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In mammals, intracellular levels of cholesterol and fatty acids are controlled through a feed-
back regulatory system mediated by a family of transcription factors called sterol regulatory
element-binding proteins (SREBPs). SREBPs are synthesized as inactive precursors bound to
membranes of the endoplasmic reticulum. When cells are deprived of cholesterol and fatty
acids, NH2-terminal fragments of SREBPs become proteolytically released from membranes
and migrate to the nucleus to activate transcription of genes required for lipid synthesis and
uptake. Conversely, lipid repletion inhibits proteolytic processing of SREBPs and thereby sup-
presses lipid accumulation. We review here studies in cultured cells that reveal the mechan-
ism for regulation of SREBP proteolytic activation, and those in animal models in which
SREBP proteolysis has been either activated or inhibited to show the essential role of
SREBPs in regulating hepatic lipid homeostasis.

REGULATION OF CHOLESTEROL AND
FATTY ACID SYNTHESIS

Cholesterol and fatty acids are important
building blocks for animal cell membranes

and their synthesis is essential for life. However,
overproduction of cholesterol and fatty acids can
be toxic to cells as well as to the whole animal,
which evokes the need for regulatory mecha-
nisms that control intracellular levels of these
lipids. This homeostatic control is achieved by
a feedback regulatory system that senses intra-
cellular levels of cholesterol and fatty acids and
modulates transcription of genes encoding
lipogenic enzymes. The modulators are a fam-
ily of membrane-bound transcription factors

called sterol regulatory element-binding pro-
teins (SREBPs) (Brown and Goldstein 1997).

Mammalian cells produce three isoforms of
SREBPs. SREBP-1a and SREBP-1c are produced
from a single gene using alternate promoters
that produce transcripts with a different first
exon, whereas SREBP-2 is encoded by a separate
gene (Hua et al. 1995). Unlike typical transcrip-
tion factors, SREBPs are synthesized as integral
membrane proteins localized in the endoplas-
mic reticulum (ER). The NH2-terminal and
the COOH-terminal domains of the proteins
project into the cytosol (Fig. 1). They are an-
chored to membranes by a central domain con-
taining two membrane-spanning sequences
separated by a short loop that projects into the
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lumen of the ER (Fig. 1). The NH2-terminal
domains of SREBPs are transcription factors
of the basic-loop-helix-leucine zipper family
that bind to enhancer sequences located in the
promoters of lipogenic genes to activate tran-
scription (Smith et al. 1990; Horton et al.
2003). These enhancer sequences are known as
sterol response elements or SREs. Among the
three isoforms of SREBPs, the NH2-terminal
domains of SREBP-1a and SREBP-1c are more
active in driving transcription of genes involved
in fatty acid synthesis, whereas that of SREBP-2
is more active in stimulating transcription
of genes involved in cholesterol biosynthesis
(Pai et al. 1998; Horton et al. 2003). However,
in order for the NH2-terminal domains of
SREBPs to activate transcription in the nucleus,
they have to be first released from the mem-
brane. The proteolytic pathway that liberates
the NH2-terminal fragment of SREBPs from
membranes in response to intracellular levels
of cholesterol and fatty acids is known as the
SREBP pathway (Brown and Goldstein 1997).

