engineering (WCRE), 2013, 2013 pp. 172–181.

[8] J. Bieman, G. Straw, H. Wang, P. Munger, R. Alexander, Design patterns and
change proneness: an examination of five evolving systems, in: 9th
International Software Metrics Symposium, 2003, pp. 40–49.

http://refhub.elsevier.com/S0950-5849(15)00103-2/h0020
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0020
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0020
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0025
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0025

72 M.O. Elish, M.A. Mohammed / Information and Software Technology 66 (2015) 58–72
[9] C. Bunse, S. Stiemer, On the energy consumption of design patterns, in: 2nd
Workshop Energy Aware Software-Engineering and Development, 2013.

[10] K. Chen, S.R. Schach, L. Yu, J. Offutt, G.Z. Heller, Open-source change logs,
Empirical Softw. Eng. 9 (3) (2004) 197–210.

[11] A. De Lucia, V. Deufemia, C. Gravino, M. Risi, Behavioral pattern identification
through visual language parsing and code instrumentation, in: 13th European
Conference on Software Maintenance and Reengineering, 2009, CSMR ‘09,
2009, pp. 99–108.

[12] A. De Lucia, V. Deufemia, C. Gravino, M. Risi, Improving behavioral design
pattern detection through model checking, in: 2010 14th European Conference
on Software Maintenance and Reengineering (CSMR), 2010, pp. 176–185.

[13] J. Dietrich, C. Elgar, Towards a web of patterns, Web Semantics: Sci. Serv.
Agents World Wide Web 5 (2) (2007) 108–116.

[14] K. El-Emam, S. Benlarbi, N. Goel, S. Rai, The confounding effect of class size on
the validity of object-oriented metrics, IEEE Trans. Softw. Eng. 27 (2001) 630–
650.

[15] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[16] J. Garzás, M. Piattini, Do rules and patterns affect design maintainability?, J
Comput. Sci. Technol. 24 (2) (2009) 262–272.

[17] M. Gatrell, S. Counsell, Design patterns and fault-proneness a study of
commercial C# software, in: 2011 Fifth International Conference on
Research Challenges in Information Science (RCIS), 2011, pp. 1–8.

[18] M. Gatrell, S. Counsell, T. Hall, Design patterns and change proneness: a
replication using proprietary C# software, in: 16th Working Conference on
Reverse Engineering, 2009, WCRE ‘09, 2009, pp. 160–164.

[19] Y.-G. Guéhéneuc, P-mart: Pattern-like micro architecture repository, in:
Proceedings of the 1st EuroPLoP Focus Group on Pattern Repositories, 2007.

[20] Y.-G. Guéhéneuc, Ptidej: Promoting patterns with patterns, in: Proceedings of
the First ECOOP Workshop on Building a System using Patterns, Glasgow, UK,
2005.

[21] Y.-G. Guéhéneuc, J.-Y. Guyomarc’h, H. Sahraoui, Improving design-pattern
identification: a new approach and an exploratory study, Softw. Qual. Control
18 (1) (2010) 145–174.

[22] Y.-G. Guéhéneuc, J. Guyomarch, K. Khosravi, H. Sahraoui, Design patterns as
laws of quality, in: J. Garzas, M. Piattini (Eds.), Object-Oriented Design
Knowledge: Principles, Heuristics and Best Practices, IGP, 2007, pp. 105–142.

[23] Y.-G. Guéhéneuc, H. Albin-Amiot, Using design patterns and constraints to
automate the detection and correction of inter-class design defects, in: 39th
International Conference and Exhibition on Technology of Object-Oriented
Languages and Systems, 2001. TOOLS 39, 2001, pp. 296–305.

[24] Y.-G. Guéhéneuc, G. Antoniol, DeMIMA: a multilayered approach for design
pattern identification, IEEE Trans. Softw. Eng. 34 (5) (2008) 667–684.

