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a b s t r a c t

Matrix cracking is the first and most dominant mode of damage in laminated polymer composites
resulting in significant stiffness degradation. In the past, matrix cracking has been quantified using crack
density evolution with loading and correlating the crack densities with stiffness degradation of the
laminate. In the present study, an analytical framework for matrix crack evolution for a general Multi-
Directional (MD) symmetric laminate has been proposed using oblique coordinate based shear-lag
analysis coupled with a probabilistic strength approach. The statistical parameters have been esti-
mated from a master laminate. The ply-by-ply crack density evolution has also been simulated. The crack
density evolution and associated stiffness degradation predictions have been compared to existing
experimental values. The stiffness degradation trends closely match with experimental data and stiffness
values estimated from current approach are conservative.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The use of Fiber Reinforced Polymer (FRP) composites for
structural load bearing applications has increased in recent times.
Approximately 50% by weight of the recent Boeing 787 airframe is
made from FRPs [1]. Over the next few decades, these materials are
likely to replace conventional materials due to their high specific
strength, stiffness, corrosion resistance, easy formability and much
greater fatigue life [2]. During service, composite structures are
subjected to time varying events of loading, environment degra-
dation, damage events such as bird impact, runway debris, hail-
storm, etc., acting individually or sometimes in combination. Due to
the inherent inhomogeneity and distinctly anisotropic nature, FRPs
exhibit amultitude of damagemechanisms such asmatrix cracking,
interfacial fiber-matrix debonding, fiber breaks, delamination, fiber
micro-buckling etc. under static and fatigue loading. Damage
typically starts very early during loading and evolves steadily [3,4].
Matrix cracking happens to be the most dominant mode of damage
to first appear in the laminate [4,5]. Typically, matrix cracks initi-
ates in the lamina making the maximum off-axis angle with the
loading direction. When the laminate is viewed in thickness
uraja).
direction, the matrix cracks appear transverse to the loading di-
rection and propagate along the fiber direction of the off-axis ply
(as shown in Fig. 1 (a)). As the static loading increases or as the
number of cycles increase in case of fatigue, the matrix crack
density (i.e., the number of matrix cracks per unit length) attains a
saturation state called Characteristic Damage State (CDS) [6]. Since
matrix crack evolution in composite laminates is accompanied by
stiffness degradation, it becomes important to model this
phenomenon.

Experimental investigation of crack initiation and evolution is
mostly limited to cross-ply or Quasi-Isotropic (QI) laminates [7e11].
Notable observations from experimental studies onmatrix cracking
are as follows:

1. During matrix cracking, there occurs a continuous loss of stiff-
ness, stress redistribution and reduction in stress concentration.
Other damage modes such as delamination are also triggered
when it attains CDS [3,4].

2. Matrix cracks form instantaneously through the laminate width
along the fiber direction and are referred to as tunneling cracks.
However, more complex cracking like partial cracking has been
observed in plies adjacent to 90� ply [9,10].

3. The applied far field strain magnitude causing matrix crack
initiation in a particular off-axis ply increases with decrease in
ply thickness as well as with increase in neighboring ply
 

mailto:suhasini@aero.iisc.ernet.in
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compositesb.2015.09.050&domain=pdf
www.sciencedirect.com/science/journal/13598368
www.elsevier.com/locate/compositesb
http://dx.doi.org/10.1016/j.compositesb.2015.09.050
http://dx.doi.org/10.1016/j.compositesb.2015.09.050
http://dx.doi.org/10.1016/j.compositesb.2015.09.050


Fig. 1. Matrix cracking in MD-laminate. a) Representative element, b) Sub-laminate concept.
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thickness [12e16]. In other words, the neighboring plies provide
a ‘constraint’ effect and matrix cracking initiation becomes
dependent on the location of the ply under consideration with
respect to the overall stacking sequence of plies. Thus, matrix
crack initiation strain for surface plies are found to be lower than
for plies located in between other plies.

4. Saturation matrix crack density at CDS decreases with increase
in the ply thickness or with increase in constraint ply thickness
[11].

5. The matrix crack initiation strain is higher for plies with off-axis
angle less than 90� and curved crack paths are also observed
[17,18].

6. For MD-laminate containing plies with off-axis angle less than
45�, the laminate fails before any matrix cracks form in that ply
and offers limited contribution to overall stiffness reduction of
the laminate [8,19].

