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Abstract
Detection of movement intention from neural signals combined with assistive technologies
may be used for effective neurofeedback in rehabilitation. In order to promote plasticity, a
causal relation between intended actions (detected for example from the EEG) and the
corresponding feedback should be established. This requires reliable detection of motor
intentions. In this study, we propose a method to detect movements from EEG with limited
latency. In a self-paced asynchronous BCI paradigm, the initial negative phase of the
movement-related cortical potentials (MRCPs), extracted from multi-channel scalp EEG was
used to detect motor execution/imagination in healthy subjects and stroke patients. For MRCP
detection, it was demonstrated that a new optimized spatial filtering technique led to better
accuracy than a large Laplacian spatial filter and common spatial pattern. With the optimized
spatial filter, the true positive rate (TPR) for detection of movement execution in healthy
subjects (n = 15) was 82.5 ± 7.8%, with latency of −66.6 ± 121 ms. Although TPR
decreased with motor imagination in healthy subject (n = 10, 64.5 ± 5.33%) and with
attempted movements in stroke patients (n = 5, 55.01 ± 12.01%), the results are promising for
the application of this approach to provide patient-driven real-time neurofeedback.

1. Introduction

The Bereitschafts potential (BP) or readiness potential (RP)
was first introduced in 1964 (for review see [1]) and is
now considered as part of the movement-related cortical
potential (MRCP). These potentials can be observed in
electroencephalogram signals (EEG), and are associated with

6 Author to whom any correspondence should be addressed.

movement planning and execution. The MRCP consists of a
BP, followed by a motor potential (MP) [2] and a movement-
monitoring potential (MMP) [3]. The BP consists of a slow
decrease in EEG amplitude starting approximately 1500 ms
prior to the onset of the movement, and is considered as a
cortical representation of motor preparation [1]. It is also
believed that BP may reflect an intention to act, which remains
unconscious for part of its time course [4] or an index of
resource mobilization [5]. Therefore, it has been suggested
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Table 1. Stroke patients’ details.

Patient Diagnosis Affected site Gender Age Days since event FIMa Medication

1 (OL) Infarction Left Male 55 48 119 SSRI
2 (RO) Hemorrhage Right Male 43 41 113
3 (UL) Infarction Right Male 39 21 95
4 (TR) Hemorrhage Right Male 15 99 121 Baclofen
5 (TO) Hemorrhage Left Female 69 62 68 SSRI

a Functional Independence Measure, range (18–126).

that the motor areas are active even if the movement is not
executed but only imagined. Because they are directly related
to volitional movement, MRCPs can be used to detect a
movement or intention to move.

Detecting intentions for neurofeedback corresponds to a
brain–computer interface (BCI)-driven assistive technology.
This approach can be used for example in stroke rehabilitation
for inducing activity-dependent brain plasticity. However, any
applications using neurofeedback require that a causality of
action (at least the intention of action) and the corresponding
feedback must be established, i.e. the patient needs to initiate
(or intend to initiate) a motor task, and receive a corresponding
feedback within a short delay, which can be perceived by the
user as the result of the execution or imagination of the motor
task [6]. This requirement of causality has two implications.
First, the action (or the intention of action) and the resulting
feedback must have physiological relevance. For example,
a left dorsiflexion imagination should be accompanied by a
haptic stimulation to the left tibialis anterior (TA) muscle.
Second, the delay from the (intention of) action and the
resulting feedback should be short. There is no consensus
in the literature on the maximum allowable delay. However, it
is likely that this delay should not exceed 300 ms [7]. Because
of the processing delay and the extra time needed for the
actual delivery of the feedback, the detection of action should
be as early as possible, so that such a causal association can
be established. Therefore, a feedback triggered by MRCP
detection has the potential to be used for inducing plasticity.

One major challenge in detecting EEG waveforms from
single trials is the poor signal to noise ratio (SNR) of the EEG.
EEG signals represent indeed the superposition of potentials
generated by a large population of cortical neurons [8]. For
this reason, the amplitude of the spontaneous EEG activity
is relatively large (in the range of 100 μV) with respect to
the activity directly related to motor planning and execution,
such as the initial negative phase of MRCP (range 8–10 μV).
Spatial filtering can be used to enhance the SNR of EEG signals
[9, 10]; however, commonly used spatial filters, such as the
common average referencing and large Laplacian filter, may
not be optimal for detection of slow cortical potentials, such as
MRCP [11]. These considerations make the task of detecting
MRCPs from the background EEG activity very challenging.

