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Identification of power transformer models from frequency
response data: A case study
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Abstract

A recent frequency-domain, subspace-based algorithm as well as the well-known nonlinear least-squares algorithm are
used in the identification of a power transformer whose frequency response has a dynamic range of 1MHz. When the
model complexity is not restricted, both the algorithms produce highly accurate models. Low-complexity models are
extracted from the high-order identified ones via the method of balanced truncation. It is observed that this two-step
procedure yields more accurate results than an approach of direct identification of a low-order model. The utility of
identified models for the purpose of transformer fault detection is also briefly discussed. ( 1998 Elsevier Science B.V.
All rights reserved.

Zusammenfassung

Ein neuartiger, Unterraum-basierter Algorithmus im Frequenzbereich und der wohlbekannte nichtlineare Kleinste-
Quadrate Algorithmus werden zur Identifikation eines Hochspannungstransformators verwendet, dessen U® bertragungs-
fuktion einen Dynamikbereich von 1MHz besitzt. Bei unbeschränkter Modellkomplexität liefern beide Algorithmen
äu{erst genaue Modelle. Modelle geringerer Komplexität werden aus denjenigen abgeleitet, die als Modelle höherer
Ordnung identifiziert wurden, indem die Methode des ausgewogenen Abschneidens angewandt wird. Es wird beobachtet,
da{ diese Zweischritt-Prozedur genauere Ergebnisse liefert als ein Ansatz, der auf direkter Identifikation eines Modelles
geringerer Ordnung abzielt. Die Tauglichkeit der identifizierten Modelle hinsichtlich der Detektion eines Transfor-
matorausfalls wird ebenfalls kurz diskutiert. ( 1998 Elsevier Science B.V. All rights reserved.

Résumé

Un algorithme fréquentiel, basé sur le sous-espace, et récemment introduit, ainsi que l’algorithme aux moindres carrés
non linéaires bien connu sont utilisés pour l’identification d’un transformateur de puissance dont la réponse en fréquence
a une gamme dynamique de 1MHz. Quand la complexité du modèle n’est pas restreinte, les deux algorithmes produisent
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des résultats très précis. Les modèles de complexité réduite sont extraits des modèles identifiés d’ordre élevé via la
méthode de troncation balancée. Il est observé que cette procédure en deux étapes fournit des résultats plus précis qu’une
approche d’identification directe d’une modèle réduit. L’utilité des modèles identifiés à des fins de détection de mauvais
fonctionnement du transformateur est également discutée brièvement. ( 1998 Elsevier Science B.V. All rights reserved.
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squares

1. Introduction

Frequency response methods are often used in
practice to obtain a non-parametric model of a lin-
ear system. This identification may be performed
without significant a priori knowledge of the plant.
Further, it may be accomplished in the presence of
significant process and measurement noise, since
signal-to-noise ratio may be optimized at each
frequency by focusing excitation energy at one
frequency at a time and by adjusting excitation
amplitude to the plant saturation limit. Also, data
obtained from different experiments can easily be
combined in the frequency domain.

The problem addressed in this paper is that of
fitting a real-rational model to given frequency
response data. In the classical prediction error ap-
proach [16—19], a system is modeled as a fraction
of two real coefficient polynomials and a nonlinear
least-squares fit to data is sought. This nonlinear
parametric optimization problem is solved by
iterative, numerical search. Recently however,
non-iterative frequency-domain subspace-based
identification algorithms have been developed
which deliver state-space models [10,12]. These
subspace-based algorithms have been successfully
used in the identification of high-order flexible
structures [10,12] and power transformers [1].

This paper is a continuation of the work initiated
in [1]. There are two main objectives for this paper.
Firstly, via case study where the dynamic range of
frequency response data is 1MHz, the properties of
frequency-domain subspace-based and nonlinear
least-squares identification algorithms are illus-
trated. The second objective is to develop a recipe
for the effective application of both algorithms to
the identification of power transformers.

A power transformer is a critical unit within
a power network. A large transformer failure could

cause long interruptions and costly repairs.
Therefore, it is desirable to detect potential failures
as early as possible. Model based diagnosis such
as the transfer function method is becoming in-
creasingly popular in transformer condition
monitoring. The transfer function method is parti-
cularly useful in identifying faults such as winding
deformation and displacement, inter-turn and in-
ter-disc faults. As well, in the design of power
transformers, high frequency modeling is essential
for the study of impulse voltage and switching
surge distribution, winding integrity and insula-
tion diagnosis and also for the purposes of condi-
tion monitoring, models that are accurate over
a bandwidth greater than 1 MHz are required.
Most often accurate models in a bandwidth up to
10MHz are required for condition monitoring pur-
poses. Finally, accurate parameter identification
of transformers may lead to economical design
of transformer insulation against failure due
to ferro-resonance and through fault generated
stresses.

