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Abstract

The mechanical buckling of curved beams made of functionally graded materials is studies in this paper. The equilibrium and stability

equations of curved beams under mechanical loads are derived. Using proper approximate functions for the displacement components,

the stability equations are employed to obtain the related eigenvalues associated with the buckling load of the curved beam. Closed-form

solutions are obtained for mechanical buckling of curved beams with doubly symmetric cross section subjected to uniform distributed

radial load and pure bending moment. The results are validated with the known data in the literature for beams with isotropic materials.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Research on the buckling of curved beams is a subject of
intensive interest. The critical buckling loads of a curved
beam, under the uniform bending and uniform compres-
sion, are obtained by Timoshenko and Gere [1] using the
equilibrium approach. Based on an analogy between the
generalized strains for straight and curved members,
Vlasov [2] and Yoo [3] started their formulations to obtain
the buckling loads of a curved beam from the straight
beam theory. By replacing the generalized strains for the
straight beam with those of the curved beam, Vlasov [2]
worked directly on the equilibrium equations and Yoo [3]
proceeded with the potential energy expression followed by
a variational procedure. The stability equations and the
resulting buckling loads, as achieved by Vlasov and Yoo,
are different.

Yang and Kuo [4] applied the principle of virtual
displacements to derive the buckling equations of curved
beams. Papangelis and Trahair [5] investigated the same
problem using the potential energy approach. Rajasekaran
and Padmanabhan [6] derived their own equilibrium and
stability equations of curved beams based on the principle
e front matter r 2006 Elsevier Ltd. All rights reserved.
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of virtual work. Kuo and Yang [7] presented a stability
theory for symmetric thin-walled curved beams considering
the curvature effects. Kang and Yoo [8] derived the
analytical solutions for the stability behavior of a simply
supported thin-walled curved beam having a doubly
symmetric open section. Kim et al. [9] improved the
formulation for the spatial stability of curved beams with
nonsymmetric cross section based on the displacement
field, considering the constant curvature effects and the
second-order terms of finite semi-tangential rotations. The
in-plane and out-of-plane buckling of steel arches are
presented by Refs. [10–12]. The flexural-torsional buckling
of steel arches is investigated by Ref. [13].
Functionally graded materials (FGMs) are advanced and

heat-resisting materials used in modern technologies as
structural elements. FGMs have received considerable
attention in many engineering applications since they were
first reported in 1984 in Japan. FGMs are heterogeneous
materials in which the elastic and thermal properties change
from one surface to the other, gradually and continuously.
The material is constructed by smoothly changing the
volume fraction of the constituent materials. Typically, these
materials are made from a mixture of ceramic and metal.
With the increased use of these materials in the industry, the
behavior of the FGM structures under thermal and
mechanical loads are essential.

www.elsevier.com/locate/ijmecsci
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Fig. 1. Coordinate system, notation of displacement parameters, and

stress results.
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Thermal buckling of rings made of FGMs is presented
by Shahsiah and Eslami [14]. Buckling of FGM rectangular
plates under axial load, is studied by Briman [15]. Ng et al.
[16] derived the stability equations and buckling loads of
FGM circular cylindrical shells under axial harmonic
loading condition. Thermal and mechanical buckling of
FGM plates are studied by Javaheri and Eslami [17–19]
and Najafizadeh and Eslami [20–22]. Thermal stability of
FGM circular cylindrical shells based on the Donnell
stability equations are investigated by Shahsiah and
Eslami [25].

In this paper, a curved beam made of FGM is
considered. The Reddy’s model for the variation of the
modules of elasticity is considered for the material
distribution across the thickness of the curved beam. The
equilibrium and stability equations of curved beams under
mechanical loads are derived using the variational princi-
ple. The closed-form solutions for buckling load related to
the uniform compression and pure bending moment are
obtained. The results are reduced to the mechanical
buckling loads of curved beams made of isotropic
materials.