Over the last three decades, numerous matrix crack initiation
and evolution models have been developed to predict matrix crack
density evolution under a given loading scenario. Starting with
basic 1-D shear lag analysis extended for crack evolution [20e22],
2-D stress analysis using variational method [23] and finite fracture
mechanics [24] have been used to simulate matrix cracking in
cross-ply laminates. 3-D stress analysis using plane strain as-
sumptions [25] and probabilistic energy based criteria have also
been successfully used for matrix crack predictions [26,27]. In
addition to these approaches, concept of damage mechanics has
been used [28,29]. Crack Opening Displacement (COD) based con-
cepts have also been looked at [30] and crack evolution has been
calculated using change in strain energy. Statistical strength based
models have also been used to predict crack density evolution
[31e36].

Most of the models described here are able to predict matrix
crack evolution for simple cross-ply laminates using some form of
strength based or energy based criterion and cannot be extended to
the more general and more relevant MD-laminates. In MD-
laminates, due to the presence of multiple off-axis plies oriented
at different angles to the loading direction, the matrix crack evo-
lution is also different in each ply. Few authors have attempted to
provide a framework for matrix crack evolution in MD-laminates
based on synergistic damage mechanics [19], energy based
approach complimented with analytical stress analysis [37,38], 2-D
Finite Element Analysis (FEA) with damage constitutive model [39]
and more recently, the micro-mechanics based damage model for
stiffness reduction with energy based damage evolution [40]. A
majority of the approaches described so far employ an energy
based criterion for matrix crack initiation and evolution. In-plane
uniaxial loading has been considered in most models described
here. Recently, crack evolution models under bi-axial loading have
been developed [41]. Though statistical strength based theories
have been promising in predicting the crack evolution in cross-ply
laminates [31e36], no attempt has been made to extend the same
to MD-laminates. In this work, a probabilistic strength based
framework for matrix crack density evolution and associated stiff-
ness reduction for a symmetric MD-laminate has been presented
using oblique coordinate system based stress analysis [36,42,43].
The corresponding stiffness degradation have also been modeled
and compared with the available experimental observations in the
literature.

2. Matrix crack evolution model

This section describes the methodology adopted to predict
matrix crack evolution in a symmetric MD-laminate under in-plane
loading. The salient concepts adopted in this study have been listed
below.

2.1. Geometry and co-ordinate system

A 2n ply symmetric MD-laminate has been considered in this
study. A typical kth ply in the MD-laminate has a thickness tk and
length L as depicted in Fig. 1(b). As mentioned in the earlier section,
matrix cracks develop along the fiber direction and the crack
spacing in any off-axis layer is defined as the distance between two 
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parallel cracks. Each interior ply has been divided into two halves as
shown in Fig. 1(b). The top most and the bottom most plies have
been grouped with their respective neighboring half plies while all
the interior half plies have been grouped with their corresponding
neighboring half plies. In addition, the central plies are grouped
together and have not been split into two halves (cf. Fig. 1(b)). Thus,
a total of (2n�2) groups of plies have been obtained for the MD-
laminate. Utilizing symmetry, the kth and (2n�1�k)th ply groups
are assembled as the kth sub-laminate as shown in Fig. 1(b). In
general, each sub-laminate will contain arbitrary [f/4]s type lay-up
sequence.

2.2. Stress analysis of sub-laminate

The global stresses in each sub-laminate has been estimated
using Classical Lamination Plate Theory (CLPT) from the global
applied stress, s. The volume bounded by intersecting planes
passing through two neighboring cracks in the adjacent plies of the
sub-laminate is chosen to represent the Representative Element
(RE) for stress analysis (cf. Fig. 2). The stress distribution in cracked
sub-laminate has been estimated using the shear-lag based meth-
odology outlined in Yokozeki et al. [42]. Analytical solutions have
been obtained by solving the governing equations using boundary
conditions given in (A.13) and (A.14) under applied in-plane loading
in oblique coordinate system. To begin with, it is assumed that the
laminate under consideration already has initial matrix cracks.
Typically, manufacturing induced defects such as voids exist in the
composite that result in matrix crack initiation sites [44,45]. Singh
et al. [19] have used an Initial Crack Spacing (ICS) of 50 times the
thickness of the laminate. In the present analysis, the ICS has been
assumed to coincide with the length of the laminate under
consideration. For shear-lag analysis, any [f/4]s sub-laminate is
mapped onto [q�/90�]s orientation using coordinate trans-
formations. 2l1 and 2l2 represent the crack spacing (reciprocal of
Fig. 2. Representative element for matrix crack evolution model. a) Representative
element [q�/90�]s, b) Co-ordinate system.
crack density) in q� and 90�, respectively in the oblique coordinate
system for easy handling of limits in (A.13) and (A.14) (cf. Fig. 2).
Crack densities in q� and 90� plies are given by 1/(2l1cosq) and 1/
(2l2cosq), respectively. In the oblique coordinate system, covariant
components for strain/displacement and contravariant compo-
nents for stress/force have been used for physically realistic anal-
ysis. The in-plane stresses have been assumed to be constant in the
thickness direction. The relation between in-plane displacements
in each ply (kth) is related to out-of-plane shear stresses at the
interface using shear-lag analysis. Appendix A outlines some of the
key derivations used in the present analysis [42].

