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Fuzzy Support Vector Machines
Chun-Fu Lin and Sheng-De Wang

Abstract—A support vector machine (SVM) learns the decision will be derived in Section Ill. Three experiments are presented

surface from two distinct classes of the input points. In many appli- - in Section IV. Some concluding remarks are given in Section V.
cations, each input point may not be fully assigned to one of these

two classes. In this paper, we apply a fuzzy membership to each
input point and reformulate the SVMs such that different input Il. SVMs

points can make different constributions to the learning of deci- ; . : . .
sion surface. We call the proposed method fuzzy SVMs (FSVMs). In t_hls sect_lc_)n \{ve briefly review the basis of the theory of
SVM in classification problems [2]-[4].

Index Terms—Classification, fuzzy membership, quadratic pro- Suppose we are given a sebf labeled training points
gramming, support vector machines (SVMs).

(Y1, X1)s -+ -5 (W2, X2). 1)
|. INTRODUCTION
HE theory of support vector machines (SVMs) is a nefach training poink; € R belongs to either of two classes
classification technique and has drawn much attention and is givenalabe}; € {—1,1}fori =1,...,l. In most cases,

this topic in recent years [1]-[5]. The theory of SVM is based difie searching of a suitable hyperplane in an input space is too
the idea of structural risk minimization (SRM) [3]. In many ap¥estrictive to be of practical use. A solution to this situation is
plications, SVM has been shown to provide higher performangg&pping the input space into a higher dimension feature space
than traditional learning machines [1] and has been introducad searching the optimal hyperplane in this feature space. Let
as powerful tools for solving classification problems. z = (x) denote the corresponding feature space vector with a

An SVM first maps the input points into a high-dimensionamappingy from R" to a feature spacg. We wish to find the
feature space and finds a separating hyperplane that maximiaggerplane
the margin between two classes in this space. Maximizing the
margin is a quadratic programming (QP) problem and can be w-z+b=0 (2)
solved from its dual problem by introducing Lagrangian multi-
pliers. Without any knowledge of the mapping, the SVM findgefined by the paifw, ), such that we can separate the point
the optimal hyperplane by using the dot product functions & according to the function
feature space that are calleernels The solution of the optimal
hyperplane can be written as a combination of a few input points . 1, ify, =1
that are callecsupport vectors f(xi) = sign(w -2, +b) = { —1, if zz =-1

There are more and more applications using the SVM tech-
nigues. However, in many applications, some input points m@herew € Z andb € R.
not be exactly assigned to one of these two classes. Some angore precisely, the sef is said to bdinearly separablef
more important to be fully assinged to one class so that SVidere existw, b) such that the inequalities
can seperate these points more correctly. Some data points cor-
rupted by noises are less meaningful and the machine should (W-2z; +b)
better to discard them. SVM lacks this kind of ability. {

In this paper, we apply a fuzzy membership to each input
point of SVM and reformulate SVM into fuzzy SVM (FSVM) are valid for all elements of the sét For the linearly sepa-

s:uch that differeljt input pgints can make different constribgé1 le setS, we can find a unique optimal hyperplane for which

tions to the Iearnlng.of deC|s_|on surface. The prpposed met.hm margin between the projections of the training points of two
.enhances'the SVM |n.redu.cmg the effec't of.outh(.ars aqd NOISEiferent classes is maximized. If the s¢ts not linearly sepa-

in data points. FSVM is suitable for applications in which datF’able, classification violations must be allowed in the SVM for-

points have unmodeled gharactgrlstlcs. ) ._mulation. To deal with data that are not linearly separable, the
The rest of this paper is organized as follows. A brief revu’\a/E

®3)

he th f il be d ibedi X h revious analysis can be generalized by introducing some non-
of the theory of SVM will be described in Section Il. The FSV egative variableg; > 0 such that (4) is modified to
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The optimal hyperplane problem is then regraded as the soSince we do not have any knowledge@fthe computation
lution to the problem of problem (7) and (11) is impossible. There is a good property
of SVM that it is not necessary to know abauitWe just only
need a functiork(( -, - ) calledkernelthat can compute the dot

§
o]
minimize ;W - W + C Z & product of the data points in feature spagethat is
i=1
subject toy;(w-2z;, +0)>1-¢, i=1,...,1 zi -2, = o(x;) - p(x;) = K(x;,%;). (12)

Functions that satisfy the Mercer’s theorem can be used as dot-
whereC is a constant. The paramet€rcan be regarded as aproducts and thus can be used as kernels. We can use the poly-
regularization parameter. This is the only free parameter in themial kernel of degred
SVM formulation. Tuning this parameter can make balance be-
tween margin maximization and classification violation. Detail K(x;,x;) = (1+%;-%x;)¢ (13)
discussions can be found in [4], [6].

