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Abstract

A high order shear deformation theory is used teelitg a discrete model for the structural
and sensitivity analyses allowing for the matedatribution and sizing optimization of

functionally graded material (FGM) structures. Timgte element formulation for general

FGM plate-shell type structures is presented, andraconforming triangular flat plate/shell

element with 24 degrees of freedom for the germadlidisplacements is used. The
formulation accounts for geometric and material Im@ar behaviour, free vibrations and
linear buckling analyses, and their analytical gratlbased sensitivities. The p-index of the
power—law material distribution and the thicknese d@he design variables. Mass,
displacement, fundamental frequency and criticaddloare the objective functions or
constraints. The optimization solutions, obtaingdabFeasible Arc Interior Point gradient-
based algorithm, for some plate-shell examplepsented for benchmarking purposes.

1. Introduction

In an effort to develop the super heat resistanteri@ds, Koizumi [1] first proposed the
concept of Functionally Graded Material (FGM). Togdi FGM plate-shell type structures are
made of materials characterized by a continuousitv@n of the material properties over the
thickness direction by mixing two different matdésjiametal and ceramic. The metal-ceramic
FGM plates and shells are widely used in aircigigce vehicles, reactor vessels, and other
engineering applications.

Structures made of composite materials have bedplyused to satisfy high performance
demands. In such structures, stress singularitiag atcur at the interface between two
different materials. In contrast, in FGM plate-$h&ttuctures the smooth and continuous
variation of the properties from one surface todtteer eliminates abrupt changes in the stress
and displacement distributions.
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In certain applications, structures can experiefarge elastic deformations and finite
rotations. Geometric nonlinearity plays a significaole in the behaviour of a plate or shell
structures, especially when it undergoes largerdeditions. In addition, material nonlinearity
has a significant role in the behaviour of thesacstires.

Significant research in FGM structures has beeredanthe recent years, but only a few
works could be found involving the optimization thiese type of structures and much less
involving the optimization of these structures ddesng nonlinear behaviour. The authors,
Moita et al. [2] have published recently a paperesehstatic nonlinear analysis was
investigated and in another work, Moita et al. fidye addressed the linear buckling of these
structures. In both these works, the authors hastioned a significant number of references
which have been considered in the formulation ardccémparison of results. In the present
paper, only a few of those works will be mentioreed follows. Reddy and Arciniega [4]
presented free vibration analysis of FGM platesie $ame authors [5] carried out the large
deformation analysis of FGM shells. Kim et al. [Blesented the geometric nonlinear
analysis of functionally graded material plates ahdlls using a four-node quasi-conforming
shell element. Zhao and Liew [7] analyzed the mw@r response of functionally graded
ceramic—metal shell panels under mechanical andhtiidoading, using a displacement field
expressed in terms of a set of mesh-free kerndicfgmfunctions. Ramu and Mohanty [8]
applied the finite element method, using the ctadsplate theory, for the modelling and
buckling analysis of FGM rectangular plates, undeiaxial and biaxial compression loads
along with simply supported boundary conditions.

Recently, some new models were developed [9,1®11déaling with nano and FGM
structures. These models could be extend to conéeengtructural optimization.

Regarding the structural optimization involving FGbdlates and shells there is a lack of
publications specifically devoted to this subje@the following recent works can be
mentioned, among others:

Cho et al [13] have applied artificial neural netlwd ANN) to the material composition
optimization of heat-resisting functionally gradedterials (FGMs).

Chen et al [14] have presented a numerical tecleniqu performing sensitivity analysis of
coupled thermomechanical problems involving FGMbgere the design variables were the
volume fractions of the constituents and structushbpe parameters and the design
optimization problem solved by the sequential Im@@gramming.

Goupee et al [15] have proposed a methodology Her multi-objective optimization of
material distribution in FGMs, with temperature-dedent material properties for steady
thermomechanical processes for metal/ceramic andalimetal, based in a Genetic
Algorithm.

Goupee at al [16] have combined an optimizatiores@where in a first problem, the peak
residual stress is minimized when the functiongligded component is cooled from a high
fabrication temperature and in a second problem rntass of a graded component is
minimized with constraints on the peak effectiveess and maximum temperature
experienced by the metal.

Vel et al [17] have proposed a methodology for rindti-objective optimization of material
distribution of FGM cylindrical shells for steadirfermomechanical processes where the
volume fractions at the control points were choggthe design variables and were optimized
using an elitist, non-dominated sorting multi-obijee Genetic algorithm.

Xia et al [18] proposed for the simultaneous optaion of the material properties and the
topology of FGM structures, determining the optinmalume fractions of the materials and
the structural topology to maximize the performanéehe structure, by using sensitivity
analysis to obtain the descent directions.