REGULATION OF THE SREBP PATHWAY
IN CULTURED CELLS

Regulated Intramembrane Proteolysis of
SREBPs

In cells that are depleted of cholesterol, the
NH2-terminal domains of the SREBPs are
released from membranes by two sequential
proteolytic cleavages. The first proteolytic reac-
tion cleaves the SREBPs at a site within the
lumen of the ER (Fig. 1). In SREBP-2, this cleav-
age occurs between the leucine and serine resi-
due of the sequence RSVLS (Duncan et al.
1997). This cleavage is mediated by Site-1 pro-
tease (S1P), a membrane-bound serine protease
whose active site projects into the lumen (Sakai
et al. 1998). S1P absolutely requires a basic res-
idue at the P4 position, and it strongly prefers a
leucine at the P1 position (Duncan et al. 1997).
Cleavage by S1P separates SREBPs into two
membrane-bound halves. The NH2-terminal
half is cleaved by Site-2 protease (S2P), a mem-
brane-bound metalloprotease whose active site
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Figure 1. The SREBP pathway. When cells are depleted of sterols and fatty acids, SREBPs are transported from the
ER to the Golgi apparatus, in which they are first cleaved by the Golgi-localized Site-1 Protease (S1P). S1P cleaves
SREBPs in the luminal loop between the two membrane-spanning sequences. Once the two halves of the SREBP
are separated, a second Golgi protease, Site-2 Protease (S2P), cleaves the NH2-terminal bHLH-Zip domain of
SREBPs at a site located three residues within the membrane-spanning region. After the second cleavage, the
NH2-terminal domain is released from the membrane and enters the nucleus, in which it activates genes con-
trolling lipid synthesis.
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is buried within the membrane (Fig. 1) (Rawson
et al. 1997; Feng et al. 2007). Site-2 cleavage
releases the NH2-terminal domains of the
SREBPs from membranes, allowing them to
enter the nucleus and activate transcription of
their target genes (Fig. 1). S2P cleaves SREBP-2
at a site that is three residues within the putative
transmembrane segment (Duncan et al. 1998).
This cleavage does not occur until the bulk of
the luminal portion of SREBPs is first removed
by S1P-mediated proteolysis (Sakai et al. 1996).
Cleavage by S2P also requires helix-breaking res-
idues distal to the cleavage site in the transmem-
brane domain (Ye et al. 2000). These residues
may partially unwind thea-helical structure sur-
rounding the cleavage site so that the scissile pep-
tide bond is accessible to the protease.

Proteolytic activation of SREBPs is the first
example of a signal transduction pathway that
involves the generation of regulatory molecules
from membrane proteins through proteolytic
cleavage. In addition to lipid metabolism, this
signaling mechanism, which is termed Regulated
Intramembrane Proteolysis (RIP), influences
processes as diverse as cellular differentiation,
immune defense and the response to unfolded
proteins (Brown et al. 2000).

Sterols and fatty acids inhibit RIP of SREBPs
by separating SREBPs from S1P and S2P. S1P
and S2Pare active in the Golgi complex, whereas
SREBPs are localized in the ER of lipid-loaded
cells (Fig. 1) (DeBose-Boyd et al. 1999). Fol-
lowing lipid-depletion, SREBPs are transported
from the ER to the Golgi complex in which they
encounter active S1P and S2P (DeBose-Boyd
et al. 1999; Nohturfft et al. 2000). This lipid-
regulated, ER to Golgi transport of SREBPs is
controlled by a pair of polytopic ER membrane
proteins: Scap and Insig.

Sterols Control RIP of SREBPs by Two
Intracellular Sterol Sensors: Scap and Insig

Scap is a polytopic membrane protein that con-
tains an NH2-terminal domain with eight
transmembrane helices and a cytosolic COOH-
terminal domain that mediates complex for-
mation with the COOH-terminal domain
of SREBPs (Fig. 2) (Sakai et al. 1997). In

sterol-depleted cells, the Scap/SREBP complex
exits the ER in COPII-coated vesicles that bud
from ER membranes (Fig. 2) (Nohturfft et al.
2000; Espenshade et al. 2002; Sun et al. 2005).
As a result, SREBPs are cleaved by S1P and
S2P in the Golgi complex and the transcription
factor domain is released from membranes.
When cholesterol builds up in ER membranes,
the sterol binds to Scap (Radhakrishnan et al.
2004), and this triggers a conformational
change in its cytosolic loop located between
TM helices six and seven (Fig. 2) (Brown et al.
2002; Sun et al. 2005). This conformational
change causes Scap to bind Insig proteins,
which disrupts the interaction of Scap with
components of the COP-II coat and results in
the retention of the Scap/SREBP complex in
the ER (Sun et al. 2005). Scap responds cooper-
atively to ER cholesterol levels to control SREBP
activation in a switch-like manner so that
SREBP-2 transport is abruptly blocked when
ER cholesterol exceeds 5% of total ER lipids
(molar basis) (Radhakrishnan et al. 2008).

