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Abstract-This paper presents a model aimed at evaluating 
the effects of integrating Renewable Energy Sources (RES) in 

the electricity system, from the perspective of a system operator, 
taking into account the cost of Carbon Dioxide (C02) emissions. 
The model is especially suited to analyze the interactions of en­
ergy storage systems (ESS) with conventional generation sources, 
in the framework of reliable operation (n - 1). One of the most 
important consequences of high levels of RES in the network 
is the variability induced on the existing generation fleet, and 
the wear-and-tear derived from ramping conventional units to 
counteract the changes in RES output. Our Security-Constrained 
Optimal Power Flow (SC-OPF) optimizes the injection into the 
network, including the cost of changes between periods for a 
given horizon. The results show that the main benefits derived 
from ESS are the reduction in the provision of ancillary services 
from conventional generation sources. These services are instead 
provided by ESS units. This is an important additional revenue 
stream for storage system owners, especially in the face of the 
cost of capital of these resources. 

Index Terms-Ramping costs, Energy Storage Systems, Re­
newable Generation 

I. INTRODUCTION 

The constant balancing between supply and demand in the 
electricity sector make the operation of the system a challenge. 
This challenge becomes more difficult, as the uncertainty 
in the system increases with the increased penetration of 
renewable energy sources (RES) [1]. The purpose of this paper 
is to present a new formulation of a hybrid stochastic-robust 
optimization for look-ahead, security-constrained optimization 
of the operation of power systems. It is a form of stochastic 
optimization that is tractable in spite of the high dimensionality 
that results from taking into account the temporally linked 
probability distributions of stochastic variables such as wind 
generation. We also include reserve needs, contingency risks, 
storage device operation, ramping costs and demand functions 
[2]. The inter-temporal trade-offs and transversality of energy 
storage systems are a focus of the formulation. 

This paper is organized as follows. Section II discusses 
the previous literature and the background information to this 
problem, and introduces our model for operations. Section 
III includes a set of considerations for the calibration of 
the model. Section IV presents an application to a reduced 
network, taking into accounts the inputs necessary, and sum­
marizes the application to a case study. Concluding remarks 
are offered in section V 

II. BACKGROUND AND THEORETICAL FRAMEWORK 

The framework presented in this section has two purposes: 
first, it relates our model to past work, while showing its 

distinctive advantages in dealing with stochastic sources of 
noise. 

Second, it shows a simplified objective function, providing 
intuitive explanation of the tradeoffs occurring. Due to space 
constraints we provide a brief overview of the model and do 
not include the full model here. 

The electricity system is dispatched minimizing the total 
cost of delivering energy, subject to the technical and demand 
constraints for an Optimal Power Flow (OPF) [3]. As part 
of this optimization, both continuous and discrete variables 
are included, representing the cost of fuel and the startup and 
shutdown costs, combining the OPF and Unit Commitment 
(UC) problems [4]. 

The recent literature in stochastic programming applied to 
the electricity system studies the optimization performed by 
the System Operator (SO), with inclusion of uncertainty as ex­
post consideration [5], with estimation of the scenarios causing 
disturbances [6], [7], [8] or using robust [9] approaches. Our 
proposed model uses an ambiguity robust approach [10]. This 
is an intermediate approach between a stochastic and a robust 
optimization that has been proven in obtaining computationally 
efficient solutions avoiding problems with non economical 
feasibility. This can be generally expressed as 

min 
x 

(m;xIEs[G(x, s, E) l ) Subject to x E X 
(1) 

Where IEs is the expectation with respect to a random E with 
distribution s, the variable x depends on E, X is a convex set 
of feasible solutions and GO is a convex cost function in x. 
Our framework extends on a security constrained-OPF, with 
emphasis on security over a high probability set of scenarios. 