Na et al [19] have performed the volume fractiomirojzation of FGM composite panels by
considering stress reduction and thermo-mechahigzkling behaviour improvement.
Mozafari et al [20] have presented an Imperiali@®mpetitive Algorithm, an universal
search strategy that was inspired by thacept of socio-political competition among
empires, for optimizing the critical buckling load plates made of FGM plates with variable
thickness.

Kou et al [21] proposed a particle swarm optim@atmethod to optimize FGM structures
and compared with classical mathematical progrargroased optimizers.

Noh et al [22] have noted that nowadays the capaditthe manufacturing techniques of
FGM may not yield the target volume fraction anddeal with that uncertainty in the
manufacturing process a so-called reliability-basksign optimization for FGM was
presented involving design of experiments and clamgig the volume fractions of
homogenized FGM layers and material propertieseagyd variables.

Vatanabe et al. [23] have proposed a methodologged on topology optimization and
homogenization, to the optimal design of FGM piexoposites for energy harvesting
applications considering the influence of piezogiecpolarization directions and the
influence of material gradation.

Ashjari et al [24] performed the optimization of teidal distribution in FGM plates where the
volume fractions at control points were selectedlesign variables, using two evolutionary
algorithms: Real-coded genetic algorithm; and peErgwarm optimization algorithm.

Loja [25] has studied the use of particle swarmoizition technique for the maximization
of the bending stiffness of a FGM sandwich beanmgusymbolic computation.

Taheri et al [26] presented the eigenfrequencynup#tion of FGM structures within the
framework of isogeometric analysis (IGA) combinitige shape and material composition
optimization.

Taheri et al [27] presented an isogeometrical pmioce for optimization of material
composition of FGM plates allowing for the gradatiof material properties through patches,
considering the volume fractions of the constitseas the design variables and solving the
optimization problem using mathematical programming

Wang et al [28] have studied the FGM design optatien of pressure vessels subjected to
thermo-mechanical loading by using the ANSYS patamdesign language.

Shi et al [29] have presented a shape optimizatiethod for designing functionally graded
(FG) sandwich structures with two different matisrito minimize the compliance of these
structures under a volume constraint, using theeni@tderivative and adjoint methods. FG
sandwich structures with two sets of metal-ceramaterials, aluminium-alumina and
aluminium-zirconia, were given as examples to yahe validity of the method.

Roque et al. [30] have used a differential evolutiptimization technique to find the volume
fraction that maximizes the first natural frequeffrGM beams.

Very recently, Tsiatas et al [31] have employed iffeiential Evolution technique for
optimizing the natural frequencies of axially FGabes and arches. The evaluation of the
objective function required the solution of a fagbration problem of an arch with variable
mass and stiffness properties, where the arches medelled using a generic curved beam
model that includes both axial and transverse dedtion and the problem was solved using
the analogue equation method (AEM) for hyperbolitfecential equations with variable
coefficients.

Shabana et al [32] have used particle swarm opditioiz technique to minimize the induced
stresses in FGM cylinders subjected to pressurdiriga where the design variables were
volume fractions of the constituent materials.

Andrianov et al [33] have performed a strain analgsd optimal design of FGM rods and
beams with small inclusions using a homogenizgtimtedure.



Lieu et al [34] have presented a numerical apprdacimodeling and optimizing the ceramic
volume fraction distribution of FGM plates subjézthermo-mechanical loadings employing
an adaptive hybrid evolutionary firefly algorithm $olve compliance minimization problems
with volume constraints.

Hao Li et al [35] have developed a topology optiatian method for the computational
design of functionally graded cellular compositesting auxetic metamaterials.

Franco et al [36] developed a multiobjective desigtimization scheme for ceramic—metal
FGM plates with properties varying through the khiess direction, where constrained
optimization is conducted for different behaviobjectives like the maximization of buckling
load or fundamental natural frequency, mass miration and material cost minimization.
The constraints were stress based failure critand other structural response constraints or
manufacturing limitations and the design variablesre the index of the power-law
distribution in the metal-ceramic graded materiadl ¢he thicknesses of the graded material
and/or the metal and ceramic faces and the optirmizaroblems were solved with two direct
search derivative-free algorithms.

The mechanical properties of FGMs are dependenh@fp-index of the power-law that
defines the volume fraction of the ceramic phasris] the FGM structures could be designed
to meet the specific requirements of each particalgplication. Accurate and efficient
structural analysis, design sensitivity analysid aptimization procedures are of fundamental
importance to accomplish this task. The objectivéhis work is to present the development
of analytical sensitivities for FGM structures, léaling the work of Moita et al. [37], and
previous works, [2] and [3], and to present somechearking optimizatiompplications of
plate-shell structures by using the Feasible Aterlar Point gradient-based algorithm.