Mammalian cells contain two isoforms of
Insig proteins, namely Insig-1 and Insig-2
(Yabe et al. 2002; Yang et al. 2002). Both pro-
teins are polytopic membrane proteins with
six transmembrane helices (Feramisco et al.
2004) that bind to cholesterol-loaded Scap to
retain the Scap/SREBP complex in the ER
(Yabe et al. 2002; Yang et al. 2002). Insig pro-
teins also play an important role in oxysterol-
regulated cleavage of SREBPs. In addition to
cholesterol, oxysterols such as 25-hydroxycho-
lesterol potently inhibit cleavage of SREBPs
(Hua et al. 1996a). However, this oxysterol
does not bind Scap, nor does it induce the
conformational change in Scap (Adams et al.
2004; Radhakrishnan et al. 2004). Instead,
25-hydroxycholesterol binds to purified recom-
binant Insig proteins (Radhakrishnan et al.
2007). Remarkably, Insigs do not bind to
cholesterol. These observations suggest that
25-hydroxycholesterol and cholesterol trigger
Scap-Insig through distinct mechanisms: 25-
hydroxycholesterol binds to the Insig proteins,
whereas cholesterol binds to Scap. Both of these
binding reactions produce the same result: ER
retention of the Scap/SREBP complex.
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In addition to retaining the Scap/SREBP
complex in the ER, Scap-Insig binding modu-
lates degradation of Insig-1 protein. In sterol-
replete cells, Insig-1 binds to Scap, and the
interaction stabilizes the Insig-1 protein (Gong
et al. 2006). Sterol deprivation decreases the
affinity of the Scap/Insig-1 complex; Insig-1 dis-
sociates from Scap and becomes rapidly ubiqui-
tinated and degraded by 26S proteasomes
(Fig. 2). This degradation further enhances
proteolytic activation of SREBPs by stimulating
ER to Golgi transport of Scap/SREBP. When
SREBPs reach the nucleus, they activate tran-
scription, causing increased cholesterol synthe-
sis. Inasmuch as Insig-1 is also a target gene of
SREBPs (Yabe et al. 2002; Horton et al. 2003),
transcription of its mRNA is also stimulated
(Fig. 2). SREBPs will continue to be sent to the

nucleus until two criteria have been met: (1)
the synthesis of Insig-1 mRNA has been in-
creased sufficiently to allow new Insig-1 mole-
cules to be made; and (2) sufficient cholesterol
has been produced in order for newly synthe-
sized Insig-1 to bind Scap thereby stabilizing
Insig-1 and retaining the Scap/SREBP complex
in the ER (Fig. 2). The requirement for this con-
vergence may serve to even out oscillations that
might occur as cholesterol synthesis is turned
on and off (Brown and Goldstein 2009).

Unlike Insig-1, Insig-2 is not a transcrip-
tional target of SREBPs (Yabe et al. 2002). The
protein also has a long half-life that is not regu-
lated by sterols (Lee et al. 2006a). In cultured
cells like CHO cells, the amount of Insig-2 is
so low as not to interfere with the convergent
regulatory scheme mediated by Insig-1 (Sever
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Figure 2. Cholesterol controls transport of SREBPs from the ER to Golgi complex by regulating the binding
between Insig-1 and Scap. In cells depleted of cholesterol, Insig-1 is dissociated from Scap and degraded by pro-
teasome. This allows the Scap/SREBP complex to be incorporated into COP-II-coated vesicles and transported
to the Golgi complex, in which SREBPs are proteolytically activated. The NH2-terminal domain of SREBPs
enters the nucleus to activate genes required for cholesterol synthesis as well as the gene encoding Insig-1.
The proteolytic processing of SREBPs will not be terminated until two SREBP-induced products converge on
Scap simultaneously: (1) Newly synthesized cholesterol accumulated in the ER that induces a conformational
change in Scap, resulting in its increased affinity with Insig-1; and (2) Newly synthesized Insig-1 that interacts
with Scap. In these cells with cholesterol restoration, binding between Scap and Insig-1 stabilizes Insig-1 and
prevents incorporation of the Scap/SREBP complex into COP-II-coated vesicles.
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et al. 2004). However, in liver Insig-2 may play
an important role in regulating the SREBP path-
way. The role of Insig-2 in controlling hepatic
lipid homeostasis will be discussed in detail
below.