2. Linearized Helinger–Reissner principle

The Helinger–Reissner principle for a general continuum
subjected to surface forces is expressed as

d
Z

V

ttij
t�ij dV �

Z
S

tTi
tui dS

� �
¼ 0, (1)

where ttij is the second Piola–Kirchhoff stress tensor, t�ij is
the Green–Lagrange strain tensor, tT i and tui are the
surface force and displacement vector, respectively. The
sign d refers to the first variation and the superscript t

indicates the total variables. Total variables are decom-
posed into the initial and incremental variables as

tui ¼ ui þ u�i ;
t�ij ¼ �ij ¼ eij þ Zij þ e�ij, (2)

ttij¼
0tij þ tij ;

tT i¼
0Ti þ Ti, (3)

where the superscript 0 represents the value the terms
satisfying the equilibrium equations. The terms with no
superscript represent the incremental variables. Here, ui

and u�i denote the first-order and second-order terms of the
displacement components, respectively. Also, eij, Zij , and e�ij
are the conventional linear, the nonlinear, and the linear
strain increment due to the first- and second-order terms of
the displacement components, respectively. The Green–
Lagrange strains, including the second-order displacement
terms, are expressed as

�ij ¼
1
2
fðui þ u�i Þ;j þ ðuj þ u�j Þ;i

þ ðuk þ u�kÞ;i þ ðuk þ u�kÞ;jg ð4Þ

in which

eij ¼
1
2ðui;j þ uj;iÞ; Zij ¼

1
2uk;i:uk;j, (5)
e�ij ¼
1
2
ðu�i;j þ u�j;iÞ. (6)

The constraint equation of the self-equilibrating initial
stress and surface forces is [23]Z 0

V

tijeij dV ¼

Z 0

S

Tidui ds. (7)

Substituting Eqs. (2), (3), and (7) into (1) and neglecting
terms of order three and higher, the linearized Helinger–-
Reissner principle for the general continuum subjected to
initial stresses is express

d
Z

V

½tijeijþ
0tijðZij þ e�ijÞ�dV

�

�

Z 0

S

Tiu
�
i ds�

Z
S

Tiui ds

�
¼ 0. ð8Þ

2.1. Displacement field of cross section

Displacement parameters for a thin-walled cross section
arch with right-handed coordinate system are shown in
Fig. 1. The x1-axis coincides with the centroid of the cross
section, x2, and x3 are the principle inertia axes, ux, uy, uz

are the rigid body translations of the cross section along
the x1-, x2-, x3-direction at the centroid and w1, w2, w3 are
the rigid body rotations about the centroid x2- and x3-
direction, respectively.
Since the shear deformation is assumed to be negligible,

the expressions for the rigid body rotations w2;w3 and the
warping parameter f may be derived from the Frent’s
formula [6] as

w2 ¼ �u0z þ
ux

R
; w3 ¼ u0y, (9)

f ¼ �y0 �
u0y

R
. (10)
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In addition, we define the functions g and c as

g ¼ u0x þ
uz

R
; c ¼ u00y �

y
R
, (11)

where the superscript prime indicates the derivative with
respect to x1, y ¼ w1, and R is the centroid radius of the
arch. The derivation procedure for the displacement field
including the second-order terms of finite rotations are
given in the previous studies by Kim et al. [9]. The total
displacement field according to Kim et al. is expressed as

u1 ¼ ux � x2u0y � x3 u0z �
ux

R

� �
� y0 þ

u0y

R

� �
jðx2; x3Þ, (12)

u2 ¼ uy � x3y; u3 ¼ uz þ x2y, (13)

u�1 ¼
1

2
�y u0z �

ux

R

� �
x2 þ yu0yx3

h i
, (14)

u�2 ¼
1

2
�ðy2 þ u

02
y Þx2 � u0z �

ux

R

� �
u0yx3

h i
, (15)

u�3 ¼
1

2
� u0z �

ux

R

� �
u0yx2 � y2 þ u0z �

ux

R

� �2� �
x3

� �
, (16)

where jðx2; x3Þ is the warping function defined at the
centroid.