Searching the optimal hyperplane in (6) is a QP problerif) consturct a SVM classifier.
which can be solved by constructing a Lagrangian and trans-Thus the nonlinear separating hyperplane can be found as the
formed into the dual solution of

4 4

maximize W(«) = Z o — Z

i=1 i=1j

l o
. 1
G YYZi - B maximize W (o) = E @ =3 E E ooy K (X, %)
i=1

i=1 j=1

DO | =

1
i

l
subject to Y yi; =0 0< <C, i=1,...,1 (7) subject to Y wi; =0 0<0; <C, i=1,...,1 (14)

i=1 i=1
wherea = (au, .. ., 1) is the vector of nonnegative Lagrangé?Nd the decision function is
multipliers associated with the constraints (5). !
The Kuhn—Tucker theorem plays an important role in thef(x) = sign(w-z+b) = sign Z%yiK(Xi,X) +b] (15)

theory of SVM. According to this theorem, the solutian of =1
problem (7) satisfies

@Z(yZ(V_VZZ—i-B)—].—‘rgZ)IO, LI].,,Z (8) . FSVMs

(C—a)& =0, i=1,...,1 9) In this section, we make a detail description about the idea

and formulations of FSVMs.

From this equality it comes that the only nonzero valagin
(8) are those for which the constraints (5) are satisfied with the Fuzzy Property of Input
equality sign. The point; corresponding witli; > Ois called  SVM is a powerful tool for solving classification problems
support vectorBut there are two types of support vectors in §1], but there are still some limitataions of this theory. From the
nonseparable case. In the céise a; < C, the corresponding training set (1) and formulations discussed above, each training
support vectorx; satisfies the equalitieg;(w - z; +-b) = 1 point belongs to either one class or the other. For each class, we
and¢; = 0. In the casey; = C, the corresponding; is not can easily check that all training points of this class are treated
null and the corresponding support vectgrdoes not satisfy uniformly in the theory of SVM.
(4). We refer to such support vectors as errors. The point  In many real-world applications, the effects of the training
corresponding with; = 0 is classified correctly and clearly points are different. It is often that some training points are more
away the decision margin. - important than others in the classificaiton problem. We would
To construct the optimal hyperplame- z + b, it follows that  require that the meaningful training points must be classified
correctly and would not care about some training points like
! noises whether or not they are misclassified.
W= Z QYiZi (10) That is, each training point no more exactly belongs to one
=1 of the two classes. It may 90% belong to one class and 10%
be meaningless, and it may 20% belong to one class and 80%

and the scalab can be determined from the Kuhn—Tucker COMGe meaningless. In other words, there is a fuzzy membership

ditions (8). . ) - ) ;
- L . < s; < 1 associated with each trainging poirf. This
The decision function is generalized from (3) and (10) Su(ﬁ]zzy membership; can be regarded as the attitude of the cor-
that ‘

responding training point toward one class in the classification
problem and the valu@ — s;) can be regarded as the attitude of
) . (11) meaningless. We extend the concept of SVM with fuzzy mem-

i
x) = sign(w - z + b) = sign ;Y2 -5+ b
1(x) en ) & <Z Y bership and make it an FSVM.

