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Abstract —Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram
(EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP
(P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP
algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive
statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on
eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general
cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically
determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also
demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-
temporal pattern analysis of one EEG data set recorded in a Stroop color naming task.

Index Terms —common spatial patterns, Fukunaga-Koontz transform, sparse Bayesian learning, variational Bayes, electroen-
cephalogram, brain-computer interface.

✦

1 INTRODUCTION

E LECTROENCEPHALOGRAPHY (EEG) is a non-invasive
imaging modality that is widely used to measure the

electrical activities of the brain. Multichannel EEG simul-
taneously measures coordinated brain activities at multiple
sites on the scalp at millisecond temporal resolution, which
makes it valuable for cognitive and neural engineering stud-
ies and for clinical applications [1]. However, the analysis
of EEG remains challenging because the volume-conducted
EEG suffers from a low spatial resolution, such that the
signal recorded at each individual channel is a mixture
of attenuated activities from more than one brain region,
and it frequently suffers interference from various (e.g.,
cardiac, muscular, and ocular) artifacts. To address these
challenges, one must enhance the signal-to-noise ratio (SNR)
and isolate the overlapping activities via spatial filtering
— that is, linearly combining the EEG signals at multiple
channels such that the sources of interest are enhanced and
the unwanted sources are suppressed [2].

Among the various EEG spatial filtering methods, the
common spatial patterns (CSP) algorithm [3] has attracted con-
siderable attention as an effective method for the concurrent
analysis of multichannel EEG signals recorded under two
conditions. Under the name of Fukunaga-Koontz transform,
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CSP was first proposed as a supervised learning method
that was an extension of principal component analysis (PCA)
for feature extraction [4]. Since then, it has become popular
in a diverse range of applications [5]–[7]. Notably, CSP
has been successful in extracting sensorimotor rhythms for
brain-computer interfaces (BCIs), as evidenced in international
BCI competitions [8]–[10].

Consider two conditions of multichannel EEG signals
X ∈ R

N×L×2, where X·,·,k = [X·,1,k · · · X·,L,k] is the
data matrix for condition k, which consists of the vectors
of N -channel EEG signals with L sample points 1. For
conciseness, we let Xk , X·,·,k. CSP is aimed at finding a set
of linear transforms (spatial filters) to maximize the ratio of
the transformed data’s variance between the two conditions.
Mathematically, the spatial filters are the stationary points of
the following optimization problem [3]:

max
w

J(w) ,
w

⊤
R̂1w

w⊤R̂2w
s.t. ‖w‖2 = 1, (1)

where w ∈ R
N denotes a spatial filter, and R̂k ∈ R

N×N ,

XkX
⊤
k /L denotes the estimated spatial covariance matrix

for condition k. Since J(w) is a Rayleigh quotient, the sta-
tionary points can be obtained collectively in a closed form
as the eigenvectors of a generalized eigendecomposition:
R̂1w = λR̂2w, where λ denotes the eigenvalue associated
with w. Since λ = J(w), it is often presumed to be a good
measure of the separability between the spatially filtered
signals of two conditions.

Nonetheless, as a multivariate algorithm, CSP is known to
suffer from overfitting, which may yield poor generalization
performance [3], [11], [12]. We use the term “overfitting”
when a statistical model or algorithm describes noise rather
than the underlying data structure. In the literature, overfit-
ting has mainly been tackled by regularization, i.e., by incor-
porating an additional penalty term in the cost function in

1. Without loss of generality, the EEG signal at each channel is
assumed to have a zero mean hereafter.
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(1) to restrict the search space of the unknown spatial filters.
More specifically, the regularized CSP [13], [14], motivated
by Tikhonov regularization in the context of linear inverse
problems, uses a weighted ℓ2-norm penalty to enforce the
smoothness of the entries in the (weighted) spatial filters
(see also [15] for a comprehensive review of the group of
regularized CSP algorithms):

max
w

Jr(w) ,
w

⊤
R̂1w

w⊤R̂2w + ρw⊤Hw
s.t. ‖w‖2 = 1, (2)

where ρ is the regularization parameter, and H is a sym-
metric positive semi-definite matrix. By contrast, the sparse
CSP [16]–[18] uses an ℓ1-norm penalty to impose sparsity
on the spatial filters:

max
w

Js(w) ,
w

⊤
R̂1w

w⊤R̂2w + ρ‖w‖1
s.t. ‖w‖2 = 1, (3)

where the formulation in [17] is employed. Multiple filters
are found sequentially via the deflation method [16].

Despite that the various regularization strategies may
ameliorate CSP’s overfitting, the algorithms were designed
primarily for classifying instead of modeling the EEG data
— in a way akin to classical modeling techniques such as
factor analysis and independent component analysis (ICA)
[19] — and therefore not specifically designed for exploring
the underlying spatio-temporal dynamics. To the best of our
knowledge, a principled modeling methodology to address
the CSP overfitting issue remains missing to date.

1.1 Contributions

The contributions of this paper consist of both theoretical
and algorithmic levels:
• We establish the probabilistic CSP (P-CSP) model as a gen-
eral framework to characterize multichannel EEG under two
experimental conditions (Section 3). Specifically, we show
that CSP and regularized CSPs can be subsumed under the
proposed framework in that they can be derived from the
P-CSP model as a special case in the noiseless and square
mixing scenario. Formulating an existing algorithm within
a probabilistic framework is beneficial for both theoretical
and practical reasons. From a statistical perspective, this
approach allows us to examine when the algorithm will
perform well or poorly. From a practical standpoint, asso-
ciating a probability model with an algorithm allows us to
assess the uncertainty of the data analysis results, and opens
the possibility of improving the algorithmic performance by
model refinement.
•We develop effective algorithms to address the overfitting
issue of CSP (Section 4). Two inference algorithms: MAP-
CSP and VB-CSP, are derived from the P-CSP framework
to alleviate the local optima problem of conventional maxi-
mum a posteriori (MAP)-based iterative updating algorithms.
Specifically, MAP-CSP assumes additive isotropic noise and
is suited for real-time EEG classification due to its compu-
tational efficiency. VB-CSP performs approximate Bayesian
inference for more general noise conditions. The algorithm
is capable of automatically inferring the component number,
and can be used for the exploratory analysis of EEG spatio-
temporal patterns in neurophysiologically-driven studies
when there is no obvious performance metric as in clas-
sification tasks. We also provide detailed analyses to exam-
ine their properties. Finally, we apply these algorithms to

probabilistic

modeling

MAP 

estimation

Bayesian

inference

CSP

P-CSP

VB-CSPMAP-CSP

prediction exploratory 

analysis

Model

Algorithms

Applications

Fig. 1. P-CSP modeling framework. The models and algo-
rithms proposed in this paper are based on a probabilistic
modeling reformulation of the CSP algorithm.

analyze the synthetic data and experimental EEG datasets
(Section 5).

As a roadmap of the paper, the P-CSP modeling frame-
work is depicted in Fig. 1. For notations, the set of multi-
condition multichannel EEG signals can be mathematically
viewed as a three-way (channel×time×condition) tensor;
we make this fact explicit and denote it by X . Similarly,
the set of multi-condition component signals is denoted
by a three-way (component×time×condition) tensor Z .
Throughout the paper, scalars are denoted by italic normal
letters, matrices and vectors are denoted by upright boldface
letters, I denotes the identity matrix, and the superscript ⊤

denotes the transpose operator.

2 RELATED WORK

Recent years have witnessed a growing number of sophisti-
cated CSP variants in the literature, particularly in the BCI
field. We present a brief review below, in addition to the
regularized CSP algorithms described in Section 1.