The section properties of the curved beam may be
defined as

I2 ¼

Z
A

x2
3 dA; I3 ¼

Z
A

x2
2 dA; I23 ¼

Z
A

x2x3 dA,

Ij ¼

Z
A

j2 dA; Ij2 ¼

Z
A

jx3 dA; Ij3 ¼

Z
A

jx2 dA,

I222 ¼

Z
A

x3
3 dA; I223 ¼

Z
A

x2x
2
3 dA; I233 ¼

Z
A

x3x
2
2 dA,

I333 ¼

Z
A

x3
2 dA; Ij22 ¼

Z
A

jx2
3 dA; Ij33 ¼

Z
A

jx2
2 dA,

Ij23 ¼

Z
A

jx2x3 dA; Ijj2 ¼

Z
A

j2x3 dA,

Ijj3 ¼

Z
A

j2x2 dA; Î2 ¼ I2 �
I222

R
,

Î3 ¼ I3 �
I233

R
; Îj ¼ Ij �

Ijj2

R
,

Îj2 ¼ Ij2 �
Ij22

R
; Îj3 ¼ Ij3 �

Ij23

R
,

Î23 ¼ I23 �
I223

R
. ð17Þ

For an arch with doubly symmetric cross section, the
section properties I23, If2, If3, I222, I223, I233, I333, If22,
If33, If23, Iff2, Iff3 become zero.
2.2. Strain–displacement relations and stress results

Complete linear strain–displacement relations due to the
first-order displacement parameters based on Eq. (5), using
Eqs. (12) and (13), are

e11 ¼ u0x þ
uz

R
� x2 u00y �

y
R

� ��

�x3 u00z �
u0x
R

� �
� j y00 þ

u00y

R

� ��
R

Rþ x3
, ð18Þ

2e12 ¼ �x3 y0 þ
u0y

R

� �
R

Rþ x3
� y0 þ

u0y

R

� �
j;2, (19)

2e13 ¼ x2 þ
j
R

� �
y0 þ

u0y

R

� �
R

Rþ x3
� y0 þ

u0y

R

� �
j;3, (20)

where f2 and f3 are the derivatives of f with respect to x2

and x3, respectively, and the nonlinear strain–displacement
relations due to the first-order displacement parameters
based on Eqs. (5) and (6), using Eqs. (12)–(16), are

Z11 ¼
1

2
u0x þ

uz

R
� x2 u00y �

y
R

� ��"