The hypothesis of the current study is that human
voluntary movements, or the intention to move, can be
identified with short latency (not exceeding the indicated limit
of 300 ms [7]) by detecting MRCPs from background EEG
activity. Based on current approaches, the detection of MRCP
from single trials is still an open issue. We thus propose a

method for filling this gap, based on the initial negative phase
of the MRCPs. The method is extensively tested for motor
execution (ME) and motor imagery (MI) in healthy subjects,
and for attempted tasks in a limited sample of stroke patients.

2. Methods

Three experiments, which will be discussed in detail in the
following sections, were conducted. In the first experiment,
healthy subjects executed self-paced movements of ankle
dorsiflexion. This experiment served the purpose of analyzing
the latency between the detection of the movement execution
and the produced EMG activity. The performance of different
spatial filters was also investigated. In the second experiment,
healthy subjects performed self-paced motor imagination of
the same type as executed in the first session. This experiment
served to investigate the true positive rate (TPR) and the
false positives (FP) in the detection of imagined movements.
Finally, a third experiment was performed on stroke patients
with cognitive or motor impairments who attempted the
execution of the same task as the healthy subjects. This last
experiment was intended as a preliminary validation of the
feasibility of the proposed method to early detect movement
attempts in stroke patients.

The experimental data were analyzed with different spatial
filters and a matched filter supervised approach for determining
the detection accuracy and latency of MRCP.

2.1. Subjects

This study mainly focuses on the detection of movement
intention in healthy volunteers and not in stroke patients. This
is a necessary step for the validation of the method, as done
in several recent BCI studies (e.g., [11–13]). Nonetheless,
in addition to an extensive validation on healthy volunteers,
we also present preliminary results on a small sample of
stroke patients. The analysis on stroke patients provides
an indication of the potential feasibility of the approach
for neurorehabilitation but should be considered preliminary.
Therefore, nineteen healthy subjects (24.5 ± 4.7 yrs) and five
stroke patients (table 1) participated in the experiments. None
of the healthy subjects had known sensory-motor deficiencies
or any history of psychological disorders. All subjects gave
their informed consent before participation and the procedures
were approved by the local ethics committee of Nordjylland,
Denmark (N-20100067).
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2.2. Experimental setup

The subjects were seated comfortably on a chair, with the
right leg secured in a custom-made fixture. A pair of surface
EMG electrodes was mounted on the TA muscle of the right
side (dominant in all cases). Surface EMG signals were
recorded in bipolar derivation, amplified with gain 1 k (healthy
subjects: EMG-16 amplifier, OT Bioelettronica; stroke
patients: BrainAmp EXG, Brain Products), sampled at
1000 Hz (healthy subjects) and 2500 Hz (stroke patients),
and analog to digital converted with 32 bits. Different
amplification systems were used for healthy subjects and
stroke patients since stroke patients were measured in a
clinical setting. The reference electrode was placed at
the ankle. Monopolar EEG signals were recorded (EEG
amplifiers, Nuamps Express, Neuroscan and BrainAmp DC,
Brain Products, respectively) from Ag/AgCl scalp electrodes
(EC80, Easy cap) (healthy) and from an active electrode cap
(actiCAP, Brain Products, Germany) (stroke patients). The
electrodes were located at the International 10–20 system
locations FP1, F3, F4, FCz, Pz, P3, P4, C3, C4 and Cz. The
right ear lobe was used as a reference and the ground electrode
was placed at nasion. In all cases, EMG and EEG signals were
synchronized by a common external trigger.