It should be noted that multiple cracks will form in each ply of
the sub-laminate during loading. Thus, stress analysis has to be
carried out on an array of several RE's as the applied far field
loading increases. At higher crack densities, crack interaction ef-
fects could occur [43,46]. Additionally, shear lag analysis does not
consider the singularity in the stress fields at the crack tip. Since the
matrix cracks form instantly throughout the ply thickness and ex-
tends throughout the width of the laminate, the stress analysis is
limited to the bounded volume without explicitly accounting for
the crack tip. Physically, matrix cracks get arrested as they
encounter the neighboring ply triggering other damage modes
such as delamination. Since the aim of the current work is to
develop an analytical framework for matrix cracking in general
symmetric MD-laminates, other mechanisms have not been taken
into account. The basic assumption involved in shear lag analysis
and complexities of MD-laminate cracking are discussed in detail in
Ref. [46].

 

2.3. Material properties and Weibull parameters

[0/908]s, ½0=±704=01=2�s and ½0=±554=01=2�s layups with Fiberite/
HyE 9082Af material system (MAT-1) [7], [0/90]s and ½0=90=H45�s
layups with Glass roving impregnated with Epikote 828/NMA/
BDMA (100:60:1) epoxy-resin system (MAT-2) [8] have been used
in the present work. The material properties used in the simula-
tions are shown in Table 1. The Poisson's ratio n23 and shear
modulus G23 have been estimated using the following expressions
[47]:

n23 ¼
n12

�
1� E22n12

E11

�
1� n12

(1)

G23 ¼ E22
2ð1þ n23Þ

(2)

It has been observed that there exists a statistical variation in
the transverse strength of the ply [48]. In addition, non-uniform
crack spacing evolution has been observed during progressive
loading that signifies the variation in transverse strength at various
material elements (small ply volume on which strength properties
are assumed to be uniform) within each off-axis lamina. The
strength distribution typically follows a Weibull distribution
Table 1
Material properties for laminates used in the analysis.

Property Fiberite/HyE9082Af [7] Glass/Epikote 828 [8]

Ply Thickness, mm 0.14 0.5
E11(GPa) 44.7 46.0
E22(GPa) 12.7 13.0
G12(GPa) 5.8 5.0
n12 0.30 0.3
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[48e50], i.e., the probability of failure of uni-axially loadedmaterial
can be expressed as follows:

PðYtÞ ¼ 1� exp
�
�
�
Yt
b

�m�
(3)

where, b is the scale parameter, m is the shape parameter obtained
from experiments and Yt is the transverse strength of the lamina.

It has been observed that transverse strength variation esti-
mated from tensile tests conducted on 90� UD-laminates fail to
represent the ‘in-situ’ transverse strength distribution of the off-
axis lamina in constrained MD-laminates [51]. In other words,
transverse strength distribution of a particular off-axis ply in a MD-
laminate would depend on lamina thickness, material and neigh-
boring constraint ply thicknesses [11]. Such a phenomenon is
usually referred to as constraint effect and has been discussed
briefly in an earlier section. In order to address this phenomenon,
Weibull parameters (in-situ b and m) have been obtained from
fitting the experimental data of one ‘Master Curve’. The master
curve represents the crack density evolution data for a configura-
tion closely resembling that of the laminate (in terms of ply
thickness and constraint ply thicknesses) for which predictions
need to bemade. For example, in the present analysis, [0/908]s [7] is
considered as a master curve and used for estimation of Weibull
parameters. These Weibull parameters have then been used to
predict the crack density evolution in other laminate configurations
(e.g., ½0=±704=01=2�s) and compared with the experimental values.
As can be seen from this example, the constraint effect on the
[±704] laminae would be similar to that experienced by the [908]
laminae.