�x3 u00z �
u0x
R

� �
� j y00 þ

u00y

R

� ��2

þ fu0y � x3y
0
g2 þ u0z þ x2y

0
�

1

R
ux

�

þ
1

R
x2u
0
y þ

1

R
x3 u0z �

ux

R

� �

þ
1

R
j y0 þ

u0y

R

� ��2
#

R

Rþ x3

� �2

, ð21Þ

Z12 ¼
1

2
�u0y u0x þ

uz

R
� x2 u00y �

y
R

� ���

�x3 u00z �
u0x
R

� �
� j y00 þ

u00y

R

� ��

þ y u0z þ x2y
0
�

1

R
ux þ

1

R
x2u
0
y

�

þ
1

R
x3 u0z �

ux

R

� �
þ

1

R
j y0 þ

u0y

R

� ���
R

Rþ x3

� �
, ð22Þ

Z13 ¼
1

2
� u0z �

ux

R

� �
u0x þ

uz

R
� x2 u00y �

y
R

� ���

�x3 u00z �
u0x
R

� �
� j y00 þ

u00y

R

� ��

�yðu00y � x3y
0
Þ

�
R

Rþ x3
, ð23Þ

e�11 ¼
1

2
x2 y u0z �

ux

R

� �n o0�

þ
1

2R
x2u
0
y u0z �

ux

R

� �
þ x3ðyu0yÞ

0

�
1

2R
x3y

2
�

1

2R
x3 u0z �

ux

R

� �2� R

Rþ x3
, ð24Þ
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2e�12 ¼
1

2
�ðy2 þ u

02
y Þ
0x2 � u00z �

u0x
R

� �
u0yx3

�

� u0z �
ux

R

� �
u00yx3

�
R

Rþ x3
�

1

2
y u0z �

ux

R

� �
, ð25Þ

2e�13 ¼
1

2
� u0y u0z �

ux

R

� �� �0
x2

��

� y2 þ u0z �
ux

R

� �2� �0
x3

�
�

1

2R
yx2 u0z �

ux

R

� �n

þyu0yx3

o� R

Rþ x3
þ

1

2
yu0y. ð26Þ

Assuming the rigid in-plane deformation state, the incre-
mental stress resultants may be defined as

F1 ¼

Z
A

t11 dA; F2 ¼

Z
A

t12 dA,

F3 ¼

Z
A

t13 dA, ð27Þ

M2 ¼

Z
A

t11x3 dA; M3 ¼ �

Z
A

t11x2 dA,

Mj ¼

Z
A

t11jdA; M1 ¼

Z
A

ðt13x2 � t12x3ÞdA. ð28Þ

Now, a functionally graded beam made of ceramic and
metal is considered. In Eqs. (27) and (28), the material
properties of the FGM beam must be considered. The
beam is assumed to be graded across the thickness, along
the x3-direction. The linearized form of the material
properties proposed by Praveen and Reddy [24] are
assumed as

Eðx3Þ ¼ Em þ Ecm

2x3 þ h

2h

� �
¼ Ē þ

Ecm

h
x3, (29)

vðx3Þ ¼ v0, (30)

where Em and Ec are the modulus of elasticity of the metal
and ceramic constituent materials of the beam, respec-
tively. The Poisson’s ratio n of metal and ceramic are
assumed to be identical. Term Ecm is

Ecm ¼ Ec � Em; Ē ¼ 1
2
ðEc þ EmÞ,

acm ¼ ac � am. ð31Þ

Here, substituting Eqs. (28) and (31) in Eqs. (26) and (27)
and simplifying the results, give the final expression for
stress results as

F1 ¼ Ē Aþ
1

R2
Î2

� �
þ Ecm �

1

Rh
Î2

� �� �
g

þ Ē
1

R
Î23

� �
þ Ecm �

1

h
Î23

� �� �
c

þ Ē �
1

R
Î2

� �
þ Ecm

1

h
Î2

� �� �
w02

þ Ē �
1

R
Îj2

� �
þ Ecm

1

h
Îj2

� �� �
f 0, ð32Þ
M2 ¼ Ē �
1

R
Î2

� �
þ Ecm

1

h
Î2

� �� �
g

þ Ēð�Î23Þ þ Ecm �
1

h
I223

� �� �
c

þ ĒðÎ2Þ þ Ecm

1

2
I222

� �� �
w02

þ ĒðÎj2Þ þ Ecm

1

h
Îj22

� �� �
f 0, ð33Þ

M3 ¼ Ē
1

R
Î23

� �
þ Ecm �

1

h
Î23

� �� �
g

þ ĒðÎ3Þ þ Ecm

1

h
Î233

� �� �
c

þ Ēð�Î23Þ þ Ecm �
1

h
I223

� �� �
w02

þ Ēð�Î3jÞ þ Ecm
1

h
Î23j

� �� �
f 0, ð34Þ

Mj ¼ Ē �
1

R
Îj2

� �
þ Ecm

1

h
Îj2

� �� �
g

þ Ēð�Îj3Þ þ Ecm �
1

h
Î23j

� �� �
c

þ ĒðÎj2Þ þ Ecm
1

h
Ij22

� �� �
w02

þ ĒðÎjÞ þ Ecm

1

h
Ijj2

� �� �
f 0. ð35Þ
3. Total potential energy of curved beams

The total potential energy of a curved beam subjected to
mechanical forces and moments, consisting of elastic strain
energy PE and the potential energy of external forces PG1