2. Formulation of FGM Model

A FGM can be made by mixing two distinct isotromaterial phases, for example a ceramic
and a metal. The material properties of an FGMefsaell structures are assumed to change
continuously throughout the thickness, accordingh® volume fraction of the constituent
materials. Power-law function [38] and exponenfiahction [39] are commonly used to
describe the variations of material properties &M= However, in both power-law and
exponential functions, the stress concentrationmeapin one of the interfaces in which the
material is continuously but rapidly changing. Téfere, Chung and Chi [40] proposed a
sigmoid FGM, which was composed of two power-lawmctions to define a new volume
fraction. Chi and Chung [41] indicated that the a$ea sigmoid FGM could significantly
reduce the stress intensity factors of a crackety.b®o describe the volume fractions, the
power-law function is used here.

2.1 Power-law function

The volume fraction of the ceramic phase is defimecbrding to the power-law [40]:
Ve (2) = (0.5+EJ i 1)
Vi (2)=10-V, (2) laj

being Z1(-h/2; h/2), h the thickness of structure, andgkponent p a parameter that defines
the gradation of material properties across thektigss direction.



In the present work, the continuous variation @ thaterials mixture is approximated by the
using a certain number of virtual layers throughbetthickness direction - layer approach. In
this sense, the previous equations can be writteadch virtual layer as follows:

s \P
y4
VAR (0'5+?kj . VK =10-vk (2)

whereZ is the thickness coordinate of mid-surface of daghr.

Once the volume fractiom'é‘ and Vr‘; have been defined, the material properties (Hyaufh
virtual layer of an FGM can be determined by tHe af mixtures

H¥ = Vg He + Vi Hiy 3

where H denotes the Young’s modulus E, the Poissmtiov, the mass density, or any
other mechanical property.

Figure 1 shows the variation of Young’s modulushitigh the thickness, obtained using the
power-law function and a 20 layer approach foragpproximation through the thickness.
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Figure 1. Variation of Young’s modulus (Nfjithrough the thickness, obtained using the
power-law function and a 20 layer approach

3. Displacement Field, Strains and Constitutive Rations

The present theory considers large displacemenkssmall strains. The displacement field is
based on the Reddy’s third-order shear deformdkieary [42]:



ux,y.z) = uo(x,y) - 20, (x,y) + Z ol{ey(x,y) _%}

% y.2) =vo(x,y) + 28, (x,y) + 2 01{‘ ex(xly)_%_V;//o}
wixyz)=wixy) (4)

where ug, VoW are displacements of a generic point in the migdiége of the coréayer
referred to the local axes in tixg,z directions respectivelyf,, 6, are the rotations of the

normal to the middle plane, about tkxeaxis (clockwise) andy axis (anticlockwise),
owg/0x,0w/dy are the slopes of the tangents of the deformedsunifdice inx,y directions,

andc, = 4/3h2, with h denoting the total thickness of the structure.
The stress-strain relations for each layer k, @awitten as follows

o, =Qy & %)

where ok:{ox Oy Oy Ty, Tyz}T Is the stress vector ana, :{ax & Yay Yz nyT is the
strain vectorQ, is the elasticity matrix, given by:

1 Y%
0 0 0
1-v* 1-v?
v 1
0 0 0
1-v® 1-v?
0 0 1 0 0
Qu=E 2(1+v, ) =R ©6)
0 0 !
2(1+v,)
0 0 0 1
| 2(1+v,) |

For each layer, the linear elastic constitutiveagiqun is given by [43]:
~ _Q 0
o =Dy &, (7)

where G, are the resultant forces and moments, Bpdhe constitutive matrix. The previous
equation can be written as

N Zh, -z

- k+1 k 0

- Z Qk - 8K . (8)
k=1 n

(e}



In this work, geometrically non-linear behaviour EEM plate/shell type structures under
mechanical loading is also considered. To the gé&acay nonlinear behaviour, the Green’s

strain tensor is here considered. Its componemt<@nveniently represented in terms of the
linear and nonlinear parts of the strain tensor as

g, = {e. + g 9)

The linear strain components associated with tlsplatement field given above, can be
represented in a synthetic form:

80 + 7 80 +—3 8()
8:: :{ m Zk bk Z{ hg } (10)

where €7, ,€p €%, . €9 , €%, are, respectively, the vectors of membrane stiaémding

strain, shear strain and also the vectors of bgndirain and shear strain associated with
third-order terms. For example, in direction x tlaeg explicitly given by:

6\N0 OWO
s* =C 0, — 11
ox S 2( X ay j ( )

where ¢, :4/h2 and for the other components, which are omitte tier brevity, similar
equations with the obvious adaptations are used.