2.3. Self-paced ME of healthy subjects

Fifteen healthy subjects (25.7 ± 5.9 yrs) were instructed to
perform ballistic ankle dorsiflexions, at random intervals. No
external stimuli or cues were presented to the subjects for task
executions. However, the subjects had feedback on their ankle
dorsiflexion torque on a computer screen as a moving vertical
bar. They were asked to reach a torque level corresponding
to 20–30% of the maximum voluntary contraction torque, as
determined during a familiarization session. This procedure
resulted in a fully self-paced set of executed movements. In
each experimental session, five runs of 5 min duration each
were recorded with resting periods of 2–3 min in between. The
first two runs were used as a training set and the remaining as
testing data sets. In addition, the same protocol was repeated
on two different days for two subjects one and two weeks after
the first session.

2.4. Self-paced MI of healthy subjects

Ten healthy subjects (24.6 ± 2.3 yrs) participated in this
experiment. Six of them also participated in the ME session.
The same paradigm was presented to them as that described
for foot ME. However, in this experiment, the subjects were
asked to imagine the kinematics of ballistic ankle dorsiflexion
without executing it. In this paradigm, four runs of 5 min
duration were performed. During the first and second runs, the
subjects performed the real movements so that they were able
to develop their strategies of MI of ballistic ankle dorsiflextion.
During the last two runs, they performed self-paced imaginary
dorsiflexion. To identify the occurrences of MI in this fully
self-paced paradigm, the subjects were asked to press a button
using their left thumb, approximately 2 s after the MI. Subjects
were also asked to perform the real dorsiflexion to maintain

their strategies for MI during the breaks between the last two
sessions. The runs of the self-paced ME (run 1 and 2) were
used as training data sets. The last two runs of self-paced MI
were used as testing data sets.

2.5. Self-paced attempted ME of stroke patients

In order to preliminarily validate the clinical feasibility of
the proposed method, a further experimental session was
conducted on five hospitalized stroke patients. The conditions
of these stroke patients are summarized in table 1. Lesions
were located by CT or MRI-scans. The degree of disability
was evaluated by Functional Independence Measure (FIM R©).
The FIM is widely used in rehabilitation settings to assess
the general level of functioning of a stroke patient. The
score consists of 18 items grouped into seven sub-scales: self-
care, sphincter control, mobility, locomotion, communication,
psychological and cognitive functions (minimum score is 18,
maximum is 126 points). All stroke patients were instructed
to randomly attempt ballistic dorsiflexions of the right ankle,
at a pace that the subject felt comfortable. No external stimuli
or cues were presented to the subjects. A total of five runs
of approximately 5 min duration were recorded with resting
periods of 3–5 min in between. The first two runs were used
as a training data set and the rest as testing sets.

2.6. Signal analysis

The signal analysis will be discussed in detail in the subsequent
sections. In summary, the analysis was divided into two steps:
MRCP template extraction and MI/ME detection. First, three
spatial filters were applied to obtain a surrogate channel from
the EEG channels recorded. The first spatial filter was a large
Laplacian spatial filter (LLSF), which has been shown to be
better than other similar fixed coefficient spatial filters [9].
The second spatial filter was a novel optimized spatial filter
(OSF) designed to maximize the SNR of the surrogate channel.
The third was the common spatial pattern (CSP) filter which
maximizes the variance of two-class signals in BCI paradigms
[14]. Subsequently, the MRCP template was extracted from
the surrogate channel using training data. The coefficients
obtained in the last step were used on the testing EEG data.
The initial negative phase of the extracted MRCP template
was used to detect movement intentions by a matched filter
algorithm.

2.6.1. Pre-processing. The EEG signals were band pass-
filtered from 0.05 to 10 Hz, and then down-sampled to 20 Hz.
LLSF, OSF and CSP [14] were compared. The SNR of the
MRCPs in the spatially filtered channel (later referred to as
surrogate channel) should be higher than those in the raw
EEG channels. The channel coefficients obtained by the three
spatial filters from the training set were applied to the testing
data set to get a surrogate channel for each of them. The
general scheme of detection is shown in figure 1.
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(A)

(B)

(C)

Figure 1. General scheme of detection during movement execution task. A representative sample from subject 3: detection of an initial
negative phase of MRCPs in a surrogate channel obtained through the set threshold (cross-validation on the training set). (A) Rectified and
averaged EMG trace for event detection, the horizontal dashed line is the EMG detection threshold and the vertical line is the reference point
for detection latency. (B) Single trace of MRCP in the surrogate channel, obtained by the optimized spatial filter during self-paced ME task.
(C) Output of the matched filter. The horizontal dashed line is the detection threshold of the proposed algorithm. All vertical axes are in
arbitrary units.