and PG2
may be written as

PE ¼
1

2

Z L

0

Z
A

½s11e11 þ 2s12e12

þ 2s13e13�
Rþ x3

R
dAdx1, ð36Þ

PG1
¼

1

2

Z L

0

Z
A

½0t11Z11 þ 2 0t12Z12

þ 2 0t13Z13�
Rþ x3

R
dAdx1, ð37Þ

PG2
¼

1

2

Z L

0

Z
A

½0t11e�11 þ 2 0t12e�12

þ 2 0t13e�13�
Rþ x3

R
dAdx1. ð38Þ

Substituting the linear strain–displacement relations
(17)–(19) into Eq. (36), considering the Hooke’s law
modified for the FGM beam, and integrating over the
cross section of the beam, the elastic strain energy PE is
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derived as

PE ¼
1

2

Z L

0

ĒA u0x þ
uz

R

� �2
þ ĒÎ3 u00z �

u0x
R

� �
u00y �

y
R

� ��

þ 2ĒÎ3j y00 þ
u00y

R

� �
u00y �

y
R

� �
þ ĒÎ2 u00z �

u0x
R

� �2

þ 2ĒÎj2 y00 þ
u00y

R

� �
u00z �

u0x
R

� �
þ ĒÎj y00 þ

u00y

R

� �2

�
Ecm

h
Î23 u00y �

y
R

� �
u0x þ

uz

R

� �

þ
Ecm

h
Î2 �u00z þ

u0x
R

� �
u00y þ

uz

R

� �

þ
Ecm

h
Îj2 �y

00
�

u00y

R

� �
u0x þ

uz

R

� �

�
Ecm

h
Î23 u0x þ

uz

R

� �
u00y þ

y
R

� �
þ

Ecm

h
Î233 u00y �

y
R

� �2

þ
Ecm

h
Î223 u00z �

u0x
R

� �
u00y �

y
R

� �

�
Ecm

h
Î23j y00 þ

u00y

R

� �
u00y �

y
R

� �
þ

Ecm

h
Î222 u00z �

u0x
R

� �2

þ
Ecm

h
Îj22 y00 þ

u00y

R

� �
u00z �

u0x
R

� �

�
Ecm

h
Îj2 u0x þ

uz

R

� �
y00 þ

u00y

R

� �

þ
Ecm

h
Î23j u00y �

y
R

� �
y00 þ

u00y

R

� �

�
Ecm

h
Îj22 �u00z þ

u0x
R

� �
y00 þ

u00y

R

� �

þ
Ecm

h
Îjj2 y00 þ

u00y

R

� �
þ GJ y0 þ

u0y

R

� ��
dx1. ð39Þ

To derive the expression for PG1
and PG2

, the
inextensibility condition and the thickness-curvature effects
are considered as

u0x þ
uz

R
ffi 0, (40)

R

Rþ x3
¼ 1�

x3

R
þ

x2
3

R2
. (41)

Substituting the strain–displacement relations from Eqs.
(20)–(25) into Eqs. (37) and (38) considering the inexten-
sibility condition (40) and the thickness-curvature effect
(41), the expression for PG1

and PG2
are derived. The final

expression for the potential energy functional PG is
represented as

PG ¼
1

2

Z L

0

0F 1 u
02
y þ u0z �

ux

R

� �2� ��

þ0MP y0 þ
u0y

R

� �2

�0F 3ðu
0
yyÞ
þ0M2 u00y �
y
R

� �
y� u0y y0 þ

u0y

R

� �� �

þ
20Mj

R
u0z �

ux

R

� �
y0 þ

u0y

R

� �

þ0M3 u00z �
u0x
R

� �
y� u0z �

ux

R

� �
y0 þ

u0y

R

� �� �

þ0F 2y u0z �
ux

R

� �
þ0M1 u0z �

ux

R

� �
u00y �

y
R

� ��

�u0y u00z �
u0x
R

� ���
dx1, ð42Þ

where G is defined as

G ¼
Eðx3Þ

2ð1þ uÞ
¼

Ē þ ðEcm=hÞx3

2ð1þ uÞ
. (43)

4. In-plane buckling

The in-plane buckling problem of circular curved arches
subjected to uniformly distributed radial loads q is investigated.
Only the terms relevant to the in-plane displacement
component from Eqs. (39) and (42) are considered in the
expression of total potential energy functional given by

Pin ¼
1

2

Z L

0

ĒI2 Ru00z þ
uz

R2

� �2

þ0F1 u0z �
ux

R

� �2" #
dx1.