Regulation of SREBP-1 by Fatty Acids

SREBP-1 is more active to drive genes involved
in fatty acid synthesis than those participated in
cholesterol synthesis (Pai et al. 1998; Horton
et al. 2003). Thus, SREBP-1 is also subjected
to feedback inhibition by fatty acids. Polyun-
saturated fatty acids (PUFA) inhibit transcrip-
tion of SREBP-1 but not SREBP-2 (Ou et al.
2001). This is because transcription of SREBP-1
is activated by liver X receptors (LXRs) (Repa
et al. 2000a; DeBose-Boyd et al. 2001), nuclear
receptors that are antagonized by PUFA (Ou
et al. 2001). In mice, PUFA inhibits transcrip-
tion of the SREBP-1c, but not of SREBP-1a,
owing to the presence of the LXR response ele-
ment in the promoter of the SREBP-1c gene
(Repa et al. 2000a). This is not the case in
human cells in which the LXR response element
is found in the promoter regions of both
SREBP-1a and SREBP-1c. As a result, transcrip-
tion of SREBP-1a is also inhibited by PUFA in
human cells (Hannah et al. 2001).

Unsaturated fatty acids also inhibit proteo-
lytic activation of SREBP-1 (Hannah et al.
2001). This activity is not limited to PUFA;
mono-unsaturated fatty acids such as oleate
inhibit SREBP processing as well. In contrast,
saturated fatty acids are unable to suppress pro-
teolytic activation of SREBP-1. Unsaturated
fatty acids inhibit SREBP-1 cleavage by blocking
the proteasomal degradation of Insig-1 (Lee
et al. 2008). The excess Insig-1 has a more pro-
found effect in blocking cleavage of SREBP-1
than that of SREBP-2 because more Insig-1 is
required to inhibit proteolytic activation of
SREBP-1 (Engelking et al. 2005; Lee et al.
2008). Because unsaturated fatty acids inhibit
SREBP-1 cleavage by increasing the amount of
Insig-1 protein, this inhibition is not independ-
ent of sterols, which are required for Insig-1 to
bind Scap. Rather, by increasing the amount
of Insig-1, unsaturated fatty acids make

SREBP-1 more sensitive to the inhibitory effects
of sterols (Lee et al. 2008).

Remarkably, unsaturated fatty acids and
sterols inhibit Insig-1 degradation by different
mechanisms. In sterol- and fatty acid-depleted
cells, Insig-1 binds to gp78, a membrane-bound
E3 ubiquitin ligase that attaches polyubiquitin
chains to Insig-1 (Fig. 3) (Lee et al. 2006b).
Insig-1 also binds to Ubxd8, a protein that
recruits p97 complex to Insig-1 through its
bridging interaction with both proteins
(Fig. 3) (Lee et al. 2008). Ubiquitination of
Insig-1 and recruitment of p97 to the protein
lead to recognition and subsequent degradation
of Insig-1 by proteasomes (Fig. 3) (Ikeda et al.
2009). Sterols cause Insig-1 to bind to Scap,
and this precludes the binding of gp78, thereby
inhibiting ubiquitination of Insig-1 (Fig. 3)
(Lee et al. 2008). In contrast, sterols do not
inhibit binding of the Ubxd8/p97 complex to
Insig-1 (Lee et al. 2006b), as this interaction
does not require ubiquitination of Insig-1
(Fig. 3) (Ikeda et al. 2009). Unsaturated fatty
acids do not block this ubiquitination, but
they prevent the recruitment of p97 to Insig-1
by blocking the interaction between Ubxd8
and Insig-1 (Fig. 3) (Lee et al. 2008). Inasmuch
as ubiquitination and recruitment of p97 to
Insig-1 is required for the protein to be recog-
nized by proteasomes, either sterols or unsatu-
rated fatty acids can block the degradation
pathway. Thus, the regulated degradation of
Insig-1 outlined in Figure 3 plays an important
role in feedback inhibition in synthesis of cho-
lesterol and fatty acids.

REGULATION OF THE SREBP PATHWAY
IN THE LIVER

In mammals, the liver plays a major role in
metabolism; the organ is one of the most active
sites of cholesterol and fatty acid synthesis in
the body. Consistent with studies in cultured
cells, in vivo studies reveal that the SREBP path-
way drives expression of a genetic program
in the liver that leads to enhanced synthesis
and uptake of cholesterol, fatty acids, triglycer-
ides, and phospholipids. In this section, we
review the role of individual SREBP isoforms
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(SREBP-1a, -1c, and -2) and their membrane
protein regulators (Scap and Insigs) in control
of lipid synthesis in the liver. These roles were
elucidated through the analysis of genetically
manipulated mice in which the SREBP pathway
was either activated or inactivated.