2.6.2. Definition of reference events. For the experiments
with ME, the reference movement onset (event) was estimated
as the time instant when the rectified EMG signal amplitude
crossed a threshold equal to one tenth of its maximum during
the ME process. In MI experiments, the event was identified by
the trigger pressing (approximately 2 s after the imagination).
For stroke patients, the residual EMG signal was used in the
same way as in healthy subjects to mark an event.

2.6.3. Spatial filtering. Spatial filtering has been used for
source localization in EEG. For a multi-channel recording
obtained at different spatial locations, such as EEG, a virtual
channel can be obtained by a linear combination of all the
channels. The set of coefficients of the channels defines
a spatial filter. Different coefficients provide different
characteristics of the filter. In this study, we investigated
three different spatial filters: LLSF, which is a commonly
used source localization filter with fixed coefficients; optimal
spatial filter (OSF), which provides an optimized coefficient
set maximize signal-to-noise ratio in the virtual channel;

CSP, which maximizes the variance ratio of two-class signal
matrices.

Large Laplacian spatial filter. The channel coefficients in
this case were based on the EEG Laplacian montage:

xi =
⎧⎨
⎩

1, i = 1

− 1

(Nch − 1)
, i �= 1,

(1)

where Nch is the number of channels. In this study, the first
channel corresponded to Cz. The sum of the Nch coefficients
is zero so that the spatial dc components are rejected.

Optimized spatial filter. The filter coefficients were
optimized on the training set with the following procedure.
First, ‘signal’ epochs of 3 s were selected (2 s before and 1 s
after each event). These epochs contained the initial negative
phase of an MRCP, as shown in figure 2. Then, ‘noise’
epochs of 3 s duration were selected between the events, where
there were no observable artifacts, such as EOG or movement
artifacts.
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(A)

(B)

Figure 2. Normalized MRCP and EMG trace (training session). (A)
Normalized MRCP of subject 4 from the training session (n = 20
epochs used) using raw signals from Cz (dotted) and three spatial
filters: LLSF (dashed), OSP (thick) and CSP (thin). The initial
negative phase of the MRCP (part before the vertical dashed line)
was used as template for the matched filter. (B) Normalized trace of
the rectified and averaged EMG for event detection. The event is
detected from the EMG as reference at the intersection of the dashed
vertical line and the horizontal line (threshold at 10% of signal
power).

The aim of the OSF was to find the combination of
channels that maximizes the MRCP energy while minimizing
the noise energy. Therefore, we used SNR as the criteria
to maximize. Let us consider a set of data containing N
samples of noise and N samples of EEG signal with Nch

channels (Nch = 9 in our case). Let Si ,k(t) and Ni ,k(t) be
the ith signal epoch and noise epoch of the kth channel.
Given a set of channel coefficients x = (x1, . . . , xc), we define
Si(t) = ∑Nch

k=1 xkSi,k(t) as the ith signal epoch of the virtual
channel and Ni(t) = ∑Nch

k=1 xkNi,k(t) as the j th signal epoch
of the virtual channel. The variance operator of the above
equations runs over time. The SNR is

SNR = 10 ∗ log10

(
PS

PN

)
, (2)

where Ps and PN are the powers of the signal and noise,
respectively.

The purpose of the optimization is to find a set of x that
maximizes the SNR, with the constraint that the sum of the
coefficients is zero. A quasi-Newton method was used for
the optimization. The Broyden–Fletcher–Goldfarb–Shanno
method for the Hessian update was applied [15].