(44)

Considering the inextensibility condition (40), total potential
energy may be rewritten as

Pin ¼
1

2

Z L

0

ĒI2 Ru000x þ
u0x
R

� �2
"

þ0F 1R
2 u00x �

ux

R2

� �2
#
dx1. ð45Þ

To derive the second variation of the potential energy function,
a perturbation for ux is considered as

ux ¼ ux0
þ ux1

¼ ux0
þ �xðxÞ, (46)

where � is a constant value and xðxÞ is a function that satisfies
the given boundary conditions and the continuity conditions.
The derivatives of the perturbed terms are

u0x ¼ u0x0
þ �x0ðxÞ,

u00x ¼ u00x0
þ �x00ðxÞ,

u000x ¼ u000x0
þ �x000ðxÞ. ð47Þ

These terms are substituted in Eq. (45) and ignoring the terms
with higher order than second-order powers, the second
variation of the potential energy is obtained and is

1

2
d2P ¼

1

2
�2
Z L

0

ĒI2 R2x000ðxÞ
2
þ

1

R2
x0ðxÞ

2
þ 2x000ðxÞx

0
ðxÞ

� ��

þ0F1R
2 x00ðxÞ

2
þ

1

R4
x2ðxÞ �

2

R2
x00ðxÞxðxÞ

� ��
dx1 ð48Þ
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¼
1

2

Z L

0

ĒI2 R2u000x1

2
þ

1

R2
u0x1

2
þ 2u000x1

u0x1

� ��

þ0F1R2 u00x1

2
þ

1

R4
u2

x1
�

2

R2
u00x1

ux1

� ��
dx1. ð49Þ

The stability equation is obtained from the second variation of
the potential energy function as

dðd2PÞ ¼ 0. (50)

Using the Euler equation and applying to the functional of the
second variation of the potential energy function results into
the expression for the stability equation given by

ðR4uðviÞ
x1
þ 2R2uðivÞx1

þ u00x1
Þ

þ K2 R2uðivÞx1
þ 2u00x1

þ
ux1

R2

� �
¼ 0, ð51Þ

where

0F 1 ¼ qR; K2 ¼
qR3

ĒI2
. (52)

The general solution of the above equation is obtained as

ux1
¼ A cos

x1

R
þ B sin

x1

R

þ Cx1 cos
x1

R
þDx1 sin

x1

R

þ E cos
Kx1

R
þ F sin

Kx1

R
; �

L

2
px1p

L

2
. ð53Þ

Since the assumed geometric and loading conditions of the
curved beam are symmetric with respect to the x1-axis, the
solution given by expression (53) may be rewritten as

ux1
¼ A cos

x1

R
þDx1 sin

x1

R
þ E cos

Kx1

R
,

�
L

2
px1p

L

2
. ð54Þ

For the simply supported ends, the boundary conditions are
expressed by

ux1
jx1¼�L=2 ¼ 0,

u0x1
jx1¼�L=2 ¼ 0,

u000x1
jx1¼�L=2 ¼ 0. ð55Þ

Using the above conditions on ux1
, a system of three

homogeneous equations are obtained to give

cos a
L

2
sin a cosKa

�
1

R
sin a sin aþ

L

2R
cos a �

K

R
sinKa

1

R3
sin a �

3

R2
sin a�

L

2R3
cos a

K3

R3
sinKa

2
66666664

3
77777775

A

B

C

2
664

3
775

¼

0

0

0

2
664
3
775, ð56Þ
where a ¼ L=2R. Setting the determinant of Eqs. (56) equal to
zero, the following equation is obtained