4. Finite Element Formulation

In the present work, a non-conforming triangulaatg@ishell finite element model is used,
having three nodes and eight degrees of freedomaqus: the displacemenui)i ' Vo, » W, »

the slopes (-ow,/dy), , (0w,/dx), and the rotationsd,;, 6,;, 6,. The rotatio®, is
introduced to consider a fictitious stiffness caméint Ky, to ellmlnate the problem of a
singular stiffness matrix for general shape stmasy43]. The element local displacements,
rotations and slopes, are expressed in terms ddlnadiables through shape functiohk
given in terms of area co-ordinatés [43]. The displacement field can be represented in

matrix form as:

u:Z(iNidi):Z Na ; dngidi:Na (12)
i=1

i=1

with



100 0 -z 0 -z+z% O
z=l0 10 2% 0 z-7% 0 0 (13)
001 0O 0 0 0 0

wherea andd; are the element and nodal displacement vectagectively,.

The membrane, bending and shear strains, as veeligher order bending and shear strains
can be represented by:

en=BMa ; g,=zBPa ; e,=B%a ; g5,=2°B™a ; e5=72B® a (14)

where theB™, B, B, BS andB™ are the components of the strain-displacementixnatr
B, which are given explicitly in [44].

The Virtual Work Principle equation, applied toirite element, can be written in the form:

N Kk K

Z{j [ 8.k Qe ek dz'dA®+ | | &.ef'ok dztdAe}:

k=1{ta®hy_ taA®hyg

N K (15)

A | ] 8 ,ek'ok dz'dA®
k=L taehyy

where O0° is the external virtual work. From this equatiowe obtain the element linear
stiffness matrixK | ,the element geometric stiffness makig, as well as element external

load vectorFS,, and the element internal force vedy, and are defined as follows:

N A

KE=| BT(sz deAe (16a)

A€ k=1
T( Na t

KE=[ G (zthG dA® (16b)
tAe k=1

e T N A 0t e

Fie = | B'| XDy | 1&¢ dA (16¢)
tAe k=1

These matrices and vectors are initially computethe local coordinate system attached to
the element and then the standard local to glofaaisformations are performed [43]. By

adding the contributions of all the elements in dognain, the system equilibrium equations
are obtained as:

t+At i-1 P t+At =
t+At (K L +Ko)| (AQ)I _HAI Fext_t+At (Fint)I (17)



whereK | , K, Fey, Fipi» Aq, are the system stiffness matrix, geometric stinestrix,

external load vector, internal load vector, andrentental displacement vector in global
coordinate system, respectively

Using the Newton-Raphson incremental-iterative me@thd5], the incremental equilibrium
path is obtained-or linear buckling analysis, we make use of omg éoad increment, and
equation (41) takes the following form:

(KL+K0)q:Fext 180

The instability takes place when the determinantthe tangential matrix is zero. The
corresponding eigenvalue problem can be solvea@imhg the critical load as follows

(KL"')‘cho)V:O ; CrFext:)‘cr Fext (19)

The dynamic equation is obtained from the Hamiksgorinciple. We can write:
tp| N he s T RT e TxATo [the 5T . ae
jtf > jjhl‘:lé‘)a B' QB adzdA®- [N da'py hl':lz Zdz/NadA® | [dt=0 (20)
k=1 Ae B A -

whereN is the shape functions matrix. For free vibratiargshave:
K -w?M)v=0 . (21)

The corresponding eigenvalue problem can be solwed the natural frequencies are
obtained. The mass mat& in equation (21) is defined by

M :INTipk(jhhszz dz) N dA . (22)
A k=1 k1

5. SENSITIVITY ANALYSIS IN P-FGM STRUCTURES

From the equations (2) and (3), the material prigge(H) of each layer k of an FGM, can be
written as a function of volume fracticmck

H* =V (He —Hp) +Hpm (23)
Differentiating in order to a general design valéal, we can write

dH® _dve
db db

_d 1_)\P
(HC_Hm)_E(()B*'Eij (Hc_Hm) (24)

For design variable p-index, we have



dHK 1_)P 1
— = 05+=7 | In05+=7 | (H.-H,) : H*=EgK ok 25
dp ( h kj ( h kj ( c m) p (25)

and for design variable thickness h, we have

k p1,—
- p(05+:;zkj (%)(Hc_Hm) :Hk:Ek,pk. (26)

5.1 Linear analysis

Differentiating the linear analysis equati#h, q = F,, we get

A K,
db KL (6b qj @7)

The element stiffness matrix given by equation {Ien also be written in the form:

N n _ ,n
K, =[BTy Q, 2kl ™%k g gp 128
A k=1 n

and its derivatives come as follows:

oKL _rpTy 9% Za~Z gga 120123457 (29a)
op A ka1 0p n
n _._n
Ky _ g7 § O Zins =2k BdA+jB Q| B "2k | gga (29b)
oh A = oh ohl  n
with a;f)" = abk c, from equation (6), ang— is given by equations (25) and (26).