One important line of CSP-related algorithmic advance-
ments concerns the automatic learning of the optimal tem-
poral or spectral filters in conjunction with the spatial filters.
Lemm et al. [20] and Dornhege et al. [12] exploited the idea
of variance ratio maximization to optimize both the spatial
and temporal filters Tomioka et al. [21] and Wu et al. [22]
proposed iterative algorithms that alternate between CSP
and other learning criteria (Fisher ratio maximization in the
former and the maximum margin in the latter) for the simul-
taneous optimization of spatial and spectral filters. Zhao et
al. [23] generalized CSP to high-dimensional spaces within
a tensor analysis framework. Zhang et al. [24] considered
a spatio-spectral filtering network, in which multiple CSPs
were embedded within a filter bank, with each targeting
a distinct frequency subband. More recently, Higashi et al.
[25] proposed a discriminative algorithm to design spatio-
temporal filters by optimizing a modified CSP cost function.
Suk et al. [26] presented a particle-based Bayesian spatio-
spectral filter optimization algorithm.

Along other lines, CSP has been extended from binary to
multi-class case by several groups [27]–[29]. To handle the
setting of a small labeled sample size, Li et al. [30] proposed
an EM algorithm for joint extraction and classification of
CSP features, where unknown labels of the data were
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treated as latent variables. Wu et al. [31] presented a hier-
archical Bayesian method to model the inter-trial variability
of the EEG signals. Alternatively, the non-stationarity issue
has also been addressed within a regularization framework
in [32], [33], and via a cluster-based approach in [34]. Finally,
several robust CSP algorithms have been developed to
alleviate the sensitivity to noise and outliers [35]–[38].

3 PROBABILISTIC GENERATIVE MODEL FORMULA -
TION OF THE CSP ALGORITHM

The discriminative formulation of CSP in (1) is motivated
by maximizing the separability between two conditions. In
this section, we present a generative view of CSP, which
casts the solution as a maximum likelihood (ML) estimate
from a probability model of the multichannel EEG signals.
The probability model consists of two coupled latent linear
models, with each modeling EEG signals derived from one
condition:

Xk = AZk, Z·,l,k ∼ N (0,Λk), (4)

where Zk , Z·,·,k ∈ R
M×L consists of the vectors of

component signals (latent variables) for condition k, and
A ∈ R

N×M is the non-degenerate square mixing matrix that
contains spatial patterns (i.e., scalp maps of the components)
as columns. Three assumptions are made in the model (4):
1) Xk and Zk are identically and independently distributed
(IID) across time; 2) M = N ; 3) The component signals are
mutually uncorrelated, i.e., Λk = diag(λmk) is a diagonal
matrix.

The connection between model (4) and CSP is revealed
by the following theorem [3], [31], [39], [40]:

Theorem 1. Let W , [w1, · · · ,wN ]⊤, where w1:N are the
stationary points for (1). Then W = Â

−1, where Â is the ML
estimate of A in model (4).

The proof of the theorem is detailed in [31]. Non-
stationarity has been suggested as a generic criterion for
blind source separation (BSS) in Pham’s pioneering work
[41]. Under the generative setting, CSP is derived as an
algorithm for BSS by utilizing the non-stationarity of EEG
data between conditions.

Remark 1. In model (4), the mixing matrix A is identical for
the two conditions, i.e., the spatial patterns are common to both
conditions, hence justifying the name “CSP”. It shall be stressed
that while sharing common spatial patterns, the two conditions
are differentiated by assessing the variance ratios of the associated
time courses Zk (see (1)) — the initial motivation for applying
CSP to discriminative EEG analysis. Theorem 1 states that by
fitting model (4) to the EEG signals derived from two conditions,
the optimal spatial filters are the “dual” of Â in that they can be
obtained by taking the inverse of the latter.

In cognitive neuroscience, a standard practice for testing
a hypothesis regarding a condition of interest is to contrast
it with a control condition so that the confounding effects
of extraneous variables can be eliminated [42]. The genera-
tive algorithmic formulation provides a theoretical ground
for CSP as a spatio-temporal decomposition method (i.e.,
modeling the data as apposed to merely classifying the data).

3.1 Revisiting the Overfitting Issue

Probabilistic model (4) may shed light on the overfitting
issue of CSP. Specifically, there are two situations in which
CSP is prone to overfitting:
1) When the true number of underlying components is less
than the number of the channels N , CSP necessarily pro-
duces spurious components due to the inflated component
number assumed in its generative model [11]. The overfitted
components often possess large variance ratios between
conditions because they may fit the noise component in one
condition that is only weakly present in the other condition.
2) Overfitting also occurs when N is large relative to the
amount of data available [43]. Here the amount of data need
not be taken literally as L; the effective amount of data
is considerably smaller when high temporal correlations
exist within the samples. In model (4), the number of free
parameters is N+N2, which may easily outnumber L, even
when the channel number is moderate.

The overfitting issue of CSP stems from the square mix-
ing and noiseless assumptions. The noiseless assumption
implies that the EEG data are fully characterized by the
estimated components and the mixing matrix. This assump-
tion does not take into account of random factors, such
as the amplifier noise. The square mixing assumption is
closely linked to the noiseless assumption in that if we relax
the square mixing assumption by using a smaller number
of components, a model mismatch will automatically arise
between the best linear fit and the EEG data.

3.2 Connections with Regularized CSPs

Learning CSP filters relies on estimating the spatial covari-
ance matrix Rk for the EEG data of each condition. As
such, regularized CSP (see (2)) has attempted to alleviate
the overfitting issue by using more robust estimates of Rk.
In this section, we present a unified view for the group
of regularized CSP algorithms based on the probabilistic
model (4).

The following theorem asserts that by imposing conju-
gate priors on the spatial covariance matrices for the two
conditions, various regularized CSP algorithms can be cast
into the P-CSP framework as specific algorithms computing
the MAP estimates of the model parameters with different
priors.

Theorem 2. Regularized CSPs yield the joint MAP estimate of
A and Λk in model (4), with the following inverse-Wishart prior
on Rk:

p(Rk) ,
Tk|Gk|

(νk−N−1)/2

|Rk|νk/2
exp

(

− tr
[

R
−1
k Gk

]

/2
)

, (5)

where Gk ∈ R
N×N is a positive-definite scale matrix, νk is a

degree-of-freedom parameter, and Tk is a normalization constant.
tr[·] denotes the trace operator.

See Appendix B for the proof. Various regularized CSP
algorithms can be differentiated by their specific choice
of Gk in the inverse-Wishart prior. For instance, Gk can
be proportional to the estimated covariance matrices from
other subjects [14], [44], to the estimated covariance matrix
of the noise source [13], or to the identity matrix [15].
Borrowing information from other subjects can potentially
benefit subject-to-subject transfer, however, care must be
taken to allow for the large between-subject variability in
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the EEG signals. Estimating the covariance matrix of the
noise source requires additional EEG signals to be recorded
beyond the experimental conditions.

The P-CSP modeling framework presented in the next
section takes a different perspective by imposing joint priors
on the underlying spatio-temporal patterns to obtain a par-
simonious representation of the EEG signals. The derived
algorithms regularize the common spatial patterns in a
group-wise fashion, in which an “optimal” tradeoff between
data fitting and regularization can be automatically learned
from the data within the probabilistic framework (Section
4.2.2).

4 P-CSP MODELING OF MULTICHANNEL EEG

4.1 Basic Model

The P-CSP model for multichannel EEG signals is a noise-
corrupted Bayesian latent linear model:

Xk = AZk +Ek (6)

An,· ∼ N (0⊤,Ξ),Z·,l,k ∼ N (0,Λk),E·,l,k ∼ N (0,Ψk).

Here, Xk, Zk, and A are similarly defined as in model (4).
Ξ , diag[ξ] ∈ R

M×M . Ek ∈ R
N×L is the matrix of additive

Gaussian noise for condition k, with the covariance matrix
Ψk , diag[ψk] ∈ R

N×N .
As opposed to the noise-free model (4) with M = N ,

model (6) assumes that M ≤ N , i.e., there are no more
component signals than EEG signals (over-determined). Intu-
itively, this fact means that the dynamics of the EEG signals
from both conditions can be represented by a smaller num-
ber of independent component signals, with spatial patterns
identical across conditions. In addition, Ek accounts for the
mismatch between the component space and EEG space.