[25] P. Heged}us, D. Bán, R. Ferenc, T. Gyimóthy, Myth or reality? Analyzing the
effect of design patterns on software maintainability, in: T.-H. Kim et al. (Eds.),
Computer Applications for Software Engineering, Disaster Recovery, and
Business Continuity, vol. 340, Springer, Berlin, Heidelberg, 2012, pp. 138–145.

[26] D. Jing, D.S. Lad, Z. Yajing, DP-Miner: design pattern discovery using matrix, in:
14th Annual IEEE International Conference and Workshops on the Engineering
of Computer-Based Systems, 2007, ECBS ‘07, 2007, pp. 371–380.

[27] N. Juristo, S. Vegas, Design patterns in software maintenance: an experiment
replication at UPM – experiences with the RESER’11 joint replication project,
in: 2nd International Workshop on Replication in Empirical Software
Engineering Research (RESER), 2011, 2011, pp. 7–14.

[28] F. Khomh, Y.-G. Guéhéneuc, G. Antoniol, Playing roles in design patterns: an
empirical descriptive and analytic study, in: 25th IEEE International
Conference on Software Maintenance (ICSM), 2009, pp. 83–92.

[29] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J.
Irwin, Aspect-oriented programming, in: M. Aks�it, S. Matsuoka (Eds.),
ECOOP’97 — Object-Oriented Programming, vol. 1241, Springer, Berlin
Heidelberg, 1997, pp. 220–242.
[30] A. Koru, D. Zhang, K. ElEmam, H. Liu, An Investigation into the functional form
of the size-defect relationship for software modules, IEEE Trans. Softw. Eng. 35
(2) (2009) 293–304.

[31] J.L. Krein, L.J. Pratt, A.B. Swenson, A.C. MacLean, C.D. Knutson, D.L. Eggett,
Design patterns in software maintenance: an experiment replication at
Brigham Young University’’, in: 2nd International Workshop on Replication
in Empirical Software Engineering Research (RESER), 2011, 2011, pp. 25–34.

[32] W.H. Kruskal, W.A. Wallis, Use of ranks in one-criterion variance analysis, J.
Am. Stat. Assoc. 47 (1952) 583–621.

[33] A. Litke, K. Zotos, E. Chatzigeorgiou, G. Stephanides, Energy consumption
analysis of design patterns, World Acad. Sci. Eng. Technol. (2005) 86–90.

[34] A. De Lucia, V. Deufemia, C. Gravino, M. Risi, Design pattern recovery through
visual language parsing and source code analysis, J. Syst. Softw. 82 (7) (2009)
1177–1193.

[35] H.B. Mann, D.R. Whitney, On a Test of Whether One of Two Random Variables
is Stochastically Larger Than the Other, Institute of Mathematical Statistics,
2000.

[36] A. Nanthaamornphong, J.C. Carver, Design patterns in software maintenance:
an experiment replication at University of Alabama, in: 2nd International
Workshop on Replication in Empirical Software Engineering Research (RESER),
2011, 2011, pp. 15–24.

[37] J. Niere, W. Schafer, J. P. Wadsack, L. Wendehals, J. Welsh, Towards pattern-
based design recovery, in: Proceedings of the 24rd International Conference on
Software Engineering, 2002. ICSE 2002, 2002, pp. 338–348.

[38] S. Nija, R.A. Olsson, Reverse engineering of design patterns from Java source
code, in: 21st IEEE/ACM International Conference on Automated Software
Engineering, 2006, ASE ‘06, 2006, pp. 123–134.

[39] M.D. Penta, L. Cerulo, Y.-G. Guéhéneuc, G. Antoniol, An empirical study of the
relationships between design pattern roles and class change proneness, in:
24th IEEE International Conference on Software Maintenance (ICSM), 2008, pp.
217–226.

[40] D. Posnett, C. Bird, P. Dévanbu, An empirical study on the influence of pattern
roles on change-proneness, Empirical Softw. Eng. 16 (3) (2011) 396–423.