2.4. Compatibility of cracks for evolution

As discussed earlier, cracking in each ply of the sub-laminate
occurs in a random fashion depending on the transverse strength
assigned to each material element. For a general kth sub-laminate,
application of a certain load increment (ith load step) would
result in different crack spacings in the neighboring plies (ply-A and
ply-B in Fig. 3(a)). In order to estimate the crack spacing evolution
for the (iþ1)th load step, stress analysis needs to be conducted on a
series of RE's. The inconsistent crack spacings in adjacent plies of
the sub-laminate makes the selection of the RE's difficult. To this
Constraint Ply - 1

Pl

b

a

tk/2

tk/2

Sub-laminate group

ACS, Ply-A

B1 BxB2

ACS – Average Crack Spacing

Step -1

Constraint Ply - 2

Fig. 3. Representation of matrix crack for stress analysis. a) RE se
end, the following procedure has been used to determine the crack
spacings within a sub-laminate for the next load increment:

1. Average Crack Spacing (ACS) in ply-A and the actual crack
spacings in ply-B (B1, B2 … .Bx) from the ith load step yield a set
of RE's. Stress analysis is conducted on these RE's to evaluate the
crack spacings in ply-B for the (iþ1)th load step.

2. ACS of ply-B and the actual crack spacings in ply-A (A1,A2… Ay)
from the ith load step yield another set of RE's. Stress analysis is
conducted on these RE's to evaluate the crack spacings in ply-A
for the (iþ1)th load step.

Thus, the crack spacings in ply-A and ply-B for the (iþ1)th load
step are determined considering the constraint offered by the
neighboring plies within the sub-laminate. In addition, compati-
bility across sub-laminates also needs to be established at the end
of (iþ1)th load step. In other words, each ply being shared between
two sub-laminates would have non-identical crack spacings. Since
each sub-laminate would in general have dissimilar stacking se-
quences, each half-ply would experience different constraint from
its neighboring ply resulting in dissimilar stress distributions;
consequently, non-identical crack spacings occur in each half-ply
pairs (cf. Fig. 3(b)). Physically, the crack distributions need to be
identical in the two-halves of the ply. Thus, at the end of every load
increment, the higher average crack density (or, lower average
crack spacing) amongst the two halves of the same ply has been
assumed to be the crack density of the ply under consideration.
Such an approach eliminates the non compatibility arising from
sub-laminate type analysis in addition to simulating the conser-
vative constraint effect of the two neighboring plies.

 

2.5. Stiffness degradation due to matrix cracking

The mathematical description of stiffness estimation for the
cracked laminate has been presented in Appendix B based on [52].
The overall effective compliance matrix S can been evaluated from
the overall effective stiffness matrix outlined in Appendix B. The
stiffness properties of the cracked laminate are evaluated using:
Exx ¼ 1=S11, Eyy ¼ 1=S22, nxy ¼ �S12=S11, Gxy ¼ 1=S33. The un-
cracked laminate properties are expressed with a subscript
0 (e.g., Exx0).
y -k

)

)

Ply -A
Ply -B

ACS, Ply-B

A1 A2 Ay

Step -2

Lower ACS from two halves

lection for stress analysis b) Compatibility of matrix cracks.  
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3. Numerical implementation of matrix crack evolution
model

Numerical implementation of the matrix cracking evolution in a
symmetric MD-laminate has been outlined below:

1. A 2n ply symmetric MD-laminate with thickness t and length L
subjected to a uniform in-plane external stress field s has been
chosen for the present analysis (cf. Fig. 1(a)). Orthotropic ma-
terial properties have been assumed for each lamina. An ICS is
chosen to be consistent with the length of the specimen for all
the plies in the MD-laminate.

2. Hashin's strength criterion under transverse and shear stresses
has been chosen as the failure criterion in the present model.
The tensile matrix failure mode is given by:

s222

Y2
t
þ t212

S2
> ¼ 0 (4)
Fig. 4. Flowchart of the proposed methodology for matrix crack evolution in a sym-
metric MD-laminate.