5.2 Nonlinear analysis

The sensitivities of the displacement vector andtlload, are obtained as shown in Moita et
al. [37] resulting in

dg _ —1( dFey  OF )
A -—K —ext _ 7 int 30
ab - T \H e e (30)

VT aFigt le dFext
dub db db

= (31)
db vT ngt




where the derivative of the internal force vecsgiven by

n _.n
i T oty jpT § O T 0 1ga (3
b A b A & o n

5.3 Fundamental frequency

From the eigenvalue problem in equation (21), waiobafter development, the sensitivity of
the fundamental frequency, as well as the sensitiof frequency constraint defined by
P=1-w/wy<0, as follows

di = iVT oK L _ wz oM (33)
db 2w ob ob
dap __ 1 VT[OKL o amjv (34)
db 20wy, db ob
where the derivatives of element mass matrix, egu#R2), are given by:
N Ni+1
oM =[NT| 3 | 272 dz %% | NdA (35a)
o0 A |k hy ap
N N N hegzT
M _NTl S T 2722k | NdA+ [NT Y oy 222 donda (35h)
h A k=1 hk Gh A k=1 hk h

5.4 Critical load

From the equation (19), we obtain, after developgmeéime sensitivity of critical load
parametef\, and of the critical load constraint defined §y=A., /Ao —1<0, as follows

dA oK oK
b :VT[ b, N aboJ Y (36)
|
W _ 1 7KL _y Ko, _g (37)
db Ao b " ob
where
Ko _ 167G ga (38)

b A b



5.6 Effective stress constraint

Considering the Huber-Mises criterion, for the ca$ean isotropic material, the effective
stresso is given by

(e :[(t oll)i + (tczz) ‘- (t 011 tcy22) kt3 (tclz) c+3 (tcls) k+3 (t 023) E} " (39)

The effective stress constraint, for the preserdet is defined as follows

U= Ok _ [t(cll) E”(tﬁzz)ﬁ _(tolltGZZ)k +3(t012)§+3(t013)§+3(t023)§]1/2 (40)
(oy )k (Ov)
where
'op® =Q, 18, =Q, B™+2zB"+2°B™")a
‘0 =Qx 8 =Qx (B°+2°B™)a 1o

and t means current time (at the end of the finetement) andy , for each virtual layer is
obtained as follows [2,46]:

o =0y, (vm + 15 EmVJ 2)
q+E

whereq is the stress-strain transfer parameter give 6] andthe ratio g/Ec is taken as
0.60-0.80, based on the micro-indentation experimen

The sensitivity of effective stress constraintisrt given by:

EIREIR I “)

where the derivatives c(ﬁtﬂ/ ab)k and (an/ aa)k are given explicitly in the Appendix.
6. Optimization

In the present work the objective of optimizatiato find the design variablds that
minimize or maximize an objective function, subjextertain constraints:

min ¢ (g,b) or max ¢ (q,b)
subjectto @' (q,b)<0,i=0,1,..n
b'<b<b" 44)



where b'andb" are the lower and upper limits of the design \@es, andg is the global
displacements vector.

The optimization problem is solved by using a geatlibased algorithm FAIPA, the Feasible
Arc Interior Point Algorithm, developed by Hersktsvet al. [47-48].

7. Applications
7.1 Optimization of a simply supported square FGM fate — Linear Analysis

First, we consider the optimization problem of aiag simply supported FGM plate with
constituents Silicon Nitride, having the followimgechanical properties:.E 348.430 GPa

pc = 2370 kg/m3v. = 0.24 and Stainless Steel, having the propelfigs: 201.040 GPagy, =
8166 kg/m, vim = 0.3262. The length of the plate sides is a =n0.&nd the thickness of the
plate is h = 0.035 m. In this numerical example,compare the optimization results obtained
with the present model with those published by EvaGorreia et al. [36] for two different
optimization problems. In the initial design theatel has a p-index of 1.0. The design
variables of the optimization problem are the pex@nd the thickness of the plate. In the
first optimization problem, the design objective tie maximization of the fundamental
natural frequency. In the second optimization peobl the design objective is the
minimization of the plate overall mass. In bothse&s a constraint is imposed on the
fundamental natural frequencg000< » < 8000(rad/s).