[41] L. Prechelt, M. Liesenberg, Design patterns in software maintenance: an
experiment replication at Freie University; Berlin, in: 2nd International
Workshop on Replication in Empirical Software Engineering Research
(RESER), 2011, 2011, pp. 1–6.

[42] L. Prechelt, B. Unger, W.F. Tichy, P. Brossler, L.G. Votta, A controlled experiment
in maintenance: comparing design patterns to simpler solutions, IEEE Trans.
Softw. Eng. 27 (12) (2001) 1134–1144.

[43] J. Rudzki, How design patterns affect application performance – a case of a
multi-tier J2EE application, in: Proceedings of the 4th international conference
on Scientific Engineering of Distributed Java Applications, Luxembourg-
Kirchberg, Luxembourg, 2005.

[44] C. Sahin, F. Cayci, I. Gutierrez, J. Clause, F. Kiamilev, L. Pollock, K. Winbladh,
Initial explorations on design pattern energy usage, in: 1st International
Workshop on Green and Sustainable Software, 2012, pp. 55–61.

[45] J.M. Smith, D. Stotts, SPQR: flexible automated design pattern extraction from
source code, 2003, pp. 215–224.

[46] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S.T. Halkidis, Design pattern
detection using similarity scoring, IEEE Trans. Softw. Eng. 32 (11) (2006) 896–909.

[47] M. Vokac, Defect frequency and design patterns: an empirical study of
industrial code, IEEE Trans. Softw. Eng. 30 (12) (2004) 904–917.

[48] M. Vokac, W. Tichy, D. Sjoberg, E. Arisholm, M. Aldrin, A controlled experiment
comparing the maintainability of programs designed with and without design
patterns – a replication in a real programming environment, Empirical Softw.
Eng. 9 (3) (2004) 149–195.

[49] C. Zhang, D. Budgen, A survey of experienced user perceptions about software
design patterns, Inform. Softw. Technol. 55 (2013) 822–835.

[50] C. Zhang, D. Budgen, What do we know about the effectiveness of software
design patterns?, IEEE Trans Softw. Eng. 38 (5) (2012) 1213–1231.

http://refhub.elsevier.com/S0950-5849(15)00103-2/h0050
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0050
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0065
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0065
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0070
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0070
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0070
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0075
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0075
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0075
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0080
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0080
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0105
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0105
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0105
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0120
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0120
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0125
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0125
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0125
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0125
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0125
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0125
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0125
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0145
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0145
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0145
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0145
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0145
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0145
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0145
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0145
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0150
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0150
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0150
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0160
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0160
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0165
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0165
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0170
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0170
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0170
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0175
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0175
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0175
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0175
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0200
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0200
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0210
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0210
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0210
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0230
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0230
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0235
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0235
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0240
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0240
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0240
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0240
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0245
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0245
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0250
http://refhub.elsevier.com/S0950-5849(15)00103-2/h0250

	Quantitative analysis of fault density in design patterns: An empirical study
	1 Introduction
	2 Related work
	3 Empirical study setup
	3.1 Research questions
	3.2 Research hypotheses
	3.3 Data collection
	3.4 Statistical tests
	3.4.1 Mann–Whitney test
	3.4.2 Kruskal–Wallis test

	4 Empirical study results
	4.1 Design level
	4.2 Category level
	4.2.1 Creational vs. non-participant
	4.2.2 Structural vs. non-participant
	4.2.3 Behavioral vs. non-participant
	4.2.4 Creational vs. structural
	4.2.5 Creational vs. behavioral
	4.2.6 Structural vs. behavioral

	4.3 Motif and role levels
	4.3.1 Creational design motifs
	4.3.2 Structural design motifs
	4.3.3 Behavioral design motifs

	5 Summary and discussion
	5.1 Design level
	5.2 Category level
	5.3 Motif level
	5.4 Role level

	6 Threats to validity
	6.1 Construct validity
	6.2 Internal validity
	6.3 External validity
	6.4 Conclusion validity

	7 Conclusion and future work
	Acknowledgment
	References