The analysis of the frequency response of power
transformers was originally proposed by Dick and
Even for the detection of winding movement in
large power transformers and as a practical main-
tenance tool [4]. Certain advantages of this ap-
proach over the low voltage impulse method [8]
were reported in [4]. This method has been mainly
limited to interpreting faults by detecting changes
in successive frequency response tests. However,
this approach does not explain the changes in rela-
tion to a suitable mathematical model. In [6,2],
transformer frequency response is divided into low,
medium, and high frequency ranges and either
a second or a third order model fit is sought for
each data segment using the nonlinear least-
squares method. The models obtained by this
procedure poorly fit to the observed data, and in
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particular are not capable of modeling high fre-
quency dynamics of a transformer.

In [1], the subspace-based algorithm [12] was
used in the identification of a three-winding power
transformer and accurate high order transfer func-
tion models were obtained. It was also demon-
strated that at low frequencies, the transfer function
of a three-winding power transformer can accurate-
ly be modeled by a sixth order model. In this
contribution, we demonstrate the same conclusions
but with the extensions that via non-linear least-
squares identification a fourth order model is
shown to accurately describe two-winding trans-
formers.

In the current paper, as in [1] we focus on math-
ematical models of transformers rather than their
equivalent circuits. One reason is that we maintain
the idea that once an accurate analytic model of the
transformer under consideration is available, it is
possible to derive a transformer equivalent circuit
by a suitable transformation if necessary. The sec-
ond reason is that the traditional second or third
order transformer equivalent circuits [4,2,11,5,6],
do not capture the dynamics of realistic power
transformers. Currently we are investigating trans-
former equivalent circuits that more closely match
transfer functions of low order identified models.
Apart from the desire to link mathematical and
physical models, a mathematical model is of prac-
tical interest in its own right for the purposes of
studying the time-domain response of transformer
and monitoring transformer condition ‘in service’.

The paper is organised as follows. In Section 2,
we describe the experimental data to which the
subspace-based and the nonlinear least-squares
identification algorithms will be applied. In Sec-
tion 3, we present our identification results applied
to a particular two-winding transformer which has
been in service. Section 4 concludes the paper.

2. Experimental data

In this section, we describe the experimental data
set used in the case study. The data set was ob-
tained from the Advanced Technology Center of
Pacific Power International, Newcastle, Australia.
A two-winding 23/345kV 390 MVA generator

transformer, which has been in service since 1970 at
Delta Power/Vales Point Power Station was tested
to determine the mechanical integrity of its wind-
ings. The transformer was prepared for test by
being removed from service and electrically isolated
from the transmission system. The transformer had
been re-clamped and in service prior to testing. The
frequency responses of phases A—C referred to the
secondary, whose magnitudes are plotted in Fig. 1,
were obtained by injecting a low voltage amplitude
into the primary winding of the transformer over
a frequency range of 50Hz to 1 MHz and measur-
ing the output voltage at the secondary winding.
We refer the interested reader to [7] for more
details on the experimental procedure. The num-
bers of the nonuniformly spaced frequency points
in Fig. 1 are 145, 147 and 161, respectively, for
phases A—C. Notice that all the three responses are
almost identical. For this reason, we will work only
with phase A frequency response.

3. Experimental identification results

In this section, we will discuss the results ob-
tained from application of two identification algo-
rithms to the transformer data. The first algorithm
presented in [12] is a subspace-based identification
algorithm. Its theoretical properties and applica-
tions to identification of lightly damped flexible
structures were reported in [12,13]. See [12] for
detailed motivation of this algorithm. This algo-
rithm was first used in power transformer identi-
fication in [1]. The other algorithm considered
in this paper is the well-known nonlinear least-
squares (NLS) identification algorithm [16,18]. The
NLS identification algorithm is implemented in the
command invfreqz in MATLAB’s Signal Process-
ing Toolbox [9]. In the current paper, the work
initiated in [1] is extended and the performances of
the two algorithms are investigated in a case study.

The continuous-time identification problem is
converted to an equivalent discrete-time identifica-
tion problem as in [12] by using the bilinear trans-
formation
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Fig. 1. Phase A—C frequency response magnitudes of the transformer.

Then the estimated continuous-time state-space
parameters are obtained by back transformation.
We take f twice the maximum of frequencies. For
greater flexibility, its value can be adjusted as well.