From an initial guess and an approximate Hessian matrix
Ho, the following steps were repeated until x converges to the
solution:

• At step k, the direction is computed:

�x = −H−1
k−1∇f (xk−1). (3)

• Line search (finding a local minimum) was performed to
find an acceptable step size αk in the direction found in
the first step, then update:

xk = xk−1 + αk−1 ∗ �x. (4)

• Compute the updated Hessian matrix HK :

Hk = Hk−1 +
yyT

yT s
− Hk−1ss

T Hk−1

sT Hk−1s
, (5)

where

s = x(k) − x(k−1),

y = ∇f (xk) − ∇f (xk−1)

The initial vector of coefficients was based on the EEG
large Laplacian montage.

Common spatial pattern. The CSP method was first
proposed for classification of multi-channel EEG during
imagined hand movements [16]. The main idea was to use
a linear transform to project the multi-channel EEG data into
a low-dimensional spatial subspace with a projection matrix,
of which each row consists of weights for channels. This
transformation maximizes the variance of two-class signal
matrices. In our case, signal and noise epochs were considered
as two classes obtained as described for the OSF. The CSP
method was based on the simultaneous diagonalization of the
covariance matrices of both classes. The first and last rows
of the projection matrix represent the most important spatial
patterns that exhibit the largest variance of one task and the
smallest variance of the other. In this study, only the first row
of the projection matrix was used as CSP filter coefficients.

2.7. Template extraction and detection of MI/ME

The template of the initial negative phase of MRCPs (from
the start of the depression phase to its peak negativity, as
illustrated in figure 2) was extracted from the surrogate channel
in the training set. For detection of movement, a receiver
operating characteristic (ROC) curve was obtained through
cross-validation on the training data. The detector decision
was based on the likelihood ratio (Neyman Pearson lemma)
method, computed (2 s sliding window with 200 ms shift)
between the surrogate channel of the testing data and the
template in training and testing data. In order to make reliable
detections with minimal FPs, the threshold was selected on the
midpoint of the turning phase of the ROC for all the subjects;
thus, a balance between TPR and FPs can be obtained.

A movement was identified in the testing data set when
two out of three consecutive windows crossed the threshold
corresponding to a desired false alarm probability. The
following performance parameters were calculated on the
testing sets: TPR (%), FPs in 5 min, and latencies (detection
time with respect to onset of the events).

A one-way ANOVA was applied on the TPR, FPs and
latencies with the spatial filters (OSF, LLSF and CSP) as
factors and the subjects as a random variable. Tukey’s post hoc
test was then applied to reveal the significance levels amongst
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different spatial filters. To test if there was any statistically
significant difference for healthy subjects performing ME and
MI tasks, the Wilcoxon matched pair test was performed to
compare TPRs and FPs of the six subjects who participated in
both MI and ME experiments. The Mann–Whitney test was
performed to investigate if there were statistically significant
differences between healthy subjects’ ME tasks and stroke
patients, as well as between healthy subjects’ MI tasks and
stroke patients.

3. Results

The healthy subjects performed on average a minimum of 15
movements per run for all types of data sets. The duration of
one session containing five runs of 5 min with EEG electrode
preparation was on average 1 h for both healthy and stroke
subjects. Epochs with EOG activity exceeding 125 μV were
discarded.

In general, the results, which will be detailed in the
following, demonstrated that it is possible to detect voluntary
movement attempts (or imagination) using the early phase
of MRCPs (BP). For example, with the best processing
parameters, the detection of ME in healthy subjects had an
accuracy of 82.5 ± 7.8% and latency of −66.6 ± 121 ms.
The accuracy decreased to 64.5 ± 5.33% for imaginary
movements of healthy subjects and to 55.01 ± 12.01% for
attempted movements of stroke patients.

3.1. Self-paced ME of healthy subjects

All results shown in this and the following sections are based
on the testing data sets. Comparisons of group results for the
three spatial filters in healthy subjects are given in figure 3.
The average (across all healthy subjects) TPR obtained with
OSF was 82.5 ± 7.81% which was significantly (P < 0.05)
better than that of LLSF (68.7 ± 14.9%) and CSP (55.4 ±
14.01%). The FPs in 5 min for OSF (6.90 ± 7.4) were also
less than those with LLSF (11.5 ± 13.40) and CSP (57.3 ±
17.8). Figure 4 shows the latencies for detection time of
the initial negative phase of the MRCP with reference to the
movement when using the OSF. The mean detection time
ranged from −100 to +100 ms with reference to the onset
of the movement. The average latency was −66.6 ± 121 ms
with OSF, −79.7 ± 92.8 ms with LLSF and 153 ± 148 with
CSP. Table 2 shows results across different ME sessions for
two subjects based on current and previous available sessions
on different days.