The schematics of the modeling are illustrated in figure 1, 
showing two intra-temporal high probability scenarios, each 
one tied to two low probability scenarios ("contingency OPF 
scenario") and 3 time periods. This model is implemented 
based on MATPOWER's extensible OPF architecture [11]. 

In our model, the SO seeks to maximize the total social wel­
fare, with the different components of the objective function 
including: 

1) The cost of energy delivered 
2) The cost of re-dispatching the system (e.g. deviations 

from contracts) 
3) The benefit that consumers receive, having all their load 

serviced (no load shedding cost) 
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Fig. l. Schematic of the Problem Structure 

4) The cost of reserves (up and down) for low probability 
events (e.g. contingency reserve) 

5) The cost of ancillary services, for high probability events 
(e.g. load following reserve) 

6) The cost incurred in the transitions (e.g. ramping or 
wear-and-tear cost) 

7) The residual cost of energy left in the ESS 

The main difference with our approach is the determination 
of the optimal amount of ancillary services (e.g. contingency 
reserve for low probability events, and load following reserve 
for high probability events) as part of the variables in the 
solution set [12]. This is especially important as the amount 
of stochastic source of generation increases [13]. 

A simplified version of the objective function is shown in 
equation (2) 

GitSk,Rr:;!�,LNSi '8k L L L 7l'tsk { L 
. tEg sEY' kEX's iE.Ytsk 

Incts(GitSk - Gitc)+ + Dec�s(Gitc - Gitsk)+] + 
L VOLLjLNS(Gtsk, Rtsk)jtsk }+ 

jE/t8k 

• The full set of inequality constraints (e.g. power genera­
tion limits) 

• The set of constraints for reserve, redispatch and contract 
deviations 

• The ramping limits for low probability events 
• The ramping limits for high probability events 
• Minimum startup and shutdown times, and integrality 

constraints 

Table I summarizes the variables considered in the reduced 
form. 

Our formulation is a potential means of improving the 
economic efficiency of power systems, especially with large 
amounts of variable generation, energy storage, or both. This 
model therefore is the first to our knowledge to robustly 
estimate the capacity needed for system operations. The fact 
that ancillary services are endogenously determined allows for 
an economic valuation of the resources that provide capac­
ity, while making sure compliance of reliably standards is 
maintained. It is important to note that our model assumes 
the system is not in a transient state. We call this model 
(generalized) Matpower Optimal Power Scheduler (mops). 

III.  CALIBRATION 

L Pt L [ct'" (Rt) + cR" (R�) + ct" (Lt)+A. Stochastic Inputs and Initial Conditions 
iE.Yt 

cLit (L�)l + L Pt L 
tEg 

[Rp�(Gits2 - Gits1)+ + Rp�(Gits2 - Gits,)+] + !s(Psc,Psd) 
(2) 

The constraints for the problem include 

• The full set of equality constraints (e.g. power balance 
equations) 

The inputs to the model include the characterization of 
the uncertainty in the stochastic resource (e.g. wind), and the 
establishment of appropriate initial conditions. 

The renewable resource considered is wind energy, dis­
cretized over a set of high probability cases (,scenarios'). This 
information is extracted using a principal component analysis 
(PCA) on wind data from the National Renewable Energy 
Laboratory Eastern Wind Integration Study [14], to obtain 4 
scenarios as shown in Figure 2. 



TABLE I 
DEFINITION OF VARIABLES, SIMPLIFIED FORMULATION 

xts 

yrtsk 

7rtsk 

Pt 
Gitsk 

Gitc 
Vtsk 

Pitsk 

P�t 
+ -

Pitsk' Pitsk 

CGO 
InctsO+ 
Dec� (-)+ 
VOLLj 
LNS(')jtsk 
Rt < RamPi 

ct(·) 
L� < RamPi 

Set of time periods considered, nt elements indexed by 
t. 