Animal Models in which the SREBP Pathway
is Activated

The three SREBP isoforms are produced in
culture cells as well as in the liver of animals,
but at different ratios. In nonhepatic cells, the
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Figure 3. Unsaturated fatty acids and sterols inhibit Insig-1 degradation independently. In sterol- and fatty acid-
depleted cells, Insig-1 is ubiquitinated by gp78. Ubxd8 recruits the ATPase p97 to Insig-1. These two signals on
Insig-1 lead to recognition and subsequent degradation of Insig-1 by proteasomes. Sterols induce binding of
Scap to Insig-1, a reaction that displaces gp78 from Insig-1. As a result, ubiquitination of Insig-1 is inhibited.
In contrast, sterols do not inhibit binding of the Ubxd8/p97 complex to Insig-1. Unsaturated fatty acids do
not affect ubiquitination of Insig-1; instead, they block the interaction between Insig-1 and Ubxd8, thereby pre-
venting the recruitment of p97 to Insig-1. Inasmuch as proteasome binding requires both ubiquitination and
p97, either sterols or unsaturated fatty acids can block the degradation of Insig-1.
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SREBP-1a transcript is much more abundant
than the SREBP-1c transcript (Shimomura
et al. 1997). The SREBP-1c transcript predomi-
nates in the liver; its level can be up to 10-fold
more abundant than that of the SREBP-1a tran-
script in the organ. The SREBP-2 transcript is
present in all cells and tissues at a relatively
constant level. To determine the function of
the individual SREBP isoforms in the liver,
transgenic mice overexpressing SREBPs that are
truncated prior to the first transmembrane do-
main were generated. These proteins, designated
nuclear SREBPs (nSREBPs), are synthesized in
the cytosol rather than on ER membranes. As
a result, they constitutively migrate to the nuc-
leus and activate gene transcription without a
requirement for proteolysis. Notably, nSREBPs
are immune to feedback regulation by sterols.

Overexpression of nSREBP-1a had dramatic
consequences on lipid metabolism in the liver
(Shimano et al. 1996). Transgenic nSREBP-1a
mice presented markedly elevated levels of
mRNAs encoding genes required for cholesterol
and fatty acid synthesis. As a result, the choles-
terol and fatty acid synthetic rates were in-
creased five-fold and 20-fold, respectively,
which led to the progressive development of
an enlarged liver filled with cholesterol and tri-
glycerides. The preference of fatty acid synthesis
in favor of cholesterol synthesis was preserved in
nSREBP-1c transgenic mice; however, the effect
was more pronounced (Shimano et al. 1997a).
The livers of these animals overaccumulated
triglycerides, but showed no increase in choles-
terol. Consistent with this observation, mRNAs
for hepatic fatty acid biosynthetic enzymes and
fatty acid synthetic rates are elevated about
fourfold, whereas rates of cholesterol synthesis
and expression of cholesterol biosynthetic genes
were unchanged (Shimano et al. 1997a). In con-
trast to results in nSREBP-1 transgenic livers,
hepatic overexpression of nSREBP-2 resulted
in preferential activation of cholesterol synthe-
sis (20-fold) over fatty acid synthesis (4-fold)
(Horton et al. 1998).

Transgenic mice that express a mutant ver-
sion of Scap in the liver containing an asparagine
substitution for aspartic acid-443 (D443N) in
the sterol-sensing domain represents another

animal model in which the SREBP pathway is
activated (Korn et al. 1998). In cultured cells,
the D443N mutation in Scap abolishes its bind-
ing to Insigs, which renders the protein refrac-
tory to sterol-mediated ER retention (Hua et al.
1996b; Yang et al. 2002). Thus, D443N Scap con-
tinues to facilitate transport-dependent activa-
tion of SREBPs in the presence of sterols and
cells expressing the mutant protein overproduce
cholesterol. Similarly, transgenic mice expressing
Scap D443N in the liver produce elevated levels
of nSREBPs as compared to wild type controls
(Korn et al. 1998). Correspondingly, expression
of genes required for synthesis and uptake of
cholesterol and fatty acids were increased and
the livers accumulated large amounts of choles-
terol and triglycerides. When subjected to a diet
enriched in cholesterol, processing of SREBPs
was markedly resistant to suppression, demon-
strating an essential role for Scap as a sterol sensor
in the liver (Korn et al. 1998).