One-way ANOVA showed that spatial filters have
a statistically significant effect on all three performance
measures, TPR, FP and latencies (all p < 0.05). The post
hoc Tukey test showed that the OSF always outperformed the
other two filters.

3.2. Self-paced MI of healthy subjects

The results for this experiment are reported only for the OSF
since this filter outperformed the other two spatial filters in all
tests, as was reported for ME. In MI data, the amplitude of the

Figure 3. Performance/results. Summary of the results from ME
(N = 15), MI (N = 10) and five stroke patients (St-pts) testing data
set with the TPR% (mean ± SD) and FP (mean ± SD) in 5 min.

peak negativity was lower than that of executed movements,
in agreement with previous results [17]. Therefore, the
performance deteriorated with respect to ME. The average
TPR (%) was 64.5 ± 5.33% and the FPs in 5 min was
15.8 ± 9.42 when detecting MI using self-paced ME runs
data as a training set.

3.3. Self-paced ME of stroke patients

The proposed filter setups were applied and compared for
stroke patients. The results were similar to the case of MI of
healthy subjects, i.e. the OSF performed better than LLSF and
CSP. Results based on only the OSF are reported in figure 3
for the stroke patients. Figure 5 shows a representative MRCP
trace from a motor impaired stroke patient. The average
detection latency for stroke subjects was −56.8 ± 139 ms.

3.4. Comparisons between groups

For the repeated measure over ME and MI tasks of the six
healthy subjects, the Wilcoxon matched pair test showed no
significant difference in the TPR measure (z = 2.2, p = 0.08),
and also in the FP measure (z = 2.2, p = 0.08). The test
statistics are exactly the same because all six paired measures
had the same trend. This result is expected, as it was shown
that ME tasks usually produce more pronounced MRCPs [17].

When comparing stroke patients with the healthy
subjects’ ME tasks, the Mann–Whitney test showed significant
difference in TPR (z = 3.01, p = 0.0026), while no significant
difference in the other two measures: FP (z = 0.74, p =
0.46) and latency (z = 1.35, p = 0.18). When comparing
stroke patients with the healthy subjects’ MI tasks, the Mann–
Whitney test showed no significant differences in either TPR

6
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Figure 4. Latencies in testing sets of healthy subjects’ ME experiment. Mean (± SD) latencies of all subjects for the testing data set of ME
with reference to the onset of the task when using OSF.

Table 2. Motor execution results in different sessions.

First day Second day Third day

Subjects TPR% FPs /5 min Latencies (ms) TPR% FPs /5 min Latencies (ms) TPR% FPs 5 min−1 Latencies (ms)

1 70.25 ± 2.5 10.5 ± 2.1 −97.9 ± 35.6 76.7 ± 4.7 8.5 ± 0.7 −91.7 ± 130 87.1 ± 0.6 4.5 ± 0.7 91.7 ± 88.6

First day as training
79.5 ± 9.19 8.5 ± 4.94 24 ± 120 68.5 ± 26.2 8.50 ± 4.94 5.3 ± 113

Second day as training
72.5 ± 1.39 20.5 ± 0.70 −71.81 ± 11−.6

2 92.1 ± 1.7 8.0 ± 0.0 −243.2 ± 101 74.4 ± 27.4 6.5 ± 3.5 −257.6 ± 107 80 ± 0.0 7.5 ± 0.7 −61.5 ± 63.3

First day as training
80.6 ± 0.89 7 ± 5.65 −149 ± 60.8 89.2 ± 5.89 25.5 ± 3.53 −256 ± 161

Second day as training
79 ± 8.45 25 ± 2.82 −69.9 ± 15.6

(z = 1.71, p = 0.086) or FP (z = 1.65, p = 0.098). The results
of comparing stroke patients with healthy subjects are also very
encouraging, since it indicated, in general, that the algorithm’s
performance on stroke patients was not significantly different
from that of the healthy subjects’ ME.

