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Convolutional Neural Networks (CNNs) are an alternative type of neural network that can be used to
reduce spectral variations and model spectral correlations which exist in signals. Since speech signals
exhibit both of these properties, we hypothesize that CNNs are a more effective model for speech
compared to Deep Neural Networks (DNNs). In this paper, we explore applying CNNs to large vocabulary
continuous speech recognition (LVCSR) tasks. First, we determine the appropriate architecture to make
CNNs effective compared to DNNs for LVCSR tasks. Specifically, we focus on how many convolutional
layers are needed, what is an appropriate number of hidden units, what is the best pooling strategy.
Second, investigate how to incorporate speaker-adapted features, which cannot directly be modeled by
CNNs as they do not obey locality in frequency, into the CNN framework. Third, given the importance
of sequence training for speech tasks, we introduce a strategy to use ReLU+dropout during Hessian-free
sequence training of CNNs. Experiments on 3 LVCSR tasks indicate that a CNN with the proposed speaker-
adapted and ReLU+dropout ideas allow for a 12%-14% relative improvement in WER over a strong DNN
system, achieving state-of-the art results in these 3 tasks.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, Deep Neural Networks (DNNs) have achieved tremen-
dous success in acoustic modeling for large vocabulary continuous
speech recognition (LVCSR) tasks, showing significant gains over
state-of-the-art Gaussian Mixture Model/Hidden Markov Model
(GMM/HMM) systems on a wide variety of small and large vocab-
ulary tasks (Dahl, Yu, Deng, & Acero, 2012; Hinton, Deng, Yu, Dahl,
Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath, & Kings-
bury, 2012; Jaitly, Nguyen, Senior, & Vanhoucke, 2012; Kingsbury,
Sainath, & Soltau, 2012; Seide, Li, & Yu, 2011). Convolutional Neu-
ral Networks (CNNs) (LeCun & Bengio, 1995; Lecun, Bottou, Bengio,
& Haffner, 1998) are an alternative type of neural network that can
be used to model spatial and temporal correlation, while reducing
translational variance in signals.

CNNs are attractive compared to fully-connected DNNs for a va-
riety of reasons. First, DNNs ignore input topology, as the input
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can be presented in any (fixed) order without affecting the per-
formance of the network (LeCun & Bengio, 1995). However, spec-
tral representations of speech have strong correlations in time and
frequency, and modeling local correlations with CNNs, through
weights which are shared across local regions of the input space,
has been shown to be beneficial in other fields (LeCun, Huang, &
Bottou, 2004). Second, DNNs are not explicitly designed to model
translational variance within speech signals, which can exist due
to different speaking styles (LeCun & Bengio, 1995). More specif-
ically, different speaking styles lead to formants being shifted in
the frequency domain, as well as variations in phoneme dura-
tions. These speaking styles require us to apply various speaker
adaptation techniques to reduce feature variation. While DNNs of
sufficient size could indeed capture translational invariance, this
requires large networks with lots of training examples. CNNs on
the other hand capture translational invariance with far fewer pa-
rameters by averaging the outputs of hidden units in different local
time and frequency regions.

In fact, CNNs have been heavily explored in the image recogni-
tion and computer vision fields, offering improvements over DNNs
on many tasks (Lawrence, 1997; LeCun et al.,, 2004). Recently,
CNNs have been explored for speech recognition (Abdel-Hamid,
Mohamed, Jiang, & Penn, 2012), also showing improvements
over DNNs, however on a small vocabulary tasks with shallow
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Fig. 1. Diagram showing a typical convolutional network architecture consisting of a convolutional and max-pooling layer. In this diagram, weights with the same line style
are shared across all convolutional layer bands. Note this figure shows non-overlapping pooling, which is different than Abdel-Hamid et al. (2012).

networks. Specifically, Abdel-Hamid et al. (2012) introduced a
novel framework to model spectral correlations where convo-
lutional weights were shared over limited frequency regions, a
technique known as limited weight sharing (LWS). One of the lim-
itations of this LWS approach was that the network was limited to
one convolutional layer, unlike most CNN work which uses mul-
tiple convolutional layers (LeCun et al., 2004). In this paper, we
explore a spatial modeling approach similar to work done in the
image recognition community, where convolutional weights are
fully shared across all time and frequency components. This model-
ing approach, known as full weight sharing (FWS), allows for mul-
tiple convolutional layers and encourages deeper networks.

The first part of this paper explores the appropriate architecture
for CNNs on LVCSR tasks. Specifically, we investigate how many
convolutional vs. fully connected layers are needed, the filter size
per convolutional layer, an appropriate number of hidden units per
layer and a good pooling strategy. In addition, we compare the LWS
proposed in Abdel-Hamid et al. (2012) to our FWS strategy.