The optimization results are compared in Tablent] a very good agreement is achieved,
with the alternative solutions of Franco Correiakf36] obtained by using a derivative free
method, the Global and Local Optimization with BireSearch algorithm (GLODS).
Although both models use higher-order shear defoomatheories, the different finite
element geometries and mesh sizes do justify tladl siifferences obtained.

Table 1. Comparison of optimization solutions

Solutions Objective functions Design variables

Fundamental natural

frequency (rad/s) Mass (kg) Index p Thickness (mm)
Initial design
Present model 5855.04 46.09 1.0 35
Correia et al. [36] 5760.81 46.10 1.0 35
1* optimization problem
Present model 8000.00 103.74 3.8 59.5
Correia et al. [36] 8000.00 101.20 3.4 59.1
2" optimization problem
Present model 5790.00 21.37 0.2 25.7

Correia et al. [36] 5705.85 21.50 0.2 25.8




7.2 Optimization of a simply supported square FGM plate— Nonlinear Analysis

The optimization of a simply supported square FGstgpmade of Zirconia and Stainless
Steel, subjected to transverse uniform load andnba& side-to-thickness ratio of a/h=60
(a=0.6 m, h=0.01m) is now considered with a nomlir@nalysis. Zirconia has the following
mechanical properties:cE 151 GPap. = 3000 kg/m andv, =0.3. Stainless Steel has the
following mechanical properties; & 207.7877 GPay,= 8166 kg/ni, vy, = 0.3177.

The analytical sensitivities accuracy comparisopeigsormed for this example, with a p-index
p=5.0. By considering first a static nonlineanalysis, the sensitivities of the central
displacement wand of the effective stress were obtained at the end of the incremental
iterative process with F =125 kNmIn a free-vibration analysis, the sensitivity tbie
fundamental frequency was also calculated. In Table results obtained with the present
method of analytical sensitivities are comparedhwihose calculated by Global Finite
Differences (GFD) and a good agreement can be wixdehe results obtained for mass,
centre displacement and fundamental frequency fasicion of the power law exponent p
(varying between 0.1 and 10.0) are shown in Figurerom the Figure 2 it can be observed
that the minimum mass and the maximum fundamergguency are obtained when p=0.1,
but the minimum centre displacement is obtaineg#d0.

30

25 -

20
o (rad/s)

w (mm) 15 -
m (kg)
T —mass (kg)
5 —displacement x 5 (mm)
f. frequency x 0.02 (rad/s)
O T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10

p-index

Figure 2. Variation of mass, displacement and feagy versus p-index



Table 2. Sensitivities for the simply supported F@lsite. Comparison between
analytical and Global Finite Differences (GFD).

Sensitivity GFD Analytical
Variable p Variable h Variable p Variable h
Displacement w  -2.91x10° -9.01x10" -2.74x10° -9.30x10

= Ok
? (oy), -1.68x10° -68.71 -1.59x10°  -70.10
Fund. Frequencw -4.74 84878.7 -4.77 82724.6

The initial design of the plate is taken with appexent p = 1.0 which corresponds to a mass
of m = 20.1 kg. The centre displacement and effecttress in nonlinear behaviour and the
fundamental frequency were evaluated for the indiesign. For the load level F = 125
kN/m?, corresponding to three increments, the centnglatisment and effective stress were
we=3.73 mm ando =1540MPa, respectively. The stresses have been evaluatiad amid-
surface of the considered 20 virtual layers in \Wwtitee panel has been discretized through the

thickness and it was consideret s, .ssee- 40 MPa andq= 120 GPa. For the initial

design, the fundamental frequency of the plateinbthby solving the eigenvalue problem,
was o = 948.25 rad/s.

The optimization problem consisted in searchingpbeer law exponent p that minimize the
mass of the plate considering the following constsa maximum center displacement
Wmax < 40mm; maximum effective stress<oy,__ ; and minimum fundamental frequency

with the constrainto> H%82rad/s The optimal design was achieved for p = 0.28 with
corresponding mass m = 14.86 kg. The optimizasults are presented in Table 3.