The quality of estimated models will be assessed
by two measures based on the fit between the data
and the model: the maximum error
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where G
k
, k"1,2, N, are given N noise-corrupted

samples of the frequency response function G and
GK denotes the identified model, and the root-
mean-square error (RMS)
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Applying the subspace-based algorithm to the
phase A frequency response of the transformer,
a sequence of models of order 2—35 are estimated
for q"40, which denotes the row dimension of the
Hankel matrix in [12] constructed from the se-
quence MG

k
NN
k/1

. The results are shown in Fig. 2.
From the graph, it is seen that both max and RMS
errors first decrease with increasing model order,
then remain at the same level for the model orders

greater than 10 with few exceptions. The computed
ten singular values in the subspace-based algorithm
are 4.3569, 1.5975, 0.0990, 0.0398, 0.0180, 0.0162,
0.0079, 0.0063, 0.0041, 0.0015, which suggest that
a second order model might adequately describe
the dynamics of the transformer. However the max
error of the second order model identified directly
by the algorithm is 1.0849. In Fig. 3, the measured
and the estimated 10th order identified model fre-
quency responses together with the model errors
are plotted.

This figure illustrates that the subspace-based
method yields an excellent fit in the frequency range
[0, 500 kHz]. The 10th order model has a max
error 0.2255 in comparison to the smallest error
0.2116 achieved by a 30th order model. The fit to
the data in the frequency range [500kHz, 1 MHz]
can be improved if a 30th order model is used.
Models delivered by the subspace-based algorithm
can be refined further by parametric optimization
techniques such as the maximum likelihood or pre-
diction error methods, but improvements by such
techniques are usually marginal [14].

The Hankel singular values of the 10th order
identified model are computed as 2.5558, 2.2457,
0.1232, 0.1065, 0.0219, 0.0205, 0.0125, 0.0108,
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Fig. 2. Model errors (1)—(2) for phase A response of the transformer using subspace-based algorithm.

Fig. 3. Measured and estimated 10th order model phase A frequency response magnitudes of the transformer with model error using
subspace-based algorithm.

0.0065, 0.0058. If a fourth order model is extracted
from the balanced realization of this model, the
max error of the reduced model is computed as
0.2248, which slightly improves the max error of the

10th order identified model. However, high fre-
quency dynamics of the transformer is not captured
by the fourth order model. Interestingly, the sub-
space-based algorithm yields a maximum error
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Fig. 4. Model errors (1)—(2) for phase A response of the transformer using nonlinear least-squares algorithm.

0.7446 for a fourth order identified model. The
balanced truncation technique yields maximum er-
rors of 0.2651 and 0.2553 for the second and the
third order reduced models as opposed to 1.0849
and 1.0710 produced by the direct application of
the algorithm.

Next, the NLS algorithm was applied to the
phase A frequency response so as to estimate a se-
quence of models of order 2—20. The results are
shown in Fig. 4. Except for the 3th, 6th and 13th
order models, the max errors produced by the algo-
rithm are almost equal for all identified models.
Fig. 5 shows the excellent fit of the 16th order iden-
tified model to the data, in particular at high fre-
quencies. The maximum error of the model is equal
to 0.2212. Notice that this identified model misses
the third mode.

The first ten Hankel singular values of the 16th
order identified model are 2.5740, 2.2665, 0.1267,
0.1095, 0.0231, 0.0216, 0.0138, 0.0125, 0.0087,
0.0085, which agree well with the Hankel singular
values of the 10th order identified model delivered
by the subspace-based algorithm. The truncations
of balanced realization of this model yielded maxi-
mum errors of 0.2167, 0.2667 and 0.2641, respec-
tively, for the fourth, the third and the second order
reduced models.

In Table 1, the coefficients of the polynomials
aL (s) and bK (s) in the fourth order model GK

"!-
(s)"

bK (s)/aL (s) obtained by the subspace-based and the
NLS algorithms followed by the balanced trunc-
ation method are shown. With the exception of
bK
3

and bK
4
, which contribute to GK

"!-
(s) only margin-

ally, the entries for the subspace-based algorithm in
the table are little different than those of the NLS
algorithm. Indeed, the natural frequencies com-
puted from Table 1 are 5030.6, 17224; 5027.9,
16910Hz, respectively, for the subspace-based and
the NLS algorithms and the corresponding damp-
ing coefficients are in turn 0.03229, 0.03740;
0.03182, 0.03662.