1.4
Transverse (Yt) and shear strengths (S) are assumed to follow
Weibull statistical distribution as given in equation (3). Each lamina
is divided into N number of material elements and assigned a
random strength at the start of the analysis. The cracking of the
lamina at a material element is said to occur when equation (4) is
met. If not, loading is increased.

3. The MD-laminate has been loaded from zero in increments until
saturation crack density has been reached or to the described
stress level of interest. At each increment, average global applied
stresses in each sub-laminate has been estimated using CLPT.

4. Crack spacing in each lamina has been chosen as per the pre-
vious section, to represent the cracked MD-laminate configu-
ration. Stress analysis of the cracked sub-laminate RE is
conducted using shear-lag approach. The failure criterion has
been checked at every material element using the width aver-
aged stresses and the Weibull strength parameters. The above
procedure has been employed for the remaining RE's in the sub-
laminates to check for further cracking.

5. Using the above steps, the statistical variation of crack densities
in the each ply and the average crack densities have been esti-
mated for the particular load step.

6. Before applying the next load step, the compatibility of crack
spacing is checked.

The above methodology is shown Fig. 4.
0.8
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ity

, 1
/m

m

Experiment, Varna et al. [7]
Estimation, β =1100, m=3.25
4. Results and discussion

The analytical framework for probabilistic strength based ma-
trix crack evolution has been implemented in commercial software
MATHEMATICA (version 9). Based on the algorithm discussed in the
earlier section, predictions for matrix crack evolution and corre-
sponding material property degradation have been carried out.
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Fig. 5. Determination of fitting parameter for [0/908]s [7] laminate. 
4.1. Weibull parameters estimation from master curve

Convergence studies were carried out to choose the number of
material elements per lamina (N) for transverse strength distribu-
tion and the maximum stress increment for matrix crack evolution.
It was found that 100,000 material elements and 1 MPa stress in-
crements were sufficient to yield converged solutions. Simulations
were also carried out using gage length and half of gage length as
ICS to study their sensitivity on crack evolution predictions. The
choice of these two ICS did not alter the crack evolution predictions.
Thus, the ICS equivalent to length of the specimens have been
considered for further study. These converged parameters viz.,
N¼ 100,000, 1 MPa stress increments and ICS¼ length of specimen
have been used for all the investigations reported in this work.

It has been observed from the simulations that the shape
parameter m controls the rate of crack evolution and the scale
parameter b decides the crack initiation strain. At the start of the
analysis, an arbitrary b value was chosen and crack density curves
were simulated for various values ofm. All the crack density curves
were overlaid with experimental data and the optimal m value
corresponding to the highest correlation coefficient was chosen as
the material parameter m. Upon fixing the m value, the optimal b
was estimated using trial and error such that the simulated crack
initiation point coincided with experimental point. However, it is
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Fig. 6. Determination of fitting parameter for [0/90]s [8] laminate.
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Fig. 7. Comparison of crack density evolution in ½0=±704=01=2 �s [7] laminate with
simulation.

Fig. 8. Comparison of crack density evolution in
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recognized that further studies may be needed to establish an op-
timummethodology to estimate theWeibull parameters. Fig. 5 and
Fig. 6 depict the determination of Weibull parameters for two
differentmaterials by fitting the respectivemaster curves for layups
[0/908]s [7] and [0/90]s [8] laminates, respectively. These calibrated
values for Weibull parameters have then been used for prediction
of crack density evolution for other layups. A note about Weibull
shape parameter m: m for autoclave cured carbon fiber composite
was experimentally estimated to be 4e6 [49]. In the current study,
the MAT-1 considered was produced by autoclave process and
MAT-2 was produced by wet layup. MAT-2 may have more vari-
ability in the strength as compared to the more controlled auto-
clave process. The calibrated m values are in the range of reported
values. However, the strength indicator b parameter was very high,
z10 times that of transverse strength observed from experiments.
The effect of thickness of the ply and neighboring ply constraint on
strength are smeared into a pseudo strength parameter b in this
study.