=1
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B. Reformulate SVM and the Kuhn—Tucker conditions are defined as

Suppose we are given a sebf labeled training points with e £\ _ L
associated fuzzy membership @(y(W-2i +£0) =14&) =0, i=1,...1 (23

(5;C —a)& =0, i=1,....1. (24)

(X1, 81), - (01 X0, 50)- (16) The pointx; with the corresponding; > 0 is called a sup-
port vector. There are also two types of support vectors. The
Each training poink; € R isgivenalabel; € {—1,1}anda one with corresponding < &; < s;C lies on the margin of the
fuzzy membership < s5; < 1with< =1,...,1, and sufficient hyperplane. The one with corresponding= s;C is misclassi-
smallo > 0. Letz = ¢(x) denote the corresponding featurgied. An important difference between SVM and FSVM is that
space vector with a mappingfrom R to a feature spac.  the points with the same value af may indicate a different

Since the fuzzy membership is the attitude of the corre- type of support vectors in FSVM due to the factr
sponding pointx; toward one class and the paramefgis a

measure of error in the SVM, the tesyt; is a measure of error C. Dependence on the Fuzzy Membership
with different weighting. The optimal hyperplane problem is The only free paramete® in SVM controls the tradeoff be-
then regraded as the solution to tween the maximization of margin and the amount of misclassi-
fications. A largeiC makes the training of SVM less misclassi-
fications and narrower margin. The decreas€'ahakes SVM
ignore more training points and get wider margin.
In FSVM, we can set” to be a sufficient large value. It is
the same as SVM that the system will get narrower margin and
& =20, i=1,...,1 (17)  allow less miscalssifications if we set a}l = 1. With different
value ofs;, we can control the tradeoff of the respective training
whereC is a constant. It is noted that a smallgrreduces the pointx; in the system. A smaller value ef makes the corre-
effect of the paramete; in problem (17) such that the corre-sponding poini; less important in the training.

l
o1
minimize §W -w+ C E s:&;
=1

subject toy;(w -z, +0) >1-¢&, i=1,...,1

sponding poink; is treated as less important. There is only one free parameter in SVM while the number of
To solve this optimization problem we construct théree parametersin FSVM is equivalent to the number of training
Lagrangian points.
L(w,b,€,a, B) D. Generating the Fuzzy Memberships
1 l To choose the appropriate fuzzy memberships in a given
=5wWw + CZ s:& problem is easy. First, the lower bound of fuzzy memberships
i=1 must be defined, and second, we need to select the main

l l property of data set and make connection between this property
—> ai(yi(w -z +0)— 1+ &) - >_Bi& (18) and fuzzy memberships.
i=1 i=1 Consider that we want to conduct the sequential learning
) ) problem. First, we choose > 0 as the lower bound of fuzzy
and find the saddle point ak(w, b, ¢, «, 5). The parameters memperships. Second, we identify that the time is the main
must satisfy the following conditions: property of this kind of problem and make fuzzy membership
s; be a function of time;

l
OL(w,b,§, o, 3
% =w— > aiyizi =0 19) si = f(t:) (25)
=1
OL(w,b,&, o, B) ! wheret; < --- < # is the time the point arrived in the system.
— a Z oy, =0 (20)  We make the last point; be the mostimportant and choose=
=1 f(t) = 1, and make the first poirt; be the leastimportant and
OL(w,b.& a0 ) chooses; = f(t,) = . If we want to make fuzzy membership
— > =5,C—a; — f; =0. (22) > / g
9&; be a linear function of the time, we can select
Apply these conditions into the Lagrangian (18), the problem si = f(t;) = at; + . (26)

(17) can be transformed into ) N
By applying the boundary conditions, we can get

l l l
.. 1 1-— g tIO' — tl
maximize W(«a) = ; @i =5 ; ; ooy K (X4, %5) si=f(t;) = r— t; + r—— 27)
l If we want to make fuzzy membership be a quadric function of
subject to Y i =0 0<a; <50, i=1,...,1 the time, we can select

=1

(22) si = f(t:) = at; = 0)? +c. (28)
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Fig. 1. The result of SVM learning for data with time property.

By applying the boundary conditions, we can get Fig. 1 shows the result of the SVM and Fig. 2 shows the result
of FSVM by setting

o 2
si= f(t) = (1 o) <; = 2) +o 29)

ti—t\"
si=f(t:) =(1—0) <—1> +o. (32)
ty— 11
IV. EXPERIMENTS The numbers with underline are grouped as one class and the

There are many applications that can be fitted by FSVM sinf¢mbers without underline are grouped as the other class. The
FSVM is an extension of SVM. In this section, we will introducé’ame of the number indicates the arrival sequence in the same

three examples to see the benefits of FSVM. interval. The smaller numbered data is the older one. We can
easily check that the FSVM classifies the last ten points with
A. Data With Time Property high accuracy while the SVM does not.