Set of buses in the system, nb elements. 
Set of states in the system in period t, ns elements 
indexed by s. 
Set of contingencies in the system in period t and state 
s, nc elements indexed by k. 
Set of generators in the system in period t, state s, and 
contingency k, ng elements indexed by i. 
Set of loads in the system in period t, state s, and 
contingency k, nl elements indexed by j. 
Probability of contingency k occurring, in state s, period 

t. 
Probability of reaching period t. 
Quantity of apparent power generated (MVA), active and 
reactive injections (Pitsk + v=-rqitsk)· 
Optimal contracted apparent power (MVA). 
Set of voltages in period t, state s and contingency k, 
nb elements for each bus in the system 
Set of angles in period t, state s and contingency k, nb 
elements 
Active power generated (MW), 0 refers to base case(s), 
ng elements. 
Optimal contracted active power (MW), ng elements. 
Upward/downward deviation from active power contract 
quantity for unit i in post-contingency state k of state s 
at time t, ng elements. 
Cost of generating (-) MVA of apparent power. 
Cost of increasing generation from contracted amount. 
Cost of decreasing generation from contracted amount. 
Value of Lost Load, ($). 
Load Not Served (MWh). 
(max(Gitsk) - Gitc)+, up reserves quantity (MW) in 
period t. 
Cost of providing (-) MW of upward reserves. 
(Gitc - min(Gitsk))+' down reserves quantity (MW). 
Cost of providing (-) MW of downward reserves. 
(max(Gi,t+l,s) - min( Gits))+, load follow up (MW) 

t tot+1. 
Cost of providing (-) MW of load follow up. 
(max(Gits) - min(Gi,t+l,s))+, load follow down 
(MW). 
Cost of providing (-) MW of load follow down. 
Cost of increasing generation from previous time period. 
Cost of decreasing generation from previous time period. 
Upward/downward load-following ramping reserves 
needed from unit i at time t for transition to time t + 1. 
Upward/downward load-following ramping reserve limits 
for unit i. 
Value of the leftover stored energy in terminal states. 

In terms of orthodox stochastic progranuning terminology 
[15], our approach 'recycles' the end nodes in every time pe­
riod in order to avoid the need to track individual trajectories. 

For the establishment of initial conditions, we implemented 
an algorithm that looks for conditions in a stable operation 
mode. The pseudocode for initialization is shown in algorithm 
1. 

While this algorithm allows to find conditions applicable to 
situations with identical conditions to the horizon of interest, 
in practical terms for power system operations, a more suitable 
approach would be the implementation of a receding horizon 
scheme. We are in the process of studying this problem, and 
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Fig. 2. Centroids for wind Scenarios Considered 

Algorithm 1 Initial Conditions for Horizon Problem 

Require: Case Information C, Set of ESS prices for charge 
2c, Set of ESS prices for discharge 2d, Dispatches of 
ESS units 9, Stored Energy in ESS units Iff 

{I. Initialization Phase} 
1: Run Simple OPF with C 
2: Obtain (L'{'l, . . .  £1;(1) = Initial Prices of 2m, m 

{c, d} 
3: Obtain (Pf, ... P�) = Initial Dispatches of 9 
4: Obtain (E}, ... E�) = Initial Energy Stored of Iff 

{2. Iteration Phase} 
5: repeat 
6: Run Multiperiod SC-OPF 
7: diJ = difference between prices in iteration i and 

iteration j = i-I 
8: dTj = difference between energy stored in ESS units in 

iteration i and iteration j = i-I 
9: dfj = difference between dispatches of ESS units in 

iteration i and iteration j = i-I 
10: Assign to (PI, ... P/) = (Pf, ... P�) = I;j ESS dis­

patches E 9 
11: Assign to (Ei, ... En = (Ef, ... E�) = I;j ESS stored 

energy E Iff 
12: Recompute the distances obtained 
13: until distances below tolerance levels set 
14: Run full problem with established starting conditions 

it will be the subject of a future paper. 