K3 sin a cos a sinKaþ K3a sinKa

� 3K sin a cos a sinKa

� Ka sinKaþ 2sin2a cosKa ¼ 0. ð57Þ

The radial in-plane buckling load is obtained by solving Eq.
(57) for the value of K, where the buckling load is included in
the expression for K form Eq. (52).
5. Out-of-plane buckling

By retaining only terms that are relevant to the lateral
displacement uy and the torsional rotation y in Eqs. (39)
and (42), the total potential energy function corresponding
to the out-of-plane buckling is obtained as

Pout ¼
1

2

Z L

0

ĒI3 u00y �
y
R

� �2

þ ĒIj y00 þ
u00y

R

� �2
"

þ
Ē

2ð1þ uÞ
J y0 þ

u0y

R

� �2

þ0MP y0 þ
u0y

R

� �2

þ0MP u00y �
y
R

� �
y� u0y y0 þ

u0y

R

� �� �#
. ð58Þ

Referring to the studies of Kim et al. [9], 0MP may be
written as

0MP ¼ b1F 1 þ b2M2 þ b3M3 þ bjMj, (59)

where the coefficients are given by

b1 ¼
I2 þ I3

A
; b2 ¼

b1
R
þ

I222 þ I233

RI2
,

b3 ¼
Ij33Ij3

I3Ij � I2j3
; bj ¼

Ij33I3

I3Ij � I2j3
. ð60Þ

For the stability analysis of doubly symmetric cross section
curved beams subjected to in-plane forces, MP in Eq. (60)
is reduced to

MP ¼ b2M2 ¼
b1
R

M2 ¼
I2 þ I3

AR
M2. (61)

The lateral displacement and torsional rotation for lateral
buckling of simply supported circular arches may be
assumed as

uy ¼ B sin lx1; y ¼ D sin lx1, (62)

where l ¼ np=L. Substituting the displacement function
into Eq. (59), the following characteristics equations is
obtained by invoking the stationary of P with respect to
the unknown coefficients

A11 A12

A21 A22

" #
B

D

� �
¼

0

0

� �
, (63)
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where

A11 ¼ ĒI3l
4
þ

Ē

2ð1þ uÞ
J
l2

R2

þ ĒIj
l4

R2
þ0M2l

2 b2
R2
�

1

R

� �
, ð64Þ

A12 ¼ ĒI3
l2

R
þ

Ē

2ð1þ uÞ
J
l2

R

þ ĒIj
l4

R
þ0M2l

2 b2
R
� 1

� �
, ð65Þ

A12 ¼ A21, (66)

A22 ¼ ĒI3
1

R2
þ

Ē

2ð1þ uÞ
Jl2

þ ĒIjl
4
þ0M2 b2l

2
�

1

R

� �
. ð67Þ

To obtain the nontrivial solution of Eq. (63), the
determinant of the coefficients is set equal to zero. This
leads to a quadratic equation in terms of 0M2 given by

A0
1M

2
cr þ A0

2M
2
cr þ A3 ¼ 0, (68)

where 0F1 was set equal to zero, and

A1 ¼ 1�
b2
R

� �
, (69)
Table 1

Mechanical buckling of curved beam under uniformly distributed radial load

Angle FGM Isotropic metal Yang and Kuo [4

30 3595 491.31 488.22

60 3587 486.54 477.91

90 3587 486.54 460.78

180 2940.2 401.63 368.68

270 839 113.81 215

360 0 0 0

Table 2

Mechanical buckling of circular curved beam under pure bending (out-of-plan

Angle FGM Isotropic metal Vlasov

0 �168838 �23125 �23132

168838 23125 23125

30 �41212.8 �5654.83 �5657

672372.5 91950.8 91950

60 �19764.9 �2715.18 �2713

1282068.2 175305.1 175307

90 �11225.24 �1541 �1541

1904681 260428 260432

180 0 0 0

3786911.6 517775.67 517774

270 6281.9 862.2 862

5674085 775801.4 775802

360 11308.7 1552.5 1552

7562514.4 1033998.6 1034002
A2 ¼ ĒI3 b2gþ
1

R

� �
þ

Ē

2ð1þ uÞR
J þ ĒIj

l2

R
, (70)

A3 ¼ g ĒI3
Ē

2ð1þ uÞ
J þ ĒIjl

2

� �
, (71)

g ¼ l2 �
1

R2
. (72)

The out-of-plane buckling moment of the FGM curved
beam is obtained from the solution of Eq. (68) for Mcr.