Sequential learning and inference methods are importantén
many applications involving real-time signal processing [7]. For’
example, we would like to have a learning machine such that thelhere may be some applications that we just want to focus
points from recent past is given more weighting than the poir®® the accuracy of classifying one class. For example, given
far back in the past. For this purpose, we can select the fuZpoint, if the machine says 1, it means that the point belongs
membership as a function of the time that the point generaté@dthis class with very high accuracy, but if the machine says
and this kind of problem can be easily implemented by FSVM:1, it may belongs to this class with lower accuracy or really

Two Classes With Different Weighting

Suppose we are given a sequence of training points belongs to another class. For this purpose, we can select the
fuzzy membership as a function of respective class.
(1, %1, 51, 81)s -+ -5 (g1, X1, 53, 1) (30) Suppose we are given a sequence of training points
wheret; < ... < t; is the time the point arrived in the system. (y1,%1,51)s -, (y1, X1, 51)- (33)

Let fuzzy membership; be a function of time;
Let fuzzy membershipg; be a function of classg;

S; = f(tz) (31)

suchthats; = o < --- < 5, = 1.

sy ifyi=1,
%= {3_, if y; = —1. (34)
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Fig. 2. The result of FSVM learning for data with time property.

Fig. 3 shows the result of the SVM and Fig. 4 shows the residenote the mean of classl asx, and the mean of classl

of FSVM by setting asx_. Let the radius of class-1
1 ity =1 ry = max |Xy —X; (37)
5= {0.1, if y; = —1. (35) x;:y=1

The pointx; with y; = 1 is indicated as cross, and the paigt and the radius of class1

with ¢, = —1isindicated as square. In Fig. 3, the SVM finds the

optimal hyperplane with errors appearing in each class. In Fig. 4, r_ = max |X_— —X;| (38)
we apply different fuzzy memberships to different classes, the beiy=—1}

FSVM finds the optimal hyperplane with errors appearing on

| . . .
in one class. We can easily check that the FSVM classify tt'}r/é’t fuzzy membership; be a function of the mean and radius

class of cross with high accuracy and the class of square V\fﬂfneaCh class
low accuracy, while the SVM does not. ,
_ 1l =xl/(rp +6) ify=1
. STk — x|/ 46), fy=—1 9
C. Use Class Center to Reduce the Effects of Outliers IR o

Many research results have shown that the SVM is very sepneres > 0 is used to avoid the case = 0.

sitive to noises and outliners [8], [9]. The FSVM can also apply Fig. 5 shows the result of the SVM and Fig. 6 shows the result
to reduce to effects of outliers. We propose a model by settigg syvm. The pointx; with »; = 1 is indicated as cross, and
the fuzzy membership as a function of the distance between {hg pointx; with 1; = ;1 is indicated as square. In Fig. 5, the
point and its class center. This setting of the membership coW¢v finds the optimal hyperplane with the effect of outliers,
not be the best way to solve the problem of outliers. We just prgy, example, a square at 8.5,6.6) and a cross at (3-6.2). In
pose away to solve this problem. It may be better to choose a ¢fy, 6, the distance of the above two outliers to its corresponding
ferent model of fuzzy membership function in different training,ean is equal to the radius. Since the fuzzy membership is a
set. _ o _ function of the mean and radius of each class, these two points
Suppose we are given a sequence of training points are regarded as less important in FSVM training such that there
is a big difference between the hyperplanes found by SVM and
(Y1, %1, 81), -« -, (o, X1, 80)- (36) FSVM.
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Fig. 4. The result of FSVM learning for data sets with different weighting.
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V. CONCLUSION

In this paper, we proposed the FSVM that imposes a fuzzy
membership to each input point such that different input points
can make different constributions to the learning of decision sur-
face. By setting different types of fuzzy membership, we can
easily apply FSVM to solve different kinds of problems. This
extends the application horizon of the SVM.

There remains some future work to be done. One is to select a
proper fuzzy membership function to a problem. The goal is to
automatically or adaptively determine a suitable model of fuzzy
membership function that can reduce the effect of noises and
outliers for a class of problems.
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