B. Network and Generator Data 

We use a 279-node reduction of the network of ERCOT 
[16] [17], serving 85% of the electric load for the US state of 
Texas [18]. A one line diagram of this network is shown in 
Fig. 3 



Fig. 3. One Line Diagram for Texas Network, 279 buses 

The generator data was part of a large matching exercise 
of publicly available data sources, including the US Energy 
Information Administration [19], the US Environmental Pro­
tection Agency (USEPA) [20] and Energy Visuals, Inc. ( [21], 
[22]). Further detail about this matching is described in [23], 
and the information is publicly available at E4ST.org. 

Table II shows the generators' information by fuel type. The 
characteristics summarized include 

- Total generation capacity; the median marginal direct cost 
per MWh 

- Median marginal cost per MWh including both direct cost 
and CO2 damage 

- Mean direct ramp cost per MW of ramp, with 6.t 
indicating the period over which the ramp duration is 
measured, in this case hours 

- Mean ramp cost per MW of ramp including both the 
direct cost and the CO2 damage cost of the ramp 

TABLE II 
SUMMARY OF GENERATION AVERAGE CHARACTERISTICS BY UEL TYPE 

Gen. Cap. a En. Costb En. Cost incl. C 
(MW) ($/MWh) C02 ($/MWh) 

Coal 19,552 17.44 56.13 
Natural 52,538 44.14 67.45 
Gas 
Nuclear 5,063 0.00 0.00 
Hydro 536 10.40 10.40 
Wind 9,786 0.00 0.00 
Others 929 37.77 67.39 

a Values shown are peak values 
b Energy cost excluding C02 damage cost (median) 
C Energy cost including C02 damage cost (median) 
d Average ramp cost excluding C02 damage cost (mean) 
e Average ramp cost including C02 damage cost (mean) 

IV. RESULT S 

RampCostd Ramp Cost inel. e 
($/(MW/L'>t)) C02 ($/(MW/L'>t)) 

13.84 24.25 
13.52 18.55 

30.69 30.69 
0.00 0.00 
0.00 0.00 

10.76 15.59 

We use the reduced network to evaluate the effectiveness 
of different policies on measures of the overall performance, 
including the cost of operation (fuel and ancillary services), the 
amount of load shed observed, the dispatched wind energy and 

the capacity adequacy requirements to comply with reliability 
standards [2]. We also internalize environmental externalities, 
by augmenting the objective function costs [24], We apply 
this method to estimate the impacts of five system changes: 
the addition of wind farms, the addition of a energy storage 
system such as a battery bank, and three operational policies. 
The operational policies are the inclusion of ramping direct 
costs in the objective function, a fee (or cap and trade program) 
on CO2 emissions from power generation, and the extension 
of that fee (or cap and trade program) to the CO2 emissions 
resulting from ramping. 

The cases simulated can be summarized as follows. 

1) Case 1: No Wind, Initial System, 
2) Case 2: Case 1 + llGW of wind at 92 locations 
3) Case 3: Case 2 + ESS collocated at largest wind 

farm, with an energy capacity of 100 MWh and Power 
capacity of 50MW 

4) Case 4: Case 2 + "energy CO2'', the part of its CO2 
emission that is proportional to its generation 

5) Case 5: Case 4 + "Ramping direct cost", including 
both the fuel cost of ramping and the wear-and-tear cost 
ramping 

6) Case 6: Case 5 + "C02 cost", where a generator's ramp 
is equal to the effect of the ramp on the generator's 
emissions, times an assumed $40 damage cost per ton 
of CO2. [25] argues that the risk of catastrophic future 
damages from climate change merits assuming a sub­
stantially higher CO2 damage cost, but we maintain a 
conservative estimate 

7) Case 7: Case 6 + ESS, with the same characteristics as 
Case 3. 

We simulate the operation of the system over 24 consecutive 
one-hour periods. Table III summarizes key financial results 
from the cases included for the 24-hour horizon, assuming that 
the wholesale market for energy is deregulated. 