Remark 2. Model (6) imposes priors on both the spatial and
temporal patterns in the component space. With the row-wise IID
Gaussian priors, A is placed on an equal probabilistic footing with
Zk, which are endowed with column-wise IID Gaussian priors.

4.2 Inference Algorithms

For model inference, one may compute the MAP estimates
of {A,Z} in model (6) via alternate updates to increase
the posterior. Nonetheless, there are two limitations that
remain to be resolved. First, the MAP estimation via alter-
nate updates is known to be susceptible to local optima,
since it fails to account for uncertainties when making hard
decisions throughout the update process [19]. Second, in
practice Λk,Ψk,Ξ are unknown a priori, and the proper
determination of these unknowns is crucial because they
serve to control the model capacity to prevent overfitting.

To address the above limitations, we present two algo-
rithms for model inference: MAP-CSP and VB-CSP. For a
given M , MAP-CSP is able to compute the MAP estimates
of {A,Z} in a closed form when Ψk are isotropic, thus
mitigating the issue of local optima. Nonetheless, the model
size must be specified in advance. VB-CSP is an approx-
imate fully Bayesian inference algorithm that computes
the variational distributions of {A,Z} by integrating over
all of the other unknowns while simultaneously achieving
automatic model selection. We also provide an analysis to
show that VB-CSP can be understood as a sparse learning
algorithm.

4.2.1 MAP-CSP: A Fast MAP Estimation Algorithm
MAP-CSP seeks the joint MAP estimates for {A,Z} in
the following hierarchical Bayesian model with additive
isotropic noise:

Xk = AZk +Ek (7)

An,· ∼ N (0⊤,Ξ),Z·,l,k ∼ N (0,Λk),E·,l,k ∼ N (0, ψkI)

Λk ∼
∏

m

Ga−1(α, β), ψk ∼ Ga
−1(α, β),

where Ga−1(x|α, β) , βα

Γ(α)
x−α−1 exp(−β/x) is the inverse-

gamma distribution. We assume that Ψk are isotropic so that
the number of unknown parameters in the noise covariances
is reduced to two, thereby the local optima arising from
estimating full Ψk are largely avoided.

To let the data speak for themselves, we further assume
that α → 0, β → 0 and ξ → ∞ to render the priors
on A and Λk non-informative [45], yielding flat priors on
A and p(λmk) ∝ 1/λmk . In contrast to the flat prior on
A (which does not lead to the orthogonality between the
columns of A since the prior makes no contribution in the
MAP estimation of {A,Z} regardless of the orthogonality
between the columns of A), the hierarchical prior on Zk

enforces the belief that the component signals are mutually
uncorrelated (i.e., the rows of Zk are orthogonal) as in
CSP (see also Theorem 3 below along with its proof in
Appendix C for how to achieve the orthogonality). More
specifically, the hierarchical prior on Zk is equivalent to the
Student-t distributions on Zm,·,k ( [46]; see also Appendix A
for an integral representation of the Student-t distribution):

p(Zm,·,k) = lim
α,β→0

Γ(α+ L
2
)

Γ(α)[2π]
L
2

βα
[

β +
‖Zm,·,k‖

2
2

2

]−(α+L
2
)

∝ 1/‖Zm,·,k‖
L
2 . (8)

As α → 0, β → 0, the resulting distributions are heavily
tailed and sharply peaked at the origin, thereby favoring
sparsity.

Remark 3. p(λmk) ∝ 1/λmk is an improper probability distri-
bution. It was argued in [47] that an improper distribution for
the prior variance parameters does not yield a proper posterior
distribution in several types of hierarchical models. To avoid the
improperness issue, in the following we assume small nonzero
values for α and β, e.g., α = β = 10−8. Moreover, the result of
sensitivity analysis presented in Section 5.1.2 demonstrates that
the VB solution is relatively insensitive to the choice of the values
for α and β.

In a nutshell, MAP-CSP is an iterative algorithm, with
each iteration consisting of two phases. The first phase
identifies a low-dimensional subspace common to the two
conditions, and the second phase finds axes on which the
data from the two conditions are jointly decorrelated. The
algorithm is formalized below.

Theorem 3. For given ψk, the joint MAP estimates of {A,Z}
in (7) can be obtained by solving

min
A,Zk

∑

k

ψ−1
k

∥

∥Xk −AZk

∥

∥

2

F
(9)

s.t. ZkZ
⊤
k ∈ D

+,

where ‖ · ‖F denotes the matrix Frobenius norm. D
+ is the

manifold of real diagonal matrices with nonnegative diagonal
entries.
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Algorithm 1 The MAP-CSP Algorithm

Input: multichannel EEG data X that are recorded from
two experimental conditions

Output: MAP estimates Â, Ẑ, ψ̂k
1: Initialization: set M ; ψ̂k = 1
2: repeat
3: solve

∑

k ψ̂
−1
k XkX

⊤
kU = UD;

% perform eigendecomposition of
∑

k ψ̂
−1
k XkX

⊤
k

% eigenvalues are sorted in descending order in
% the main diagonal of D

4: B← U·,1:M , Yk ← (B⊤
B)−1

B
⊤
Xk

5: ψ̂k ← (‖Xk −BYk‖
2
F + 2β)/[N · (L+ 2α)]

6: until Convergence
7: solve Y1Y

⊤
1 V = Y2Y

⊤
2 VD

% perform generalized eigendecomposition of YkY
⊤
k

8: Ẑk ← V
⊤
Yk, Â← BV

−⊤

The following result is required to solve (9):

Theorem 4. Problem (9) is equivalent to

min
B,Yk

∑

k

ψ−1
k

∥

∥Xk −BYk

∥

∥

2

F
, (10)

where B ∈ R
N×M , Yk ∈ R

M×L.

Theorem 4 asserts that the orthogonality constraint on Zk

can be effectively removed when we solve (9), leading to an
unconstrained optimization problem. Now let {B∗,Y∗

k} ,

argminB,Yk

∑

k ψ
−1
k

∥

∥Xk −BYk

∥

∥

2

F
; then, we have

Theorem 5.

B
∗ = U·,1:M ·G

Y
∗
k = (B⊤

B)−1
B

⊤
Xk, (11)

where U·,1:M ∈ R
N×M is the matrix with columns being the

eigenvectors of
∑

k ψ
−1
k XkX

⊤
k associated with the M largest

eigenvalues, and G ∈ R
M×M is an arbitrary invertible matrix.

Theorems 3–5 provide the theory to identify a low-
dimensional subspace common to the two conditions. See
Appendices C–E for the proofs. In light of the results
presented above, the two phases per iteration of MAP-CSP
are as follows:
1) Employ an iterative procedure to optimize {B,Y} and
ψk in an alternate manner until convergence. More specif-
ically, for given ψk , {B,Y} can be optimized according to
Theorem 5, and ψk can in turn be updated as (see Appendix
C)

ψk = (‖Xk −BYk‖
2
F + 2β)/[N · (L+ 2α)]. (12)

2) Let the generalized eigendecomposition of YkY
⊤
k be

Y1Y
⊤
1 V = Y1Y

⊤
2 VD. Zk and A can then be estimated

using

Zk = V
⊤
Yk, A = BV

−⊤. (13)

The pseudocode of MAP-CSP is provided in Algorithm
1. We initialize the algorithm by setting M and ψk . In
our implementation, ψk = 1. Each iteration of MAP-CSP
involves an eigendecomposition and matrix inversion, re-
quiring O(N3+M3) flops. Moreover, the algorithm is guar-
anteed to converge to a stationary point typically within
a few iterations, since the noise covariance matrices are
parameterized by only two parameters. Hence, MAP-CSP

can be implemented efficiently. The convergence can be
checked by evaluating whether the relative change of the
parameters between adjacent iterations is less than a pre-
defined tolerance η.
Model Selection MAP-CSP assumes that the number of
underlying components is known, which hardly holds in
practice. Classical statistical model selection criteria, such
as the Bayesian information criterion (BIC) [19], are not
applicable to resolve this difficulty, since they require the
number of parameters to be fixed, whereas in MAP-CSP,
the dimensions of Zk vary with the number of data points.
Nonetheless, in EEG classification cross-validation can be
used for model selection in a straightfoward manner based
on predictive accuracy; the increased computational cost
should not be a concern due to the fast running speed of
MAP-CSP.