The final animal model for SREBP activa-
tion was created through germline disruption
of the Insig-2 gene and liver-specific disruption
of the Insig-1 gene through Cre-mediated
recombination (Engelking et al. 2005). On a
normal chow diet, these mice (designated L-
Insig-12/2; Insig-22/2) overaccumulate cho-
lesterol and triglycerides in the liver, but levels
of nSREBPs and their target genes were not
reduced. Cholesterol feeding failed to inhibit
SREBP processing, reduce expression of lipo-
genic genes, and block lipid synthesis in
Insig-1/-2 double knockout mice. Moreover,
the level of HMG CoA reductase protein, the
rate-limiting enzyme in cholesterol synthesis,
was disproportionately elevated compared to
its mRNA in the livers. This observation is con-
sistent with studies in cultured cells showing
that Insigs not only mediate sterol-mediated
ER retention of Scap, but they also mediate
sterol-accelerated degradation of HMG CoA
reductase (Sever et al. 2003; Goldstein et al.
2006; DeBose-Boyd 2008). Like Scap, HMG
CoA reductase contains a sterol-sensing domain
within its NH2-terminal membrane attachment
region that precedes a large cytosolic domain;
the cytosolic domain of HMG CoA reductase
exerts all enzymatic activity (Liscum et al.
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1985; Roitelman et al. 1992). Accumulation of
sterols causes Insigs to bind to the membrane
domain of HMG CoA reductase, initiating a
series of reactions that lead to the polyubiqui-
tination of the enzyme and its subsequent
degradation by proteasomes. Together, these
observations highlight the importance of Insigs
in the regulation of lipid synthesis in the liver.

Animal Models in which the SREBP Pathway
is Inactivated

In addition to the five mouse models in which
the SREBP pathway is activated in the liver, six
models have been generated to achieve the op-
posite effect: Inactivation of the SREBP pathway
in the liver through the elimination of genes
encoding either SREBP, S1P, or Scap and trans-
genic overexpression of Insig-1.

Complete lethality was observed follow-
ing germline deletion of the SREBP-2 gene in
mice with mortality occurring at embryonic
days 7–8 (Shimano et al. 1997b). Homozygous
disruption of the SREBP-1 gene, which elimi-
nated both the SREBP-1a and SREBP-1c tran-
scripts, led to partial lethality; 15%–45% of
the mice survive past embryonic day 11. The
surviving SREBP-1 knockout mice appeared
normal at birth and throughout adulthood.
Their livers showed reduced synthesis of fatty
acids, owing to reduced expression of fatty
acid biosynthetic genes. To compensate for the
loss of SREBP-1, livers of the knockout mice
manifest elevated levels of SREBP-2 mRNA
and protein leading to increased transcription
of cholesterol biosynthetic genes and increased
cholesterol synthesis. In contrast to SREBP-1
and SREBP-2 knockout mice, selective disrup-
tion of SREBP-1c did not cause embryonic
lethality; the animals showed reduced expres-
sion of fatty acid biosynthetic genes and
reduced fatty acid synthesis (Liang et al. 2002).
In addition, the compensatory increase in
SREBP-2 activity and cholesterol synthesis was
also observed in SREBP-1c knockouts.

Studies of the SREBP-1 and SREBP-2
knockout mice indicate that germline elimina-
tion of all nSREBPs is an embryonic lethal
event. To overcome this lethality, animals were

produced in which the SREBP pathway is inac-
tivated in the livers of adults through Cre-
mediated recombination. The liver-specific
disruption of the S1P and Scap genes led to
the dramatic reduction in levels of nSREBPs
(Matsuda et al. 2001; Yang et al. 2001). Conse-
quently, expression of SREBP target genes and
rates of cholesterol and fatty acid synthesis
were markedly diminished (20%–30% of wild
type controls). The S1P and Scap knockout
mice appear relatively normal in contrast to
the embryonic lethality associated with
SREBP-1 and SREBP-2 deficient animals.