The E[Total Operating Cost] are reduced by the use of 
ESS, as well as the capacity needed for reliability purposes. 
There is a significant increase in the amount of wind dis­
patched, which can be argued is one of the objectives of 
the SO. We will focus our attention on two aspects of the 
results. First, the Net Revenue for SO increases, driven by 
congestion in the system. However, the revenue received by 
wind generators is increased. This is especially important from 
the policy standpoint because the subsidies that wind gener­
ators receive can be decreased once these revenues become 
self-sustaining. Second, the amount of ramp required over 
remains constant and decreases slightly once environmental 
policies are put into place, which means less units need to 
be committed and in standby for uncertainty mitigation. The 
conclusions we can draw from the model are likely to maintain 
the order in less reduced systems, but the order of magnitude 
may be distorted, due to the network reduction we use and 
its effects on the results. It can be argued that this is an 
unavoidable consequence of the losses in information using 
a Ward equivalent reduction. All of the policies produce a 



TABLE III 
DAILY SUMMARY OF SYSTEM RESULTS 

Casel Case2 Case3 Case4 Case5 Case6 Case7 

Expected Outcome 
E[Wind Generation] (MW/day) 0.00 26,606.12 26,607.82 26,651.83 26,641.30 26,643.72 26,645.39 
E[Conventional Generation](MW /day) 1,575,952.54 1,549,346.35 1,549,341.14 1,549,300.64 1,549,311.16 1,549,308.74 1,549,303.71 
LF Up Reserve (MW/day)a 14,204.35 39,577.31 39,313.60 41,766.17 40,508.22 40,438.19 40,410.45 
LF Down Reserve (MW /day)a 13,176.31 39,235.84 38,721.78 40,562.79 39,814.86 39,538.44 39,637.61 
Contingency Reserve (MW/day) 28,884.00 66,717.84 65,841.28 68,192.00 67,697.20 67,664.17 66,897.26 
E[Load Shed] 0.00 0.08 0.08 0.08 0.08 0.08 0.08 
E[Generation Cost] 62,870.33 60,291.30 60,280.71 105,718.02 105,736.02 105,742.58 105,719.47 
E[Ramp Wear Cost] 0.00 0.00 0.00 0.00 698.83 963.66 696.68 
LF Ramp-Up Reserve Cost 14.23 37.77 37.51 42.57 41.95 42.07 41.65 
LF Ramp-Down Reserve Cost 12.86 36.95 36.45 40.29 40.43 39.77 40.11 
Contingency Reserve Cost 27.62 62.23 61.26 63.59 63.13 63.13 62.33 

E[TotaI Operating Cost] 62,925.04 60,428.30 60,407.93 105,864.52 106,580.40 106,851.25 106,547.23 

E[Net Revenue for Conventional Generation] 154,979.89 148,359.88 148,324.40 214,989.09 214,613.27 214,083.86 214,606.23 
E[Net Revenue for Wind Generation] 0.00 2,667.24 2,668.35 4,131.31 4,095.32 4,075.46 4,094.84 
E[Net Revenue for SO] 13,029.01 14,017.07 14,015.39 21,170.63 21,433.60 21,521.06 21,450.57 

E[TotaI Wholesale Cost] 230,933.93 225,472.49 225,416.07 346,155.55 346,722.60 346,531.64 346,698.87 

E[Load Not Served] * VOLL b 0.00 0.79 0.82 0.79 0.79 0.79 0.79 

E[Total Cost for Customers] 230,933.93 225,473.27 225,416.89 346,156.34 346,723.39 346,532.43 346,699.66 

a Load-Following Ramp Reserve. 
b Value of Lost Load. 