Alternatively, we can take a regularization approach by
placing group-sparse priors on both A and Zk (by contrast,
placing the group-sparse prior on Zk alone with no penalty
on A, as in MAP-CSP, cannot achieve model selection due to
the scaling ambiguity between A and Zk — the full model
is always preferred, since the entries of Zk can be made
arbitrarily small by exchanging their amplitudes with those
of A). This approach has the advantage that the model order
can be automatically determined with a proper inference
procedure. We proceed to the detail in the next subsection.

4.2.2 VB-CSP: A Variational Bayesian Inference Algorithm

In more general cases where the additive noise is non-
isotropic for each condition, MAP-CSP no longer preserves
the optimality. In this section, we propose a fully Bayesian
method for model inference. The developed algorithm is an
approximate Bayesian inference algorithm that is capable of
inferring the “optimal” model capacity.

In contrast to pursuing the mode of p(A,Z|X ) as in
MAP-CSP, Bayesian inference attempts to estimate the full
posterior distribution p(A,Z|X ) for the following model:

Xk = AZk +Ek (14)

An,· ∼ N (0⊤,Ξ),Z·,l,k ∼ N (0,Λk),E·,l,k ∼ N (0,Ψk)

Ξ ∼
∏

m

Ga−1(α, β),Λk ∼
∏

m

Ga−1(α, β),Ψk ∼
∏

n

Ga−1(α, β).

Analogous to Zk, with the inverse-gamma hyperprior on
the covariance of A, A is now endowed with a column-
sparse prior (with α and β close to zeros):

p(A·,m) = lim
α,β→0

Γ(α+ N
2
)

Γ(α)[2π]
N
2

βα
[

β +
‖A·,m‖

2
2

2

]−(α+N
2
)

∝ 1/‖A·,m‖
N
2 . (15)

This particular model specification is inspired by the influ-
ential idea of automatic relevance determination (ARD) [19],
which has been widely used in the machine learning com-
munity. Intuitively, Ξ and Λk comprise hyperparameters
that govern the amplitude of A·,m and Zm,·,k , respectively;
a component with small hyperparameters will be effectively
zeroed out. Note that although the nuisance parameters
Ξ and Λk are estimated by evidence maximization (also
known as type-II ML) in ARD, we instead follow a fully
Bayesian path by integrating out these parameters.

Remark 4. Model (14) can be viewed as a Bayesian matrix co-
factorization model [48] for X1 and X2 due to the symmetry
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between A and Zk .

Exact Bayesian inference is not viable for model (14)
due to intractable integrations. The problem arises from the
product coupling of A and Zk in the likelihood, as well
as the inconvenient form of the sparse priors. Instead, we
devise the variational Bayesian CSP (VB-CSP) algorithm for
approximate inference. The key ingredients of the algorithm
are the two differing variational techniques that are em-
ployed to bound the marginal likelihood. The first technique
seeks a “surrogate” probability to globally approximate
the posterior probability. The second variational technique,
which has gained popularity in recent years [49]–[51], is
based on Fenchel’s duality theorem. We use it for locally
approximating the sparse priors. Below, we describe how
these techniques are integrated in VB-CSP.

First, we seek a variational distribution q∗(A,Z) in a
structured probability space Q that finds the optimal ap-
proximation of the true posterior (in the Kullback-Leibler
(KL) divergence sense) p(A,Z|X ) [19]:

q∗(A,Z) , min
q

KL
[

q(A,Z)‖p(A,Z|X )
]

. (16)

We make use of the mean-field approximation by assuming
that the distributions in Q are factorable such that A and Z

are probabilistically decoupled: q(A,Z) = q(A)q(Z). The
marginal log-likelihood is given by

log p(X ) = −F(X , q(A,Z)) + KL
[

q(A,Z)‖p(A,Z|X )
]

≥ −F(X , q(A,Z)), (17)

with F being the variational free energy:

F(X , q(A,Z)) , −〈log p(X ,A,Z)〉q −H[q(A,Z)], (18)

where 〈·〉q is the expectation with respect to the variational
distribution and H[·] is the differential entropy. As observed
from (17), minimizing the KL divergence between the vari-
ational distribution and posterior distribution is equivalent
to minimizing F , which is an upper bound for the negative
marginal log-likelihood.

Next, F can be further upper bounded by using a con-
vex representation of the Student-t distribution (see Ap-
pendix A):

F ≤ F̃ , (19)

where F̃ , minΛk,Ψk,Ξ(L/2 + α)
∑

k log |Ψk| + (L/2 +

α)
∑

k log |Λk|+(N/2+α) log |Ξ|+1/2
∑

k

〈

tr
[

Ψ
−1
k

[

(Xk−

AZk)(Xk − AZk)
⊤ + 2βI

]

]〉

q
+ 1/2

∑

k

〈

tr
[

Λ
−1
k

(

ZkZ
⊤
k +

2βI
)

]〉

q
+ 1/2

〈

tr
[

Ξ
−1

(

A
⊤
A + 2βI

)

]〉

q
+

〈

log q(A)
〉

q
+

∑

k

〈

log q(Zk)
〉

q
.

VB-CSP is aimed at inferring q(A,Z) by minimizing F̃ :

min
q(A,Z)

F̃(X , q(A,Z)). (20)

The problem can be tackled by alternately updating the
variational distributions q(A) and q(Zk), and the variational
parameters Λk,Ξ,Ψk via coordinate descent. Derivation
of VB-CSP is provided in Appendix F. The pseudocode
is provided in Algorithm 2, in which Â and Ẑk are the
variational means of A and Zk, respectively. In our imple-
mentation, Â, Ξ, and Λk are initialized using the estimates
from CSP. Moreover, ΣAn,· = Ψk = 10−8

I. However, it

Algorithm 2 The VB-CSP Algorithm

Input: multichannel EEG data X that are recorded from
two experimental conditions

Output: variational parameters {Λk,Ψk}k=1,2,Ξ; varia-
tional distributions q∗(Zk), q

∗(A)
1: Initialization: M = N ; set Â and Λk by calling CSP;

ΣAn,· = Ψk = 10−8
I, ξm = ‖Â·,m‖

2
2

2: repeat
3: q(Zk) =

∏

l q(Z·,l,k)←
∏

lN (Ẑ·,l,k,ΣZ·,l,k
)

where Ẑ·,l,k , ΣZ·,l,k
Â

⊤
Ψ

−1
k X·,l,k and ΣZ·,l,k

,
[

Â
⊤
Ψ

−1
k Â+

∑

n ψ
−1
nkΣAn,· +Λ

−1
k

]−1

4: q(A) =
∏

n q(An,·)←
∏

nN (Ân,·,ΣAn,·)

where Ân,· ,
∑

n,k ψ
−1
knxnlkẐ

⊤
·,l,kΣAn,· and ΣAn,· ,

[

Ξ
−1 +

∑

l,k ψ
−1
nk

(

ΣZ·,l,k
+ Ẑ·,l,kẐ

⊤
·,l,k

)]−1

5: Λk ←
1

L+2α

∑

l

(

diag
[

ΣZ·,l,k
+ Ẑ·,l,kẐ

⊤
·,l,k

]

+ 2βI
)

6: Ψk ←
1

L+2α

∑

l

(

diag
[

X·,l,kX
⊤
·,l,k − 2X·,l,kẐ

⊤
·,l,kÂ

⊤ +
〈

A[ΣZ·,l,k
+ Ẑ·,l,kẐ

⊤
·,l,k]A

⊤
〉

q

]

+ 2βI
)

7: Ξ← 1
N+2α

∑

n

(

diag
[

ΣAn,· + Â
⊤
n,·Ân,·

]

+ 2βI
)

8: until Convergence

is empirically observed that the algorithmic performance
is only slightly affected by initialization (see sensitivity
analysis in Section 5.1.2). The main cost of VB-CSP is the
computation of matrix inversions at each iteration, which
requires O(K · L · M3 + N · M3) flops. Convergence is
guaranteed to a stationary point and can be determined
by checking whether the decrease of F̃ between adjacent
iterations is less than a pre-defined tolerance η.
Analysis: VB-CSP as a Sparse Bayesian Learning Algo-
rithm In order to gain deeper insight into VB-CSP, we
provide analysis to show that the algorithm induces sparsity
to the approximate Bayesian solution in a MAP-like manner.
This portion of the study is partially inspired by the seminal
work concerning sparse Bayesian learning [51], [52].