4.2. Crack density evolution

The predicted crack density evolution values for [þq�] and [�q�]
plies of ½0=±704=01=2�s and ½0=±554=01=2�s are shown in Fig. 7 and
Fig. 8. The experimental observations on crack evolution on such
laminates were carried out by Varna et al. [7]. The average crack
densities have been measured at each [þq�] and [�q�] with 4
average crack density values reported at each strain level. The
variation in these reported (experimental) average crack densities
is more than 100% at some strain levels. Thus, it can be inferred that
experimental data has a large amount of scatter in addition to
different damage levels being present in [þq�] and [�q�] plies.
Predictions by Cortes et al. [37], Barbero et al. [38] and Singh et al.
[53] have also been overlaid. As can be seen from the figures, good
correlation exists between the predictions and experimental re-
sults. It should be noted that similar to the present approach where
the in-situ strength of off-axis plies are evaluated via calibration
using a master curve, Singh et al. [53] use a ‘fit’ parameter from a
reference configuration. Singh et al.’s approach also requires the
estimation of COD and Crack Sliding Displacements (CSD) using FE
analysis. These are introduced to evaluate the work needed for the
next crack formation. Varna et al. [7] has shown that the average
COD at a particular loading has a large scatter. Cortes et al. [37] has
assumed equal damage in [þq�] and [�q�] plies. As can be observed
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from Fig. 7, crack initiation strains predicted by the current model is
less than other models and experimental data. The variations in the
ply to ply crack evolution has been captured by the current
approach. However, the crack evolution in [þq�] ply adjacent to [0�]
ply shows higher cracking density than [�q�] ply which is con-
strained by [01/2]. The [0/þq] sub-laminate share more load due to
higher stiffness than [�q/01/2] sub-laminate from equal strain
shared from laminate loading. Overall, it can be concluded that the
current approach is yielding a fairly good match with experimental
matrix crack density data. Notable observations from the experi-
mental crack density of matrix crack evolution in ½0=±554=01=2�s [7]
laminate from 2 different tests were reported to fall on 2 different
lines with a wide scatter and the authors had mentioned no clear
reason for the same.

Experimental observations on matrix crack evolution for [90�]
ply in ½0=90=H45�s type QI-laminate was carried out by Tong et al.
[8]. Crack density predictions for ½0=90=H45�s are shown in Fig. 9.
The crack density evolution in [90�] ply from simulation using
energy approach and 3D-FEM approach [53] have also been over-
laid for comparison. Good correlation between experimental and
simulation are observed. Again, the crack initiation strains pre-
dicted were lesser than experiments. At higher crack densities, the
observed QI-laminate behavior was found to deviate from the
experimental observations. This may be due to the less constrained
contribution from [H45] laminate. Singh et al. [53] have pointed
out that the actual initial part of the crack evolution curve is curved
and shallow rather than starting from a definite initiation point as
reported in simulations and experiments. It can be conjectured that
the current proposed method is able to capture this phenomenon.
Additionally, getting an accurate matrix crack density evolution
profile for very small strains would be extremely tedious to conduct
experimentally.

The current method assumes a calibrated pseudo transverse
strength that smears multiple effects of ply size, constrained effect
and the statistical variation. Such an approach can be applied only
for laminates with similar to the reference/calibration laminates in
terms of constraining plies. The in-plane shear stress induced
matrix cracking under static and fatigue loading were reported
[7,54]. The in-plane shear strength effect has been ignored in the
current simulation. The biggest advantage of the current approach
is that being an analytical formulation, predictions can be easily
made for all symmetric MD-laminates by simply choosing an
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Fig. 9. Comparison for crack density evolution in ½0=90=H45�s [8] laminate with
simulation.

Fig. 11. Normalized Poisson's ratio for ½0=±704=01=2�s laminate subjected to uniaxial
tensile loading.
appropriate reference configuration. Other approaches such as [53]
need careful meshing for various crack configurations to estimate
the COD and CSD. In addition, the current approach does not as-
sume equal damage state for [þq�] and [�q�] plies unlike [37,38,53].
The cross-ply laminate containing different 90 ply thickness has
been simulated usingWeibull parameters estimated from single [0/
90] cross ply laminate and compared with the available literature
[11]. However, the matrix crack initiation were not accurately
captured by the current model. The in-situWeibull parameters may
be suitable for only the plies of similar thickness in master and the
laminate under consideration.
4.3. Mechanical property degradation

As mentioned in the earlier sections, matrix crack density evo-
lution in MD-laminates are accompanied by a degradation in me-
chanical properties (axial Young's modulus Exx, axial Poisson's ratio
nxy) of the laminate. Varna et al. [7] have reported degraded Exx of
the laminate for ½0=±704=01=2�s and ½0=±554=01=2�s configurations 
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that have been used earlier for crack density evolution. Using the
analytical approach discussed in Appendix B, Exx and nxy degrada-
tion for ½0=±704=01=2�s laminate has been plotted in Figs. 10 and 11.
Experimental data by Varna et al. [7] and predictions from Singh
et al. [19] and Cortes et al. [37] have also been overlaid with the
current model predictions. A close agreement with experiments is
observed for normalized Exx and nxy properties of the MD-laminate.