TABLE IV 
PEAK HOUR SUMMARY OF SYSTEM RESULTS 

Casel Case2 

Expected Outcomes (MWh) 
'Peak Hour' 15.00 15.00 

E[Load Served] 73,510.95 73,510.95 
E[Load Not Served] 0.00 0.00 
E[Conventional Generation] 72,747.05 71,909.96 
E[Wind Generation] 0.00 837.09 
E[Exogenous Imports] 763.90 763.90 
E[Electric Energy Delivered] 73,510.95 73,510.95 

Maximum Outcomes (MW) 
All Load Served 73,510.95 73,510.95 
Conventional Generation, Intact 72,747.05 72,156.12 
Conventional Generation 73,950.55 73,359.62 
Wind Generation 0.00 1,873.20 
LF Ramp-Up 0.00 974.50 
LF Ramp-Down 115.47 1,310.21 
Contingency Ramp 1,203.50 2,217.31 

Conventional Generating Units 130,152.96 129,112.92 

positive net operating benefit over the simulated day. 

Table IV summarizes the results for the peak hour of the 
day. In terms of dispatches, the operational changes do not 
alter the patterns at the peak in most measures considered. 
The main differences lie in the displacement of conventional 
generation by ESS resources, reducing the peak generation by 
50MW in the intact system. While wind dispatches change 
over the whole day, the peak s remarkably stable in terms of 
this resource. The overall policies' impacts on the individual 
categories of total net benefit vary widely as illustrated in 
Tables III. 

Fig. 4 shows the operation of the storage system, with the 

Case3 Case4 Case5 Case6 Case7 

15.00 15.00 15.00 15.00 15.00 
73,510.95 73,510.95 73,510.95 73,510.95 73,510.95 

0.00 0.00 0.00 0.00 0.00 
71,870.95 71,909.96 71,909.96 71,909.96 71,859.96 

837.09 837.09 837.09 837.09 837.09 
763.90 763.90 763.90 763.90 763.90 

73,510.95 73,510.95 73,510.95 73,510.95 73,510.95 

73,510.95 73,510.95 73,510.95 73,510.95 73,510.95 
72,106.14 72,156.12 72,156.12 72,156.12 72,106.12 
73,309.62 73,359.62 73,359.62 73,359.62 73,309.62 

1,873.20 1,873.20 1,873.20 1,873.20 1,873.20 
885.39 974.50 974.50 974.50 974.52 

1,310.23 1,310.21 1,310.21 1,310.21 1,269.15 
2,158.27 2,217.31 2,217.31 2,217.31 2,217.31 

129,024.92 129,112.92 129,112.92 129,112.92 129,024.92 

maximum (upper dashed line), minimum (lower dashed line), 
and expected (solid line) charge status of the energy storage 
system. The ESS charges or discharges in response to lower­
or higher-than-expected generation needs, reducing the need 
for conventional generation reserves as shown in Table IV. 

V. CONCLUSIONS 

This paper presents a model aimed at evaluating the ef­
fects of integrating Renewable Energy Sources (RES) in the 
electricity system, from the perspective of a system operator, 
taking into account the cost of Carbon Dioxide (C02) emis­
sions. Aside from the optimization formulation, our method of 
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Fig. 4. Energy in Single Storage Unit 

estimating the net benefits of system changes has four other 
innovations. First, it statistically estimates the cost and CO2 
emission consequences of each generator's electricity output 
and ramping decisions from publicly available data. Second 
and third, our method includes creating a novel, modified 
Ward reduction of the grid and a thorough generator dataset, 
also from publicly available information sources. Fourth, it 
combines technical and economic considerations to produce a 
comprehensive measure of net operating benefit in the context 
of a power grid, and disaggregates that into the effects on 
consumers, producers, system operators, government, and CO2 
damage. 

We illustrate the use of the method using a single day of 
operations with a high demand (summer). The method can 
be used to estimate net operating benefits over a year, by 
simulating a representative sample of all of the days of the 
year. The use of storage supports the overall operation of the 
system and reduces the peak capacity needed. Future studies 
can include the cost of capital and the planning implications 
of this method. 
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