To simplify analysis, we assume that α = β = 0, Ψk are
known, and ΣAn,·ΣZ·,l,k

= 0. Let Θ , {Λk,Ξ}; then, we
have

Theorem 6. The VB inference problem (20) can be rephrased
using the following MAP setup:

min
Â,Ẑ
L(Â, Ẑ) +RVB(Â, Ẑ), (21)

with the loss term L defined by L(Â, Ẑ) ,
∑

k tr
[

Ψ
−1
k

(

Xk −

ÂẐk

)(

Xk− ÂẐk

)⊤
]

, and the regularization term RVB defined

by RVB(Â, Ẑ) , minΘ

∑

k tr
[

Λ
−1
k ẐkẐ

⊤
k

]

+tr
[

Ξ
−1

Â
⊤
Â

]

+
∑

n log |Un|+L
∑

k log |Vk|, where Un ,
∑

k ψ
−1
nkΞẐkẐ

⊤
k +I

and Vk , ΛkÂ
⊤
Ψ

−1
k Â+ I.

Proof of Theorem 6 is provided in Appendix G. The RVB

has the following desirable properties:
• Given Ẑ , RVB is a concave, non-decreasing function

of
[

∥

∥Â·,1

∥

∥

2
, · · · ,

∥

∥Â·,M

∥

∥

2

]

, a hallmark of sparsity-inducing

regularizer [53]. Likewise, given Â, RVB is a concave, non-

decreasing function of
[

∥

∥Ẑ1,·,k

∥

∥

2
, · · · ,

∥

∥ẐM,·,k

∥

∥

2

]

.

• For either Â or Ẑk, RVB imposes stronger sparsity
than the group norm

∥

∥Â
∥

∥ ,
∑

m

∥

∥Â·,m

∥

∥

2
or

∥

∥Ẑk

∥

∥ ,
∑

m

∥

∥Ẑm,·,k

∥

∥

2
, while producing far less local minima than

the regularizers associated with (15) or (8). Therefore, VB
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inference (21) is less susceptible to local minima than using a
conventional numerical algorithm, e.g., coordinate descent,
to seek the locally optimal MAP solution to model (14).
• The sparse priors associated with RVB for Â and Ẑk are
mutually coupled. Such interdependency guarantees that
the optima are not affected by the scaling indeterminacy
between Â and Ẑk [51].

It is also suggested by (21) that Ψk play the role of
regularization parameters that balance between L and RVB.
In VB-CSP, Ψk are optimized via a variational learning rule
analogous to those for Λk and Ξ.

In contrast to the sparse CSP algorithm (see (3)), which
aims to sparsify each individual spatial filter by forcing
many coefficients to zero, the sparsity in our VB-CSP al-
gorithm is targeted at the group level in the component
space, i.e., using as few components as possible to represent
the multichannel EEG signal; the redundant components are
automatically zeroed out within the Bayesian framework.
Moreover, VB-CSP allows us to inspect spatio-temporal pat-
terns in the component space, while it is generally unclear
how to relate the spatial filters optimized by the sparse CSP
to the components’ spatial patterns (see [54] for a discussion
of the difference between spatial filters and spatial patterns).
Finally, it shall be cautioned that the estimate from VB infer-
ence may be biased, and its variance is often underestimated
(due to the mean-field approximation) [55].

4.3 Spatial Filtering via MAP-CSP/VB-CSP

Similar to CSP, MAP-CSP and VB-CSP use label information
to guide learning; thus, in classification tasks, they can be
used to generate discriminative features as the inputs to the
classifier by discarding inessential components, resulting in
enhanced predictive accuracies.

For MAP-CSP, since Ψk are isotropic, the following linear
transformation matrix W can be estimated from the training
set of EEG data to map from the EEG space to the compo-
nent space:

W =
[

Â
⊤
Â
]−1

Â
⊤. (22)

Each row of W defines a spatial filter. Likewise, the follow-
ing pair of linear transformation matrices can be estimated
for VB-CSP (according to the third step in Algorithm 2):

Wk =
[

Â
⊤
Ψ

−1
k Â+

∑

n

ψ−1
nkΣAn,· +Λ

−1
k

]−1
Â

⊤
Ψ

−1
k . (23)

The discriminative filters can be selected via similar mea-
sures as conventionally employed for selecting CSP filters,
e.g., filters associated with large component variance ratios
between conditions. One can also use other well-established
feature selection criteria [19] to select discriminative filters.

Although both MAP-CSP and VB-CSP can be employed
in single-trial EEG classification, MAP-CSP is more suited
for real-time applications, such as BCI decoding, due to its
low computational overhead (Table 1), whereas VB-CSP is
more suited for off-line exploratory data analysis with the
advantage of automatic model size determination.

5 EXPERIMENTS

In this section, we test the performance of the proposed
algorithms using both synthetic and experimental EEG data.
In the synthetic experiment where the ground truth is
known, we compare CSP, MAP-CSP, and VB-CSP in terms

of the recovery accuracy of the spatio-temporal patterns via
Monte Carlo simulations. We also assess VB-CSP’s capabil-
ity in model selection and sensitivity to hyperprior selection
and algorithmic initialization. In the analysis of high-density
EEG data, we demonstrate the effectiveness of MAP-CSP
and VB-CSP in the single-trial classification of several motor
imagery EEG data sets. In addition, we apply VB-CSP as an
exploratory tool to analyze spatio-temporal EEG patterns in
a Stroop task [56]. In all experiments, we set α = β = 10−8

unless otherwise specified, and the same tolerance η = 10−8

is used for determining the convergence of MAP-CSP and
VB-CSP.

5.1 Synthetic Experiment

5.1.1 Description

The experiment consists of 50 independent Monte Carlo
runs. In each run, N = 40 channels of synthetic EEG signals
X are randomly generated according to model (6) for two
experimental conditions:

1) Two sets of M = 6 mutually uncorrelated component
signals Zk are generated, with each set corresponding to
a single condition. Each component signal comprises L IID
Gaussian samples. The variances of the 6 component signals
summed over the two conditions are integers from 2 to 7.

2) A mixing matrix A of size 40× 6 is randomly generated,
with each entry having a standard Gaussian distribution.

3) For each condition, additive white Gaussian noise with
non-isotropic covariance is simulated to produce different
levels of SNR. The SNR is defined per condition and channel
as the ratio of the variance of the noiseless EEG and the
variance of the additive noise in the same channel. The
experiment is run repeatedly under a variety of settings:
L ∈ {500, 100} and SNR ∈ {10, 5, 0,−5} dBs.

The noisy multichannel EEG signals are fed into CSP,
MAP-CSP, and VB-CSP, from which we obtain their es-
timated spatio-temporal patterns {Â, Ẑ}. The component
number is assumed to be known for MAP-CSP.