The second part of this paper explores the best type of input fea-
ture to be used with CNN. Various speaker adaptation techniques
have been shown to improve the performance of speech recogni-
tion systems. In this paper, we focus on how to incorporate feature-
space maximum likelihood linear regression (fMLLR) (Gales, 1998)
and identity vectors (i-vectors) (Saon, Soltau, Picheny, & Nahamoo,
2013), which do not exhibit locality in frequency, into the CNN
framework through a joint CNN/DNN architecture (Sainath, Kings-
bury, Mohamed, Dahl, Saon, Soltau, Beran, Aravkin, & Ramabhad-
ran, 2013).

Finally, we investigate the role of rectified linear units (ReLU)
and dropout (Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhut-
dinov, 2012) for Hessian-free (HF) sequence training (Kingsbury
et al., 2012) of CNNs. In Dahl, Sainath, and Hinton (2013), ReLU+
dropout was shown to give good performance for cross-entropy
(CE) trained DNNs but was not employed during HF sequence-
training. However, sequence-training is critical for speech recogni-
tion performance, providing an additional relative gain of 10%-15%
over a CE-trained DNN (Kingsbury et al., 2012). During CE training,
the dropout mask changes for each utterance. However, during HF
training, we are not guaranteed to get conjugate directions if the
dropout mask changes for each utterance. Therefore, in order to
make dropout usable during HF, we keep the dropout mask fixed
per utterance for all iterations of conjugate gradient (CG) within a
single HF iteration.

After analyzing the best CNN architecture, input feature set
and ReLU, we then explore using CNNs on a 50 hr English Broad-
cast News (BN) task (Kingsbury, 2009). Naturally, our best DNN
system offers a 13% relative improvement over the GMM/HMM,
consistent with gains observed in the literature with DNNs vs.
GMM/HMMs (Kingsbury et al., 2012). Comparing DNNs to CNNs,
we find that a CNN hybrid system offers a 3% relative improve-
ment over the hybrid DNN, whereas the joint CNN/DNN system

which incorporates speaker adaptation and ReLU+dropout offers
an 14% improvement. Finally, we explore the behavior of the joint
CNN/DNN and ReLU+dropout on two larger scale tasks — namely
a 300 hr Switchboard (SWB) task and a 400 hr BN task. We find
that using the CNN with these improvements, we can obtain a 12%
relative improvement over the DNN on SWB and a 16% relative im-
provement over the DNN on 400 hr BN.

The rest of this paper is organized as follows. The basic CNN
architecture used in this paper is described in Section 2. An ex-
ploration of various weight-sharing and pooling strategies are
discussed in Section 3, while input feature analysis is discussed
in Section 4. Using ReLU+dropout for HF sequence training is dis-
cussed in Section 5. Results on three LVCSR tasks are presented in
Section 6, Finally, Section 7 concludes the paper and discusses fu-
ture work.

2. Basic CNN architecture

In this section, we describe the basic CNNs architecture and
experimental setup used in this paper.

2.1. CNN description

A typical convolutional network architecture is shown in Fig. 1.
First, we are given an input signal V. %"/, where t and f are
the input feature dimension in time and frequency respectively. A
weight matrix W € %<1 is convolved with the full input V. The
weight matrix spans across a small local time-frequency patch of
sizemxr,wherem <= tandr <= f.This weight sharing helps to
model local correlations in the input signal. The weight matrix has
n hidden units (i.e., feature maps). Thus, overall the convolutional
operation produces n feature maps of size (t — m) x (f —r).

After performing convolution, a max-pooling layer helps to
remove variability in the time-frequency space that exist due to
speaking styles, channel distortions, etc. Given a pooling size of
p X g, pooling performs a subsampling operation to reduce the
time-frequency space to be {="-t1? w

Most CNN work in image recognition has the lower network
layers be convolutional, while the higher network layers are fully
connected. One goal of this paper is to determine an appropriate
CNN architecture for speech tasks, including the number of
convolutional vs. fully connected layers, hidden units and pooling
strategy.

2.2. Experimental details

2.2.1. Data

We perform preliminary experiments to learn the behavior
of CNNs for speech on a smaller task. Specifically, the acoustic
models are trained on 50 h of data from the 1996 and 1997
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English Broadcast News Speech Corpora. Results are reported on
100 speakers from the EARS dev04f set.! Details of the training
and test corpora can be found in Kingsbury et al. (2012).

2.2.2. Experimental setup

Unless otherwise indicated, we use 40 dimensional VTLN-
warped log mel-filterbank +delta+double-delta coefficients (Soltau,
Saon, & Kingsbury, 2010), which exhibit local structure, to train the
CNNs. A temporal context of 11 frames is used as input into the
CNN. The features are mean-and-variance normalized per speaker.
The CNNs and fully-connected DNNs use 1024 hidden units per
fully connected layer with a sigmoid non-linearity, unless other-
wise indicated. The last layer is a softmax layer with 512 output
targets. The 512 targets come from clustering context-dependent
GMM/HMM states (Young, Odell, & Woodland, 1994). Further-
more, the alignments are obtained by performing a forced-path
context-dependent state alignment using an existing GMM/HMM
system.