In cultured cells, overexpression of Insigs
renders Scap-mediated processing of SREBPs
much more sensitive to sterols (Yang et al.
2002). When overexpressed at high levels,
Insig-1 blocks SREBP processing, even in the
absence of sterols. Similarly, overexpression of
Insig-1 in the mouse liver caused a modest de-
crease (40%–50%) in the amount of nSREBPs
and increased sensitivity of SREBP process-
ing to inhibition by dietary cholesterol (Engelk-
ing et al. 2004). Consistent with this, the
expression of SREBP target genes and rates of
lipid synthesis are decreased in Insig-1 trans-
genic animals.

Studies of the 11 lines of genetically manip-
ulated mice described in this section highlight
the individual roles of SREBP isoforms in
hepatic lipid metabolism. The major SREBP-1
isoform in the mouse liver, SREBP-1c, preferen-
tially activates transcription of genes required
for fatty acid synthesis, whereas SREBP-2 pref-
erentially activates genes for cholesterol synthe-
sis. Notably, SREBP-1c is relatively weak in
stimulating transcription of target genes as
compared to SREBP-1a and SREBP-2. This is
likely because of differences in the length of an
acidic sequence at the NH2-terminus of the pro-
teins that mediates transcriptional activation.
The transcriptional activation domain is longer
in SREBP-1a and SREBP-2 than in SREBP-1c.
The feedback regulation of SREBP processing
in the liver, much like the situation in cultured
cells, is achieved through the sterol-induced
binding of the sterol-sensing domain of Scap
to Insigs, which traps the Scap/SREBP complex
in the ER. These observations indicate that
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general mechanisms that regulate SREBP proc-
essing operate similarly in the livers of mice as
they do in cultured cells.

Transcriptional Regulation of the SREBP
Pathway

In addition to elaborate control at the posttrans-
lational level (ER to Golgi transport and proteol-
ysis of SREBPs and proteasomal degradation of
Insig-1 and HMG CoA reductase); the SREBP
pathway is also subject to transcriptional regula-
tion. Although posttranslational regulation of
the SREBP pathway occurs in both cultured cells
and livers of whole animals, transcriptional reg-
ulation is more evident in the liver.

At least three mechanisms operate in the
liver to control transcription of SREBP genes.
The first mechanism involves feed-forward
transcriptional regulation of the SREBP-1c and
SREBP-2 genes, which is mediated by sterol
response elements (SREs) present in the pro-
moter/enhancer region of each gene (Sato
et al. 1996; Amemiya-Kudo et al. 2000). The
SRE maintains the basal expression of the
SREBP-1c gene in the liver (Fig. 4) (Chen et al.
2004). The feed-forward transcriptional control
explains increased levels of SREBP mRNAs
observed in nSREBP transgenic animals and
decreased levels of the mRNAs in S1P- and
Scap-deficient animals (Matsuda et al. 2001;
Yang et al. 2001). In the second mechanism,
LXRa and LXRb, nuclear receptors that

heterodimerize with retinoic X receptors and
become activated by a variety of sterols such as
oxysterols (Repa et al. 2000), selectively regulate
the expression of the SREBP-1c gene (Repa et al.
2000; DeBose-Boyd et al. 2001; Liang et al.
2002). In LXRa- and LXRb-deficient mice,
expression of SREBP-1c and fatty acid biosyn-
thetic genes are reduced and do not become
up-regulated by synthetic LXR agonists (Repa
et al. 2000). Similarly, fatty acid biosynthetic
genes are not up-regulated by LXR agonists in
SREBP-1c knockout mice (Liang et al. 2002).
LXR-mediated regulation of SREBP-1c allows
induction of fatty acid synthesis under condi-
tions of sterol overload, which may have im-
portant implications for intracellular storage
of esterified cholesterol.

The third mechanism for transcriptional
regulation is also selective for the SREBP-1c
gene. A key action of the hormone insulin is to
stimulate synthesis of fatty acids in the liver.
Transcription of the SREBP-1c gene in the livers
of mice is reduced following fasting, which
suppresses insulin levels, and elevated following
refeeding, which restores insulin (Horton et al.
1998). A similar response pattern is observed
for mRNAs encoding SREBP-1c target genes.
Importantly, elimination of the SREBP-1c gene
abolishes insulin-induced activation of fatty
acid biosynthetic genes (Liang et al. 2002).
Although the exact mechanism through which
insulin augments transcription of the SREBP-1c
gene is not known, the reaction appears to