First, we evaluate the ability of VB-CSP to uncover the
number of underlying components (MAP-CSP is excluded
for evaluation since the component number must be speci-
fied beforehand rather than being estimated). The procedure
for determining the effective component number Me is de-
scribed as follows. For each component m, we divide Ẑm,·,k

by the scaling coefficient sm =
[

∥

∥Ẑm,·,1

∥

∥

2

2
+

∥

∥Ẑm,·,2

∥

∥

2

2

]1/2

such that their l2-norms sum to one. We then multiply Â·,m

with sm such that Â·,m ·Ẑm,·,k remains unchanged. With the
scaling applied on each component, Me is set to represent
the number of components with

∥

∥Â·,m

∥

∥

2
larger than a given

threshold τ (we use τ = 10−6).

Second, to assess the estimated model, the Amari index
[57] is used to quantify the reconstruction fidelity of the
components’ spatio-temporal patterns:

D = (DA +DZ1
+DZ2

)/3, (24)
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Fig. 2. Effective component number Me determined by VB-
CSP under different settings of L and SNR.

where

DA ,
1

2M

[

M
∑

i=1

∑M
j=1 |bij |

maxj |bij |
+

M
∑

j=1

∑M
i=1 |bij |

maxi |bij |
− 2M

]

DZk
,

1

2M

[

M
∑

i=1

∑M
j=1 |hijk|

maxj |hijk |
+

M
∑

j=1

∑M
i=1 |hijk|

maxi |hijk|
− 2M

]

bij ,
[

(A⊤
A)−1

A
⊤
Â

]

ij
, hijk ,

[

(Z⊤
k Zk)

−1
Z

⊤
k Ẑk

]

ij
.

As a prerequisite for computing the Amari index, the sizes
of Â and Ẑk must be identical with those of A and Zk.
To meet this requirement, for CSP and VB-CSP we select
6 components associated with the 6 largest

∥

∥Â·,m

∥

∥

2
and

discard the others. In the case of VB-CSP, in certain runs
with L = 100 and SNR = −5 dB the effective component
number is less than 6, leaving the calculation of the Amari
index problematic. Because the likelihood of such events
is relatively low (< 10%), we discard these runs when
computing the statistics for simplicity.

5.1.2 Results

Figure 2 presents the results of component number esti-
mation using VB-CSP. For L = 500 and L = 100, Me is
correctly identified to be 6 when SNR = 10, 5, 0,−5 dBs and
SNR = 10, 5, 0 dBs, respectively. For L = 100 and SNR = −5
dB, Me deviates slightly from 6.

The Amari indices computed from CSP, MAP-CSP, and
VB-CSP are displayed in Fig. 3. Two observations are in
order. First, the benefit of using sparse learning is evident.
As a general trend, MAP-CSP and VB-CSP substantially
outperform CSP under all settings (three-way repeated-
measure analysis of variance (ANOVA), with the algorithm,
L, and SNR as the factors, indicates a significant main effect
for the algorithm factor: F (1, 49) = 1, 793.172, P < 10−8 for
VB-CSP vs. CSP; F (1, 49) = 1, 611.934, P < 10−8 for MAP-
CSP vs. CSP). For each specific L and SNR, the decrease
of the Amari indices for VB-CSP is greater than two-fold
compared to those for CSP. Second, MAP-CSP is comparable
to VB-CSP in performance, at relatively high SNRs (10 and
5 dBs), which is not unexpected because MAP-CSP finds
the globally optimal MAP solution (up to the unknown and
non-isotropic noise covariances). However, the performance
gap between these two algorithms increases at low SNRs (0
and −5 dBs) since the increasing non-isotropic effect of the
additive noise is not captured by MAP-CSP.

To provide an intuitive example, Fig. 4 presents the
Hinton diagrams of A and Â from a simulated result with
L = 500 and SNR = 0 dB. In this specific run, we obtain
D = 1.3332, 0.5094, and 0.3239 for CSP, MAP-CSP, and VB-
CSP, respectively. Here, redundant spatio-temporal patterns

10 5 0 −5
0

0.5

1

1.5

2

2.5

SNR (dB)

D
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Fig. 3. The average Amari indices obtained under varying
SNRs and sample sizes. left panel: L = 500; right panel:
L = 100.
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Fig. 4. Hinton diagrams of A and Â estimated by different
algorithms for an exemplary run with L = 500 and SNR =
0 dB (columns are in random order). The magnitude of each
entry in the matrices is proportional to the square size (red:
positive, green: negative). a) Non-square mixing matrix A, b)
Estimated square matrix Â from CSP (D = 1.3332), c) Es-
timated non-square matrix Â from MAP-CSP (D = 0.5094),
d) Estimated sparse matrix Â from VB-CSP (D = 0.3239).

are shrunk to negligible values in VB-CSP. By contrast, it is
hard to tell which columns are the redundant patterns in Â

obtained from CSP, confirming that CSP is insufficient for
component number determination.
Sensitivity analysis We conduct Monte Carlo simulations
to assess the sensitivity of VB-CSP (L = 500 and SNR =
0 dB). Specifically, sensitivity to hyperprior selection is
studied by sampling α and β uniformly from (0, 10−3),
whereas sensitivity to algorithmic initialization is studied
by sampling the elements of Â from IID standard Gaus-
sian distributions, and the diagonal elements of Ξ uni-
formly from (0, 1). VB-CSP inference is then performed over
100 repetitions for each Monte Carlo simulation, yielding
D = 0.2899 ± 0.0091 for hyperprior selection and D =
0.3026± 0.0192 for initialization. These results demonstrate
that the performance of VB-CSP is only slightly affected by
hyperprior selection and initialization.
Computational speed Table 1 provides the runtime of the
three algorithms in one representative Monte Carlo run for
two setups: L = 500, SNR = 10 dB and L = 100, SNR =
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Fig. 5. Examples of convergence curves of F̃ , Â, and Ẑk at
L = 100.

10 dB. The algorithms are implemented in MATLAB c©7.10
on a PC with 3.4 GHz Intel Core (TM) i7-3770 CPU and 8
GB RAM. The numbers of iterations needed to reach conver-
gence for MAP-CSP and VB-CSP are shown in parentheses.
In this example, MAP-CSP converges in far fewer iterations
than VB-CSP. Note that in the course of VB-CSP, we monitor
not only the convergence of F̃ , but also the convergence
of the variational means of the model parameters. Results
indicate that the variational means converge in a regular
manner as F̃ decreases (see Fig. 5 for the convergence
curves at L = 100). In terms of the runtime, MAP-CSP is
only 10 times slower than CSP but more than 103 times
faster than VB-CSP, making it highly appealing for online
applications, such as BCI decoding.

TABLE 1
Comparison of the runtime (second) from CSP, MAP-CSP

and VB-CSP. The numbers in parentheses indicate the
number of iterations to reach convergence.

L CSP MAP-CSP VB-CSP

500 1.61 × 10−3 2.17 × 10−2 (4) 1.20 × 102 (3693)

100 1.40 × 10−3 2.06 × 10−2 (5) 8.58 × 10 (2909)

5.2 Single-Trial Classification of Motor Imagery EEG
Data

5.2.1 Description

A single-trial binary EEG classification experiment is con-
ducted on three motor imagery (MI) EEG data sets. It has
been well-documented in literature that imagined move-
ments give rise to an attenuation of the sensorimotor
rhythms in specific regions of the sensorimotor cortices,
a phenomenon known as event-related desynchronization
(ERD) [1] (e.g., imagined left or right hand movements
generate ERD over hand regions in the contralateral motor
cortices). The fact that ERD can be examined by evaluating
the variance change of EEG spatial patterns across con-
ditions provides good justifications to apply CSP and the
related algorithms for MI EEG data analysis.