Exx and nxy degradation for ½0=±554=01=2�s laminate has been
plotted in Figs. 12 and 13. Experimental data [7] and predictions
from Singh et al. [19] and Cortes et al. [37] have also been overlaid
with the current model predictions. The degradation trend
observed in experiments have been accurately captured by the
current model. However, an error of approximately 10% for Exx
value and 5% for nxy from the experiments were observed. As noted
above, large variation in crack densities were seen from 2 different
experiments. Wide scatter in such values are expected when large
number of experimental data are available for comparison.
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Fig. 13. Normalized Poisson's ratio for ½0=±554=01=2�s laminate subjected to uniaxial
tensile loading.
Experimental observations on matrix crack evolution and the
associated stiffness reduction for ½0=90=H45�s type QI-laminate
was carried out by Tong et al. [8]. The normalized axial Young's
modulus and Poisson's ratio of ½0=90=H45�s type laminates pre-
dicted using the above methodology under in-plane tensile loading
are shown in Fig. 14 and Fig. 15. The normalized property degra-
dation trend for Exx and nxy are closely matching with the experi-
mental results. Maximum error in prediction of 7% in normalized
Exx value and 6% in nxy near CDS has been seen. These observations
are in line with the crack densities prediction at the higher strain
levels, wherein slightly higher crack density values were predicted
due to less constraint effect from [H45] layer adjacent to [90�] ply
in QI-laminate as compared to more constrained master cross-ply
laminate. The property degradations predicted using SDM by
Singh et al. [19] and the results are superimposed for comparison.
In order to account for partial cracks in plies adjacent to [0�], a
parameter ‘a’ (relative density factor) was introduced as a ratio of
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actual surface area of partial cracks to surface area for full cracks by
Singh et al. [19].

As seen from the crack evolution curves, the crack evolution in
[þq�] ply adjacent to [0�] ply shows higher crack density than [�q�]
ply. The values for crack density do not match the experimental
crack density values. The crack density evolution in [90�] ply in QI-
laminate show a slightly higher value than experiments due to
slight variation in the constraint effect compared to the master
laminate. The final stiffness trends predicted closely match the
experimental values. However, a maximum error of less than 10% is
observed due to slightly higher values of crack densities predicted
by the current methodology. It is also noted that all the values
predicted by the current model are conservative (higher degrada-
tion than experimental), while other models seems to underesti-
mate such trend at some points.
5. Conclusions

An analytical frame work for matrix crack evolution in sym-
metric MD-laminates subjected to any in-plane static loading has
been proposed. A non-deterministic approach to matrix crack
evolution has been adopted by considering a statistical distribution
of transverse strength. The statistical parameters for Weibull
strength distribution has been estimated using a ‘master’ laminate.
The ply-by-ply variations in crack density evolution are predicted.
The stiffness properties are also estimated using the above crack
density values and compared with the available literature values.
The stiffness degradation trend was accurately simulated by the
current model and maximum error of less than 10% was observed.
The values estimated from the current models are conservative as
compared to the other models available in the literature. This
method can come in handy for design engineers to perform quick
comparisons for different material systems with minimum number
of calibration experiments.

Appendix A. Stress analysis of cracked MD-laminate

The coordinate used for the following analysis is shown in
Fig. 2(b). Orthogonal coordinate system has been represented by
x� y� z and x�y�z represents the oblique coordinate system. The
equilibrium equations for (kth) ply (indicated by indices 1 and 2) can
be expressed in the through-the-thickness integrated form using
stress-strain relation, strain displacement relation and the associ-
ated shear lag assumptions. The equilibrium equations in-terms of
displacements can be expressed as follows:

The matrix [T] transforms from orthogonal coordinate system to
oblique coordinate system:

½T � ¼

26666664
cos2q sin2

q 0 0 0 cosqsinq
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 sinq cosq 0
0 2sinq 0 0 0 cosq