Table 3. Optimal design results for the simply sapgd FGM plate.
Initial Variable p m (kg) w(mm) o (MPa) w (rad/s)

design
1.0 20.10 3.73 154.0 948.25
Constraint Constraint  Constraint
Optimal we<4.0 0<o0y w=9482
design
0.28 14.86 4.08P 155.3 1060.0

@) active constraint

7.3 Optimization of a hinged functionally graded clindrical panel

The optimization problem of a FGM cylindrical shpinel as represented in Figure 3 is now
considered. The shell has the straight sides hiageldthe curved sides free. The geometry is
defined by: R= 2.54 m, L = 0.508 m, the subtendegleais 2=0.2 rad, h=0.0126 m. The
panel has been modelled by using an 8x8 finite eldrmesh. The constituents are Zirconia
for the ceramic and Aluminium for the metal wittetfollowing mechanical properties; E



151 GPap. = 3000 kg/m, Em = 70 GPapm = 2707 kg/m, ve = vin = 0.3. Considering a power
law exponent p = 5 the cylindrical panel has a no@$s = 8.96 kg.

The panel is subjected to a centre point referévan iy = 60 KN. In geometrically nonlinear
analysis using an incremental-iterative procesgemtre displacement w7.96 mm was
obtained with 6 increments (F=51.0 kN). In a figttimization level the goal was to
minimize the centre displacement considering thegudaw exponent p as design variable. It
was considered that the p-index was restrictechéorange of: 0.2 < p < 10. In a second
optimization level the design variable was the kha&ss of the panel and the objective
function was the minimization of the mass of thei@ure. Two constraints were considered:
the maximum centre displacementwf, ., < 40mm; and a maximum effective stress (at the

metal surface) oD < g, _ , consideringdy yymnum = 25 MPa andg = 120 GPa. In order to

consider these constraints a geometric (G) andaterally (M) nonlinear analysis were
required. Table 4 presents the optimization reswith the values of the constraints,
objective functions and design variables for theahand optimal designs.

For the second level of the optimization, consiugtihe panel divided into 4 groups of finite
elements, as shown in Figure 4 (symmetry considletied optimal design of the shell can be
obtained for the values of the design variablegmin Table 5, corresponding to the mass m
= 8.68 kg. Figure 5 shows the load-displacemetiisptor the initial design of the structure
and for the optimal one.

X

Figure 3. Cylindrical FGM panel.
(Upper face - ceramic: z = - h/2; lower face - rheta + h/2).



Table 4. Optimal design results for the hinged-f#&M cylindrical panel.

(2)

Cylindrical Panel Initial Optimal
1% level of optimization

Variable p 5.0 0.2
Mass (kg) 8.96 9.60
Objective:min(wg) (mm) 11.60 3.40
2" level of optimization

Variable h (mm) 12.60 12.0
Constraint: w = 4.0 (mm) 3.40 4.0
Constraint:c (MPa) 285.0 284.0
Objective: min(m) (kg) 9.60 9.15

Table 5. Optimal design results for the hinged-F&M
cylindrical panel using 4 groups of finite elements

"d svel of optimization

Initial Optimal
Objective:min(m) (kg) 9.60 8.68
Constraint: ws 4.0 (mm) 3.40 4.00
Constraint:c < 285.0 (MPa) 272.13
Thickness h(mm) 12.60
Element group number
1 9.40
2 11.16
3 12.34
4 12.68
/ 4 4 /
) group 4 \ / / /
/
group 3 \ ‘ (b)
group 2 ~
groupl—y// LAY / /

Figure 4. Initial (a) and optimal (b) thicknesstdizution in the panel.
Definition of the 4 groups of elements used indp&mization process.
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7.4 Optimization of a simply-supported functionallygraded cylindrical panel

An FGM cylindrical shell panel with all sides sigpsupported is now considered. The
geometry is defined by: R=20.0 m, L = 2.0 m anbtended angle @=0.1 rad, thickness h =
0.02 m. A 1&10 finite element mesh has been used. Tbestituents are Alumina as
ceramic and Aluminium as metal. The material prope of both constituents are,
respectively: E=380 GPap~=3000 kg/m, v. =0.3, E,=70 GPap,=2707 kg/nf andvy=0.3.
The initial panel with a p-index p=5.0 and corresgiag mass m=220.42 kg, is subjected to a
centre point reference load ofF60 kN. In a geometrically nonlinear analysis usangy
incremental-iterative process, a centre displacémiew.=12.9 mm and an effective stress of
0=117/0MPa are obtained with 3 increments for the load Ié¢vel 30 kN. The fundamental
frequency obtained for this initial plate designswa=2625rad/s.

The optimization consists in searching the power &ponent p and thickness h, taken
jointly, that minimizes the mass of panel, subjddi® three constraints: the maximum centre
displacement constramt,,,, < 45mm, the effective stress constraii@ <oy, and the

minimum fundamental frequenay,,;, = 4000rad/s The stresses have been evaluated at the
mid-surface of the considered 20 virtual layerswhich the panel has been discretized
through the thickness, consideriog y,m.um = 25 MPa andg = 250 GPa. Table 6 describes

the results of the optimization process.