Among the three data sets, two were from BCI Compe-
tition III Data Set IIIa and Data Set IVa 2. The third data
set was collected in the Laboratory of Neural Engineering

2. Downloadable at http://www.bbci.de/competition/iii/

at Tsinghua University. Data set 1 consists of 60-channel
EEG data from 3 subjects recorded for the left-hand, right-
hand, foot, and tongue MI tasks (sampling rate: 250 Hz).
There are 90, 60, and 60 trials per task for subjects k3, l1,
and k6, respectively, with equal number of training and test
trials. Data set 2 consists of 118-channel EEG data from
5 subjects recorded for the right-hand and right-foot MI
tasks (sampling rate: 100 Hz). A total of 140 trials per task
were collected for each subject, with varying percentages
of training and test trials (168, 224, 84, 56, and 28 training
trials for subject aa, al, av, aw, and ay, respectively). Data set
3 consists of 32-channel EEG data from 20 subjects for the
left- and right-hand MI tasks (sampling rate: 256 Hz). For
each subject, a total of 240 trials (120 per task) were split
into equal number of training and test trials.

Since data set 1 contains the EEG data recorded under
multi-class MI tasks, we construct smaller data sets for each
possible pair of MIs for the purpose of binary classification,
resulting in 6 data sets for left-hand vs. righthand, left-hand
vs. foot, left-hand vs. tongue, right-hand vs. foot, right-hand
vs. tongue, and foot vs. tongue MI tasks, respectively.

We compare the classification performance of CSP, CSP
with Tikhonov regularization (TR-CSP, with H = I in (2))
[15], MAP-CSP, and VB-CSP on a total of 18 + 5 + 20 = 43
subsets of multichannel EEG signals as described above.
TR-CSP is chosen from the existing regularized CSP algo-
rithms as a benchmark due to its excellent classification
performance, as demonstrated earlier [15]. Sparse CSP is
not included for comparison for three reasons: 1) The major
use of sparse CSP is channel selection, which is not the
concern of this paper; 2) According to the results reported in
[16], [17] on experimental EEG data, in general, sparse CSP
yielded a degraded performance compared with CSP using
a full set of channels; 3) The deflation procedure proposed in
[16] for optimizing multiple spatial filters is not theoretically
well-grounded since it does not preserve the positive semi-
definiteness of the data covariance matrices when applied
to a sparse spatial filter [58]. Addressing this issue is beyond
the scope of this paper.

To avoid any potential bias towards any algorithm, we ap-
ply identical preprocessing settings to the data for channel
selection (all EEG channels are used), bandpass filtering (8-
30 Hz bandpass filtered using a 5th order Chebyshev Type-
I filter. The frequency range is known to encompass the
ERD effect [1]), and time windowing (0.5-3.5 sec rectangular
window relative to the initiation of the MI tasks) before
the use of each algorithm. To form the proper input to
each algorithm, the training data for the k-th condition is
concatenated across trials along the time axis to yield the
data matrices Xk for each subset.

As suggested in [3], [15], the feature vector of each trial
is formed as the log-variances of the estimated component
signals obtained by the 6 spatial filters (see Section 4.3)
associated with the 3 largest and 3 smallest variance ra-
tios between the first and second experimental tasks. The
3 largest/smallest variance ratios correspond to large re-
sponse in the first/second task. Fisher linear discriminant
analysis (FLDA) is employed as a classifier due to its
computational efficiency. The use of log-variance features
helps FLDA to attain optimality due to the Gaussian-like
distribution. The hyperparameters are determined using 10-
fold CV on the training sets. For MAP-CSP, the component
number M is sought within {10, 15, 20, · · · , 60} for data

http://www.bbci.de/competition/iii/
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Fig. 6. Test errors (%) on three motor imagery BCI data sets
(43 subsets) for four tested algorithms. Each point provides
the result on one subset of EEG data. a) VB-CSP vs. CSP, b)
VB-CSP vs. TR-CSP, c) MAP-CSP vs. CSP, d) MAP-CSP vs.
TR-CSP, e) TR-CSP vs. CSP, f) VB-CSP vs. MAP-CSP

set 1 and 3, and {10, 20, · · · , 110, 118} for data set 2. For
TR-CSP, the regularization parameter ρ is sought within
{10−10, 10−9, · · · , 10−1} as suggested in [15].

5.2.2 Results

Test errors for all 43 subsets of EEG data are summarized in
Fig. 6. A point beneath the diagonal indicates the superiority
of the algorithm on the y-axis over the one on the x-axis. The
results indicate that VB-CSP and MAP-CSP have a superior
or equal performance compared to CSP and TR-CSP for the
majority of subsets. The exceptions are that CSP is slightly
superior to VB-CSP and MAP-CSP on two and three subsets,
respectively, and that TR-CSP is slightly superior to VB-
CSP on one subset. The overall average test errors for VB-
CSP, MAP-CSP, TR-CSP, and CSP are 10.36, 11.03, 13.07,
and 14.22, respectively. Paired T-tests indicate that VB-CSP
and MAP-CSP significantly outperform CSP and TR-CSP
(VB-CSP vs. CSP: P = 1.61 × 10−5, VB-CSP vs. TRCSP:
P = 9.96 × 10−5; MAP-CSP vs. CSP: P = 7.54 × 10−5,
MAP-CSP vs. TR-CSP: P = 8.73 × 10−5), but TR-CSP does
not significantly improve CSP (P = 0.10). There is no
significant difference between the test errors from VB-CSP
and MAP-CSP (P = 0.0532). Due to the markedly lower
computational load of MAP-CSP compared with VB-CSP,
the use of MAP-CSP in single-trial classification tasks is
encouraged.

To facilitate reproducibility, the test errors for the publicly
available data sets 1 and 2 are reported in Table 2, with the
lowest test error highlighted in boldface for each subject.
The values of the hyperparameters (ρ and M are determined

by 10-fold CVs on the training sets; see Section 5.1.1 for
calculating Me) listed in the parentheses for TR-CSP, MAP-
CSP, and VB-CSP. The results again indicate that VB-CSP
and MAP-CSP have the overall best performance in that
they yield the lowest test errors for all subjects. Furthermore,
M and Me are much lower than the channel number for
a substantial portion of the subsets, suggesting that it is
beneficial to use a sparse model to fit the higly redundant
multichannel EEG data. M and Me differ considerably for
some subsets since they are estimated according to different
model selection criteria. M is determined based on 10-
fold CV classification errors, whereas Me is the number of
remaining components when a full Bayesian approach is
applied to learning sparse models.

For subject k3, there is little room for improvement due
to the low baseline test error as achieved by CSP. The
improvement for subjects k6 (left-hand vs. right-hand, left-
hand vs. foot, left-hand vs. tongue, right-hand vs. foot) and
aw are the most prominent, with more than 8% decline in
the test errors from VB-CSP and MAP-CSP compared with
CSP. For subject aw the training set consists of only 56 trials,
which CSP has a tendency to overfit. In contrast, VB-CSP
and MAP-CSP alleviate the overfitting by using only 53 and
50 components, respectively, to characterize the 118-channel
EEG data.

For data set 2, it is noteworthy that the difficulty level
varies differently among subjects for classifying various
combinations of MI tasks. For example, whereas it is easy
to discriminate the foot from the tongue MIs for subjects
k3 and k6, the classification performance deteriorates for
subject l1. By contrast, the left- and right-hand MIs can
be reliably discriminated for subjects k3 and l1 but not
for subject k6. This result suggests that it is worthwhile to
determine the optimal sets of MI tasks for subject-specific
BCI systems.

The results of CSP on data set 2 differ substantially from
the winning entries of the competition. Through personal
communications with the winner, we are aware of several
factors that may contribute to the superiority of the winning
entries: 1) Intensive manual tuning was performed previ-
ously to obtain the optimal preprocessing settings. Relevant
parameters included the EEG channels to be used, passband
of the spectral filter, and time window, et al.; 2) Apart
from ERD/ERS, two additional features, namely the autore-
gressive coefficients and temporal waves of the readiness
potential, were employed previously for classification; 3) a
semi-supervised tactic was applied to use part of the test
data in the training stage. Our current paper focuses on the
CSP algorithm, and it is beyond our scope to investigate
the effect of the factors mentioned above. We stress that
our comparison of the tested algorithms is fair, since except
for spatial filtering, all of the other settings are identical for
the tested algorithms.