37777775 (A.1)

The stresses and strains in the orthogonal coordinate system can
be transformed to oblique coordinate system as follows:�
εij
� ¼ ½T ��εij� (A.2)h

sij
i
¼ ½T ��T�

sij
�

(A.3)

The relation between contra-variant stress components and co-
variant strain components in the oblique coordinate system can be
written as follows:
sij ¼ Qijkl
�
εkl � ε

0
kl

	
(A.4)

where, ε0 represents the initial strain.
The relation between strains and displacements can be written

as follows:

εij ¼
1
2


ui;j þ uj;i

�
(A.5)

where 4th order contra-variant stiffness components of Qijkl can be
obtained using the following relation:

h
Qijkl

i
¼ ½T��T

h
Q
i
½T ��1 (A.6)

where Q denotes the stiffness matrix in the orthogonal coordinate
system.

The in-plane stresses have been assumed to be constant in the
thickness direction. The relation between in-plane displacements
in each ply (k) is related to out-of-plane shear stresses at the
interface using shear-lag analysis as follows [42]:

"
t
ð1;2Þ
xz

t
ð1;2Þ
yz

#
¼
�

secq 0
�tanq 1
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0 1

��1
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≡½H �
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vð1Þ � vð2Þ

#
(A.7)

where,
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(A.8)

Using the equation (A.7), equilibrium equation can be expressed
in terms of in-plane displacements using stress-strain and strain
displacement relation:

D
ð1Þ
1 uð1Þ þ D

ð1Þ
2 vð1Þ ¼ H11

�
uð1Þ � uð2Þ

	
þ H12

�
vð1Þ � vð2Þ

	
;

D
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2 uð1Þ þ D
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�
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þ H22
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(A.9)

where,
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(A.10)

In order to solve equation (A.9), the following displacement
function has been assumed [42]:  
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where, εcx; ε
c
y and gcxy are unknown constants. Substituting equation

(A.11) into (A.9), the solutions may be obtained as an eigenvalue
problem. The two positive real set of characteristic values li and ki
for i¼ (1,2) and the corresponding eigen vectors can be obtained by
using the material properties of the given sub-laminate. Thus, the
displacements can be expressed in the following form:
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The constants C1;C2;D1;D2; ε
c
x; ε

c
y and gcxy are obtained by

substituting the displacement equation in strainedisplacement
equation, stress-strain relation with the appropriate averaged
boundary conditions along the crack plane as follows:

x ¼ ±l2;

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:
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y ¼ ±l1;
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where, sxx; syy; txy are the applied far-field stress on the sub-
laminate in oblique coordinate system. Once the constants are
known, using equation (A.4), (A.5) and (A.12), the stresses in the
laminate can be obtained.

 

Appendix B. Stiffness predictions of cracked MD-laminate

Once the displacements in the cracked ½qm=90n�s sub-laminate
equation (A.12) is estimated, the effective strains in the un-
cracked boundary can be expressed as:

eεij ¼ 1
V

Z
s

uinjds (B.1)

The effective in-plane strains can be expressed as [43]:
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(B.2)

The overall stiffness properties of a given ½qm=90n�s sublaminate
can be obtained by applying unit in-plane stresses individually as
three cases:

aÞ½sxx syy txy �T ¼ ½1 0 0 �T
bÞ½ sxx syy txy �T ¼ ½0 1 0 �T
cÞ½sxx syy txy �T ¼ ½0 0 1 �T

(B.3)

The three effective in-plane strains are obtained aseεmxx;eεmyy; egm
xy; ðm ¼ a; b; cÞ. The effective compliance matrix in the

oblique coordinate system can be expressed as follows:

heSijkl i ¼
2664eε

ðaÞ
x eεðbÞx eεðcÞxeεðaÞy eεðbÞy eεðcÞyenðaÞxy enðbÞxy enðcÞxy

3775 (B.4)
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The effective compliance matrix in orthogonal coordinate sys-
tem can be estimated from coordinate transformation and the
effective stiffness matrix can also be estimated from the reciprocal
of compliance matrix. Then, the overall stiffness properties of the
MD-laminate can be obtained using the sub-laminate properties
and classical lamination theory as follows:

h
Q
i
¼
Pn�1

k¼1 t
ðkÞQ ðkÞPn�1

k¼1 tðkÞ
(B.5)
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