Table 6. Optimal design results for the simply sapgd FGM cylindrical panel

Cylindrical panel itlal Optimal
Variable p 5.0 0.1
Thickness h (mm) .20 18.33
Objective: min(m) (kg) 220.4 218.0
Constraint: w(mm)<4.5 12.9 4.5
Constraint:«: (rad/s)>400.0 262.5 405.6
Constraint:o (MPa)< o 117.0 86.4

7.5 Snap-Through optimization of a hinged functiondy graded cylindrical panel

In this example the FGM cylindrical shell has theaight sides simply-supported (hinged)
and the curved sides free, as in section 7.3. Eoengtry is defined by: R=2.54 m, L = 0.508
m and subtended anglé20.2 rad, h=0.0126 m, and it is modelled by an Bxi8e element
mesh. Theconstituents are Zirconia as ceramic and Aluminasrmetal with the following
properties: E= 151 GPap. = 3000 kg/m, v¢ =0.3, E,=70 GPapn=2707 kg/ni, vm, = 0.3.

The initial panel with a p-index p=0.1 is subjecteda centre point reference loagE60 kN.

For this specific situation of geometry and bougdawnditions, snap-through occurs. Thus
we can try to get a new cylindrical panel with ts&me boundary conditions, geometry,
applied load and mass, but where the snap-throhghgmena does not occur. To do so, the
panel is divided into 16 groups of elements, aswshan Figure 6, to allow for some
possibility of variation of thickness over the pademain. The optimization consists in the
maximization of the limit load under a mass constrgequal to the mass of the initial panel),
and the design variables — thicknessg$oh each group - varying between the boundary
values of 5 and 35 mm.

In this type of optimization it is observed thatmso restarts need to be done. Since the
maximization of objective function — limit load Haws for some different sets of thickness
distribution that fulfil the requirement of avoidjrthe snap-through effect, different sets of
thickness distribution over the panel have beemidaened. Table 7 shows two possible sets of
thickness distribution, where for panel A the finass is 0.16% less than the initial mass. In
Figure 7 the load-displacement paths are presdutetthe initial and for those two possible
solutions for the optimal panel.

Figure 6. Definition of the 16 group numbers
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Figure 7. Load-displacement paths for initial aptimal panel configurations

Table 7. Thickness distribution

Element Initial Thickness distributions
group  thicknessé¥d (mm)
number Panel A Panel B
1 12.6 50 54
2 5.0 54
3 5.0 54
4 51 6.3
5 6.4 6.3
6 6.4 6.3
7 6.2 6.3
8 6.0 7.2
9 11.0 7.2
10 11.0 7.2
11 10.6 7.2
12 10.4 31.3
13 19.6 31.3
14 28.2 31.3
15 32.0 31.3
16 33.4 31.3

W Equal thickness for all elements in the initiasige



8. CONCLUSIONS

In the present work, a high order shear deformati@ory was applied to develop a discrete
model for the structural and sensitivity analyséewang for the material distribution and
sizing optimization of functionally graded matergstuctures. The formulation accounts for
geometric and material nonlinear behaviour, frégations and linear buckling analyses, and
their analytical sensitivities aimed to be usecdhwite gradient-based optimization algorithm.
The p-index of the power—law material distributiand the thickness were considered as
design variables.

Several optimization solutions obtained by using ghadient based method FAIPA, Feasible
Arc Interior Point Algorithm, for simple plate argthell FGM structures were presented for
benchmarking purposes.

The comparison of the present gradient-based agiion results were in good agreement
with alternative values obtained by a derivativeefralgorithm for two simple optimization
problems of FGM plates with linear behaviour.

The accuracy and efficiency of the analytical genses with respect to p-index and the
thickness of the plate-shell FGM structures havenbealidated by comparison with the
sensitivities calculated by global finite differesc

The optimization process performed with the gradiEsed algorithm FAIPA, has showed
good efficiency and proved to be a good numerioal to obtain the optimal design of
functionally graded plate and shell structuresegitim linear analysis as in geometric and
materially nonlinear analysis.
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APPENDIX

Derivatives of effective stress constraint.
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For FGM structures, the vector distances for eadual layer k, can be given by the
following equations:

h _h
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Thus we can write:
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The corresponding derivatives are then given by:
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or in a general form:
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Also, the distance to the mid-plan of the virtustdr k, can be written in the form:
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Thus for the derivatives we have:
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