4. Discussion

Executed and imagined movements were detected from single-
trial EEG with short latency. The detection accuracy was
evaluated in both healthy subjects and stroke patients. For
some subjects, a prediction was possible. For example, for
subject 3 the latency was −119 ± 43.8 ms. With the proposed
OSF technique, the detection performance was relative high
(TPR: 82.5 ± 7.8%; FPs: 6.9 ± 7.41.8 in 5 min), with

ME tasks performed by healthy subjects. The performance
worsened for MI, as expected. The results from stroke
patients were promising (TPR: 55.2 ± 6.30%; FPs: 16.9 ±
3.03 in 5 min) and indicated that the proposed method can
detect movement execution (or intention of execution) both
for healthy subjects and stroke patients, thus providing a new
potential approach for inducing neural plasticity in stroke
patients.

4.1. Self-paced BCIs

This study focused on movement detection and thus the
performance obtained should be compared with those shown
for self-paced BCI paradigms. A recent study [13] presented
a brain switch (self-paced BCI) using post-movement beta
rebound, which is found ∼500 ms after the termination of a

7
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(A)

(B)

Figure 5. Normalized MRCP of a motor impaired stroke patient
(patient 2) from the training session (n = 15 epochs used). The
initial negative phase of the MRCP (part before the vertical dashed
line) was used as template for the matched filter. (B) Normalized
trace of rectified and averaged EMG as a reference for event
detection (intersection of dashed vertical and horizontal lines). Note
the improved signal quality after the OSF.

brisk (foot) movement. The performance of that approach in
self-paced MI experiments was better than that of the proposed
method (TPR: 79.2%), but with a substantially greater latency
(∼0.5 s). Another study [12] described a self-paced BCI
paradigm for wrist extension ME, based on an unsupervised
Gaussian mixture model (GMM); however, the results were
reported with a different performance index and thus cannot
be compared with the current study. Beside the performance,
that study did not investigate the latency of detection which
was one of the main parameters of interest in this study.
Mason and Birch [18] presented a very similar algorithm
for self-paced BCI, called low-frequency asynchronous switch
design. Their work and followups, such as [19, 20], focused
on the EEG bandwidth 1–4 Hz [19], and were intended for
communication purposes, without analysis on the detection
latency. Moreover, we showed, for the first time, preliminary
tests on stroke patients which indicate the possibility of
identifying the intention to move within a very short time.

4.2. Signal processing

One of the results of this study was the importance of spatial
filtering to improve the SNR in single-trial EEG analysis.
The spatial resolution of EEG signals is poor due to volume
conduction through the scalp, skull and other tissue layers [21].
The surface Laplacian filter reduces the far-field potentials and
the dc component. These characteristics were also used for the
design of the proposed OSF, which maximized the SNR with
a supervised approach. Since the OSF is optimized on a signal

basis, it outperformed the LLSF, which has fixed channel
coefficients. OSF also outperformed CSP, the results of which
are in line with the current literature showing overfitting of
CSP algorithm on small training sets [22]. The generalization
performance of the CSP algorithm could improve if more trials
can be used as training sets. However, in the context of stroke
rehabilitation, it would be difficult to obtain a large training
set because the data collection session has to be short enough
so that the stroke patient can complete the protocol. In our
experience, the session on stroke patients should not be longer
than 90 min to be practical.

The proposed algorithm is computationally efficient. The
extracted brain signal was spatially and spectrally consistent
with the characteristic waveforms reported in several previous
studies [17, 10]. To further improve the detection performance,
more advanced (and computationally intense) approaches have
been explored in pilot tests. These included Kalman filter (KF)
as a denoising approach [23], and the Gaussian mixture model
(GMM) [24] for detection purposes. However, in preliminary
analyses (results not shown) neither KF nor GMM produced
superior results than the simpler matched filter, which is less
computationally intensive.