5.3 Analysis of Stroop EEG Data

5.3.1 Description

Next, we consider a neurophysiologically-driven example
and illustrate how VB-CSP can be used for exploratory
EEG analysis in this context. The data set contains EEG
recordings from two male subjects (s1 and s2) participating
in a Stroop color naming task, in which they were instructed
to name the colors of Chinese characters. There were two



0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2014.2330598, IEEE Transactions on Pattern Analysis and Machine Intelligence

MANUSCRIPT FOR IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

TABLE 2
Comparison of the test errors (%) from four algorithms on two publicly available data sets from BCI Competition III.

Data Set Subject CSP TR-CSP MAP-CSP VB-CSP

Data set IIIa
left-hand vs. right-hand

k3 3.33 3.33 (ρ = 10−2) 3.33 (M = 30) 3.33 (Me = 34)
k6 31.67 30.00 (ρ = 10−2) 23.33 (M = 20) 20.00 (Me = 20)

l1 6.67 6.67 (ρ = 10−10) 6.67 (M = 60) 6.67 (Me = 35)

Data set IIIa
left-hand vs. foot

k3 1.11 1.11 (ρ = 10−10) 1.11 (M = 60) 1.11 (Me = 30)

k6 25.00 15.00 (ρ = 10−2) 13.33 (M = 30) 15.00 (Me = 15)
l1 16.67 8.33 (ρ = 10−1) 8.33 (M = 40) 5.00 (Me = 29)

Data set IIIa
left-hand vs. tongue

k3 1.11 1.11 (ρ = 10−2) 1.11 (M = 35) 1.11 (Me = 33)

k6 10.00 10.00 (ρ = 10−4) 1.67 (M = 25) 1.67 (Me = 26)
l1 6.67 6.67 (ρ = 10−10) 6.67 (M = 55) 1.67 (Me = 30)

Data set IIIa
right-hand vs. foot

k3 1.11 1.11 (ρ = 10−10) 1.11 (M = 15) 1.11 (Me = 16)

k6 35.00 25.00 (ρ = 10−1) 21.67 (M = 15) 21.67 (Me = 30)

l1 13.33 11.67 (ρ = 10−4) 10.00 (M = 25) 6.67 (Me = 26)

Data set IIIa
right-hand vs. tongue

k3 1.11 1.11 (ρ = 10−10) 1.11 (M = 55) 1.11 (Me = 30)
k6 15.00 18.33 (ρ = 10−2) 15.00 (M = 45) 18.33 (Me = 23)

l1 5.00 5.00 (ρ = 10−10) 5.00 (M = 60) 5.00 (Me = 26)

Data set IIIa
foot vs. tongue

k3 2.22 2.22 (ρ = 10−10) 2.22 (M = 60) 2.22 (Me = 33)

k6 1.67 1.67 (ρ = 10−2) 1.67 (M = 50) 1.67 (Me = 30)
l1 30.00 30.00 (ρ = 1) 30.00 (M = 30) 26.67 (Me = 24)

Data set IVa
right-hand vs. right-foot

aa 26.79 28.57 (ρ = 10−1) 28.57 (M = 80) 26.79 (Me = 81)

al 0 3.57 (ρ = 10−10) 0 (M = 30) 0 (Me = 32)
av 30.61 28.57 (ρ = 10−10) 28.06 (M = 50) 30.61 (Me = 50)

aw 15.18 11.16 (ρ = 10−10) 6.70 (M = 50) 3.12 (Me = 53)

ay 23.02 36.51 (ρ = 10−10) 21.03 (M = 20) 13.89 (Me = 19)

Mean±SD 13.19 ± 11.85 12.47 ± 11.60 10.41 ± 10.18 9.32± 9.93

experimental conditions: congruent versus incongruent. In
the congruent condition, the color and the meaning of the
characters were consistent (e.g., the Chinese character for
“red” in red), whereas the color and meaning differed in
the incongruent condition. The experiment was comprised
of 4 sessions. A total of 144 trials of 64-channel EEG data
were collected per condition in each session. Each trial
lasted for 1 sec. Signals were down-sampled to 200 Hz
offline. For preprocessing, the EEG signals were band-pass
filtered between 1 and 40 Hz. The filtered signals were then
temporally concatenated across trials to feed into VB-CSP.

5.3.2 Results

The Hinton diagrams of Â obtained from VB-CSP are
shown in the upper panel of Fig. 7. Among the 60 possible
components, only 11 and 12 are retained by VB-CSP for
the two subjects, respectively. By visually inspecting the
spatio-temporal patterns of the retained components for
each subject, we are able to identify two components that
are neurophysiologically meaningful. The respective spatio-
temporal patterns are shown in Fig. 8. For each subject, the
left panel presents the event-related potentials (ERPs) of the
two components. For each component, the ERP is calculated
by averaging the time courses of the entire 72 trials. As
indicated by the shaded bars, the incongruent condition
elicits stronger negative potentials than the congruent con-
dition within the time intervals 400-600 msec and 700-900
msec. The differences are significant as can be observed
from the 95% posterior credible intervals [19] (light-colored
curves) derived from the variational posterior distributions.
The corresponding spatial patterns for 400-600 msec and
700-900 msec are concentrated on the fronto-central and
fronto-polar scalp regions, respectively.

The results are consistent with the previous findings
reported in [56]. Through the source localization of the ERP
components in the brain, it was suggested that the enhanced
negativity for the incongruent condition was likely to stem
from activation of the anterior cingulate cortex (ACC), re-
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Fig. 7. Hinton diagrams of the estimated sparse matrix Â

(columns are in random order). Upper panel: the variational
mean estimates from VB-CSP; lower panel: the estimates
from CSP. a) subject s1, b) subject s2

flecting its role in the detection of interference between the
character meaning and color (400-600 msec interval) and
in the engagement of central executive processes (700-900
msec interval). It is important to notice that our current
analysis is conducted on an individual subject basis, as
opposed to previous instances of grand-averaging over
multiple subjects [56]. For comparison, CSP is also applied
to the same EEG data set. As expected, the estimated mixing
matrices are not sparse (see the lower panel of Fig. 7), and
no meaningful spatio-temporal patterns are observed.

6 CONCLUSION

With the motivation of overcoming the CSP’s overfitting
problem, here we presented a Bayesian framework for mod-
eling multichannel EEG signals from two experimental con-
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Fig. 8. The spatio-temporal patterns of selected two meaningful components. For each subject, the left panel presents the
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ditions. The proposed framework encompasses the existing
CSP and regularized CSP algorithms as special cases, which
addresses overfitting in a principled manner by using the
sparse Bayesian learning technique. Under this framework,
we developed the MAP-CSP and VB-CSP algorithms for use
in real-time single-trial EEG classification and exploratory
EEG analysis, respectively. Their algorithmic efficacy and
superiority were demonstrated by the successful analyses
of synthetic and experimental EEG data sets.

Questions that remain to be addressed in the future
include the following: 1) Although the models presented
in this paper exploit the spatial structure of the multichan-
nel EEG signals, temporal dynamics are not fully charac-
terized by the IID assumption. More sophisticated time-
series modeling techniques are required to account for the
temporal dependency; 2) It may not always be viable to
use a unimodal variational posterior as the proxy for a
potentially multimodal posterior distribution. Thus it would
be interesting to know the degree of multimodality of the
true posterior distribution under model (14), and to make
comparison with the unimodal VB solution. This can be
empirically assessed using the Markov chain Monte Carlo
(MCMC) strategy, which is capable of numerically repre-
senting the true posterior distribution, as opposed to the
approximate nature of VB [59]; 3) Further effort is required
to improve the slow convergence of VB-CSP.
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