Exon 1a Exon 1c Exon 2

 ~3 kb ~10 kb
LXRE1 LXRE2

LXR

Insulin

SRE

nSREBP

Figure 4. Regulation of SREBP-1c expression in the liver. The promoter of SREBP-1c contains two LXR-response
elements (LXRE) and a SRE. Nuclear SREBPs bind SRE to maintain basal transcription of SREBP-1c. Insulin
stimulates the activity of LXR, which binds LXRE to activate transcription of SREBP-1c.
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require the action of LXR and SREBP itself,
thereby creating a feed forward stimulation
(Fig. 4) (Chen et al. 2004). The livers of Scap
knockout mice or Insig-1 transgenic mice show
a marked decrease in insulin-mediated stimula-
tion of fatty acid biosynthetic genes that nor-
mally occurs in wild type animals following the
fasting/refeeding regimen (Matsuda et al. 2001;
Engelking et al. 2004). Thus, proteolytic activa-
tion of SREBP-1c appears to mediate the action
of insulin on fatty acid synthesis in the liver.

Insulin also has a major effect on the expres-
sion on Insigs in the liver. Two transcripts are
derived from the Insig-2 gene: the liver-specific
transcript designated Insig-2a and the ubiqui-
tous transcript designated Insig-2b (Yabe et al.
2003). Insig-2a differs from Insig-2b because
of the utilization of an upstream promoter
that produces a different 50 noncoding exon
that splices into the same coding exon that ini-
tiates Insig-2b. The Insig-2a and Insig-2b tran-
scripts encode the same protein. Insig-2b is
expressed at very low levels in the liver, whereas
Insig-2a is expressed at high levels in the liver,
but only when insulin levels are low.

Reciprocal regulation of Insigs is observed in
the livers of mice subjected to the fasting/refeed-
ing protocol. In fasting mice when insulin levels
are low, the SREBP-1c gene is not transcribed
and nSREBP-1c is not produced. In addition,
Insig-1 mRNA and protein levels are reduced
and Insig-2 protein levels rise, owing to in-
creased production of the Insig-2a transcript.
When insulin levels rise after refeeding, Insig-2
mRNA, and protein rapidly disappears because
of transcriptional repression. At the same time,
insulin induces transcription of the SREBP-1c
gene, nSREBP-1c activates the Insig-1 gene,
and Insig-1 mRNA and protein levels are re-
stored, effectively replacing Insig-2 with Insig-1.
The significance of the reciprocal regulation
of Insigs to the regulation of SREBP processing
in the liver is still under investigation.

CONCLUSIONS AND PERSPECTIVES

As we have outlined in this article, the discovery
of the SREBP pathway nearly 20 years ago has
led to major advances in the understanding of

molecular mechanisms that govern the synthe-
sis and uptake of cholesterol and fatty acids.
Despite these advances at both the cellular and
whole-animal level, key questions remain. For
example, what is the molecular basis for the
interactions of cholesterol and oxysterols with
the membrane domain of Scap and Insigs,
respectively? What amino acid residues in these
proteins mediate sterol binding? How do inter-
actions with sterols trigger formation of the
Scap-Insig complex? Answers to these questions
can only be provided by detailed structural
analysis of Scap and Insigs by X-ray crystallogra-
phy. This is an especially challenging task con-
sidering the insolubility of sterols in aqueous
solution and the requirement of detergents
to solubilize the hydrophobic Scap and Insig
proteins.

The other unresolved questions in the
SREBP pathway pertain to the action of insulin
on lipid metabolism through stimulation of
SREBP-1c transcription and proteolytic activa-
tion. Recent studies have implicated a kinase
complex designated the mammalian target of
rapamycin complex 1 (mTORC1) in the insu-
lin-mediated induction of SREBP-1c transcrip-
tion (Li et al. 2010). Although the mechanism
through which mTORC1 modulates SREBP-1c
expression remains to be determined, the possi-
bility exists that the kinase may activate SREBP-
1c, LXR, or a coactivator that interacts with
these transcription factors. Considering that
SREBP-1c must be proteolytically activated to
modulate target gene expression, an obvious
question is whether insulin also stimulates
cleavage of the protein. However, this requires
the examination of transgenic animals express-
ing full-length SREBP-1c in the liver under
transcriptional control of an insulin-independ-
ent, constitutive promoter.
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