4.3. Detection latency

One of the main advantages of the proposed algorithm is the
ability of providing ME/MI detection with short latency. The
latency of detection for the ME tasks was within the range of
200 ms from the movement onset. The results of the latency
parameter in stoke patients further substantiated the findings
from the healthy subjects. The short latencies obtained
would allow the control of external devices volitionally for
neurorehabilitation. For these applications, a causal relation
should be established between the movement intention and an
action. For this association to be effective, the FPs should be
reduced to the minimum. In this study, the trade-off between
TPR and FPs allowed us to make detections every 200 ms with
a limited number of FPs.

4.4. Trade-off between TPR and FPs

As discussed above, a limited number of FPs were considered
essential in this study. This ensures that once detection is
made, it is very likely that the subject had the intention to
move.

For early detection purpose, the EEG signal portion prior
to the onset of the task (figures 2 and 5) was used as a template.
Higher TPR could be achieved with one of the following
strategies: (1) using the complete initial negative phase of
the MRCP as a template (based on peak negativity rather than
event onset, especially in stroke patients) or even using the
complete MRCP as a template, or (2) increasing the number of
FPs. The first strategy would lead to longer detection latencies
which is undesirable. The second strategy consists in simply
choosing another threshold in the ROC.

8
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4.5. Measures on stroke patients

BCI systems have been applied in stroke patients previously
[25, 26]. However, these two studies were not based on EEG,
but on MEG and ECoG, respectively. Recently, Daly et al
presented a case study with one stroke patient, in which an
EEG-based BCI system was shown to have positive effects
in rehabilitation [27]. In this study, we demonstrated, with
five stroke patients, that not only is it possible to detect
movement attempts of a stroke patient, but also that the
proposed protocol was simple enough to be completed easily
by stroke patients with the help of therapists, even in the case of
mild cognitive impairments. This characteristic is important
since many stroke patients with motor impairments usually
have accompanying cognitive impairments, and a cue-based
synchronized paradigm might be too demanding for them.

Generally, in stroke patients the morphology of MRCPs
was different from that in healthy subjects. For example, there
was a shift in peak negativity of the MRCPs in stroke patients
(figure 5). The major factors influencing the performance of
the system when applied to stroke patients were spasticity and
concentration issues. This made it difficult for stroke patients
to produce the repetitions as consistently as healthy subjects.
In addition, the stroke patients sometimes could not complete
the task of dorsiflexion, aborting midway through the task.

4.6. Implications

The reliable detection of human movement intentions from
MRCPs using the OSF technique has the potential of providing
subconscious control of external devices (such as FES or
robotic systems) for neuromodulation (therapeutic approach).
Such subconscious BCI control can be very important for
the development of a patient-driven rehabilitation paradigm,
which targets at inducing cortical plastic changes in stroke
patients. With respect to other approaches, the proposed
results are the first that prove the possibility of detection of
movement intention with very short latency, which would
allow the establishment of a causal relation between motor
intention and artificially induced afferent volley with the
control of external devices.

4.7. Limitations

In this study, the signals were processed offline, in a pseudo-
online fashion. Due to instrumentation limitations, no real
online detection was done. Due to the simplicity of the
detection algorithm (all linear operations), it is anticipated
that online detection is feasible, but this needs to be verified
through online studies.

In the MI studies of healthy subjects, the occurrence
of a movement imagination was identified through a button
press by the subject, approximately 2 s after the imagination.
It is possible that such motor task could interfere with the
movement imaginations. However, for self-paced motor
imaginary protocols, this or similar methods are the only
option to obtain a relatively accurate ‘event marker’.

For the stroke patient part of the study, the sample size was
much smaller than healthy controls, and was not aged matched,
due to the limitation of the patient access. Some stroke

patients had cognitive impairment as well, which prevented
them from easily executing the experiment protocol without
constant intervention of the therapist. This intervention might
also produce unaccountable variability in the EEG recordings.
Despite the preliminary nature of the investigation in the stroke
patient group, this analysis was included in this study, together
with the extensive analysis in healthy subjects, to prove the
feasibility of the approach in stroke patients. A full validation
of the proposed method in stroke patients will require a larger
patient sample.

5. Conclusion

The study presents and demonstrates the potential of a
paradigm for detection of movement intention with a latency
limited to less than 200 ms. These results are particularly
relevant for the development of assistive technologies that
provide physiological meaningful neurofeedback.
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