We have also tried the continuous-time nonlin-
ear least-squares algorithm as implemented by the
invfreqs command in MATLAB’s Signal Process-
ing Toolbox [9]. This algorithm yielded a similar
performance to the NLS algorithm. We reduced
high order identified models delivered by this algo-
rithm again by using the balanced truncation
method. However, it was not possible to obtain
balanced realizations directly from the identified
transfer functions, which is related to the fact that if
the system order is high, the poles and zeros of the
system are sensitive to polynomial factoring. We
overcame this problem by first computing the
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Fig. 5. Measured and estimated 16th order model phase A frequency response magnitudes of the transformer with model error using
nonlinear least-squares algorithm.

Table 1
Comparison of the subspace-based and the NLS parameter
estimates. The fourth order reduced models were obtained by
truncating balanced realizations of the identified models by the
subspace-based and the nonlinear least-squares algorithms. In
the table, GK

"!-
(s)"bK (s)/aL (s), aL (s)"s4#+3

k/0
aL
k
sk and bK (s)"

+4
k/0

bK
k
sk

Subspace NLS

aL
0

(]1019) 1.1816 1.1373
aL
1

(]1013) 6.4329 6.1236
aL
2

(]1010) 1.2847 1.2415
aL
3

(]104) 2.0275 1.9585

bK
0

(]1018) 7.7543 7.3389
bK
1

(]1013) 2.0651 2.1110
bK
2

(]109) 1.0762 0.9716
bK
3

(]103) 0.8832 1.5087
bK
4

(]10~3) 2.6445 !4.3861

frequency response of the high order identified
model at an arbitrarily chosen set of frequencies
and then using the subspace-based algorithm with
the computed frequency response samples at the
chosen set of frequencies to obtain a state-space
realization of the identified transfer function. This
method exactly retrieves an nth order transfer

function when the frequency response measure-
ments are noise-free and the number of measure-
ments is at least n#2 and, moreover, the returned
state-space realization is nearly balanced [12]. Fi-
nally a balancing transformation is performed on
this particular realization. We used the same set of
frequencies and q"40. This procedure and the
NLS algorithm followed by the balanced truncation
yielded almost the same reduced order models.

In Figs. 6 and 7, the measured and the 4th order
reduced model phase A frequency response magni-
tudes of the transformer with errors are plotted for
the two identification algorithms followed by the
balanced model reduction. Not surprisingly, the
final models are almost identical since the identified
models by the two algorithms are almost the same
in the bandwidth of the reduced models.

Figs. 6 and 7 also indicate that the dynamics of
a two-winding power transformer operating under
normal conditions can be captured by a 4th order
model in the frequency range [0, 40 kHz]. This
accurate model was obtained in two steps. In the
first step, an over-parameterized model structure
was chosen and either the subspace-based or the
nonlinear least-squares identification algorithm
was used. In the second step, a low complexity
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Fig. 6. Measured and estimated 4th order model phase A frequency response magnitude of the transformer with model error. The 4th
order model is obtained by balanced truncation from the 10th order identified model using subspace-based algorithm.

Fig. 7. Measured and estimated 4th order model phase A frequency response magnitude of the transformer with model error. The 4th
order model is obtained by balanced truncation from the 16th order identified model using nonlinear least-squares algorithm.

model was extracted from the high order model.
The approach that integrates subspace-based iden-
tification algorithm with model reduction and
parameter estimation algorithm was proposed by
Jacgues et al. [15] in the identification of lightly

damped flexible structures. The other approach
which integrates nonlinear least-squares identifica-
tion with model reduction was proposed by Bayard
[3] again in the context of flexible structure identi-
fication.
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Table 2
Correlation of model parameter changes to transformer fault
type

Parameter Type of fault

Inductances Disc deformation
(Primary & Secondary) Local breakdown

Winding short

Capacitances Disc movement
(Primary & Secondary) Buckling due to large mechan-

ical forces and moisture ingress

Resistances Shortened or broken disc
(Primary & Secondary) Partial discharge

Capacitance between Aging of insulation
Primary & Secondary

The next step is to link the coefficients MaL
k
N3
k/0

and
MbK

k
N2
k/0

to the primary, secondary and the core im-
pedance in a transformer equivalent circuit. Then it
will be possible to correlate the parameters of the
equivalent circuit to a fault type as shown in Table 2.
This approach is currently under investigation.

4. Conclusions

In a case study, we applied a recently developed
subspace-based and the nonlinear least-squares
identification algorithms to obtain parametric
transfer function of a two-winding power trans-
former from frequency response data. The two
algorithms yielded high order accurate models of
the transfer function of the power transformer
studied. Next we reduced the identified models to
obtain 4th order models. This integrated approach
for model development resulted in higher accuracy
than a direct identification approach.
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