6. Results

A ceramic-metal functionally graded curved beam is
considered. The material and geometric properties are
given as

L ¼ 45 000mm; A ¼ 1440mm2;

J ¼ 14 140mm4; I2 ¼ 930 000mm4;

I3 ¼ 2 730 000mm4; Ij ¼ 2070� 106 mm6;

Em ¼ 27 880N=mm2; Ec ¼ 380 000N=mm2; u ¼ 0:3:

Using the data given above, a functionally graded curved
beam is considered and the related mechanical buckling
loads are obtained, using Eq. (57). To validate the results,
the analytical solution presented in this study is reduced for
the isotropic material (metal) and the resulting expression
(in-plane buckling) FcrðNÞ

] Kang and Yoo [8] Rajasekaran and Padmanabhan

478.76 488.13

464.64 477.66

432 458.94

276.5 340.32

94 124.8

0 0

e buckling) McrðNÞ

[2] Papangelis and Trahair [5] Yang and Kuo [4]

.6 �23132.6 �23132.6

23125 23125

.2 �5500 �5657.22

.8 91950.8 91950.8

.36 �2411.8 �2713.36

175307 175307

�1155.77 �1541

.46 260432.46 260432.46

0 0

517774 517783.5

.2 �1077.73 862.22

.3 775802.3 775802.3

.5 �4657.7 1552.6

.4 103366 1034021.5
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Fig. 2. Curved beam under distributed radial load.

Fig. 3. Curved beam under pure bending (out-of-plane buckling).

H. Shafiee et al. / International Journal of Mechanical Sciences 48 (2006) 907–915914
for in-plane buckling is compared with those given by Refs.
[2,4–6,8] for a doubly symmetric cross section curved beam
under in-plane distributed radial load. The numerical
results are shown in Table 1. The comparison is well
justified.

The out-of-plane buckling bending moment of a FGM
curved beam, using the above numerical data, are given in
Table 2. Also, to validate the results, the analytical solution
presented in this study is reduced for the isotropic material
(metal) and the resulting expression for out-of-plane
buckling is compared with those given by Refs. [2,4–6,8]
for a doubly symmetric cross section curved beam. The
comparison is shown in Table 2. The comparison is well
justified (Figs. 2 and 3).

7. Conclusion

For spatial stability analysis of circular curved beams, the
elastic strain energy and potential energy due to initial stress
were derived by applying the principle of virtual work. The
Reddy’s model for the Young’s modules is considered. The
analytical solutions were presented for in-plane and out-of-
plane buckling of a doubly symmetric cross section FGM
curved beam subjected to uniform radial load and pure
bending moment under simply supported edge conditions.
The following conclusions may be derived:
1.
 The buckling load for FGM curved beam is greater than
the corresponding value for the isotropic metallic curved
beam.
2.
 The results of this study, reduced to the in-plane
buckling of a doubly symmetric isotropic simply
supported curved beam subjected to uniform compres-
sion, is well compared with those reported by Yang and
Kuo [4], Rajasekaran and Padmanabhan [6] and Kang
and Yoo [8].
3.
 The analytical results of this paper for the out-of-plane
buckling of a doubly symmetric curved beam with
simply supported edge conditions subjected to pure
bending, when reduced to the metallic curved beam, is
well compared with those reported by Yang and Kuo
[4], Rajasekaran and Padmanabhan [6] and Kang and
Yoo [8].
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