All DNNs and CNNs are trained by optimizing the cross-entropy
objective function. The cross-entropy loss is computed as follows;
The neural network provides a set of hypothesized posterior
probabilities for each of N context-dependent target, which we will
denote by y(i) € [0, 1], i = 1...N. This is compared to a set of
reference targets y(i) € 0, 1, i = 1... N, which have a probability
of 1 for the correct class and 0 elsewhere. The cross-entropy loss-
function is given by Eq. (1)

5@
y()

The CNNs and DNNs are trained on a GPU using mini-batch
stochastic gradient descent (SGD), with a batch size of 256. Since
we find that for large tasks pre-training does not help, both net-
works start from random initialization using a methodology de-
scribed in Glorot and Bengio (0000). A variety of initial learning
rates were explored, but the best learning rate was found to be
5e-3. No additional forms of regularization such as momentum or
L2 regularization are used. Following a recipe similar to Sainath,
Kingsbury, Ramabhadran, Fousek, Novak, and Mohamed (2011),
during backpropagation, after one pass through the data, cross-
entropy loss is measured on a held-out set and the learning rate is
reduced (i.e., annealed) by a factor of 2 if the held-out loss has not
improved sufficiently over the previous iteration. Training stops af-
ter we have reduced the learning rate 5 times, a produce known
as new-bob annealing (Bourlard & Morgan, 1993). Roughly 12-15
overall iterations are run.

The resulting CNN and DNN acoustic models are using in decod-
ing, where output probabilities of the network, after normalization
by a prior output probability, are used as HMM emission probabil-
ities. This process is known as “hybrid” decoding, as a DNN is used
with an HMM (Dahl et al., 2012; Hinton, Deng, et al., 2012; Sainath,
Kingsbury, et al., 2011).

N
Lyent (W) = (i) log (
i=1

3. Analysis of various CNN strategies for LVCSR

3.1. Convolutional vs. fully connected layers

In this section, we analyze the best approach for combining
convolutional and fully connected layers for speech recognition
tasks.

1 Note one speaker has been removed from this dev set for faster decoding
purposes.

Table 1

WER as a Function of # of Convolutional Layers.
# of convolutional vs. fully connected layers WER
No conv, 6 full (DNN) 21.6
1 conv, 5 full 213
2 conv, 4 full 189
3 conv, 3 full 20.2

3.1.1. Number of convolutional vs. fully connected layers

Most CNN work in image recognition makes use of a few con-
volutional layers before having fully connected layers. The convo-
lutional layers are meant to reduce spectral variation and model
spectral correlation, while the fully connected layers aggregate the
local information learned in the convolutional layers to do class
discrimination.

Most CNNs explored for image recognition tasks perform full
weight sharing (FWS) across all pixels. Unlike images, the local be-
havior of speech features in low frequency is very different than
features in high frequency regions. Abdel-Hamid et al. (2012) ad-
dresses this issue by limiting weight sharing (LWS) to frequency
components that are close to each other. In other words, low and
high frequency components have different weights (i.e. filters).
However, this type of approach limits adding additional convolu-
tional layers (Abdel-Hamid et al., 2012) for two reasons. First, in
the approach of Abdel-Hamid et al. (2012), the local region each
limited filter spans is small so extra convolutions on the outputs of
this small local region would not help. Second, we cannot perform
convolution with filter outputs across different local regions as the
locality constraint between these regions is removed. We adopt a
FWS approach similar to the image recognition work, and explore
the benefit of including multiple convolutional layers.

Table 1 shows the WER as a function of the number of convolu-
tional layers using FWS and fully connected layers in the network.
The fully connected DNN has 1024 hidden units per layer and we
have observed that 6 layers is appropriate on the BN task, creating
a strong baseline (Sainath, Kingsbury, et al., 2011). For the CNNs,
each convolutional layer has 256 hidden units. The pooling for the
CNNs also optimized, namely that we pool by 3 in the first CNN
layer, and do not pool at all in subsequent layers. Furthermore, the
number of fully connected layers in the CNN architecture are cho-
sen to be same for each layer, such that the total number of param-
eters matches that of the DNN. Finally, the learning rate for each
experiment is optimized, and is between 2e—3 and 5e—3.

The table shows that increasing the number of convolutional
layers up to 2 helps, and then performance starts to deteriorate.
Furthermore, we can see from the table that CNNs offer improve-
ments over DNNs for the same input feature set. One hypothesis
for having just two convolutional layers is that the feature dimen-
sion for speech is small (i.e., 40), unlike vision, and the behavior in
high and low frequency regions is quite different. After two convo-
lutional layers, the feature dimension is much smaller (i.e., 8) and
any resulting convolutions would attempt to model locality and re-
move invariance in a dimension that is already distinguishable.

3.1.2. Number of hidden units

One of the benefits of LWS is that different weights (i.e., filters)
focus on different frequency regions. However, we argue that
performing FWS with a large enough number of hidden units also
allows for differences between different frequency regions to be
captured. This type of approach allows for multiple convolutional
layers, something that has thus far not been explored before in
speech.

Table 2 shows the WER as a function of number of hidden
units for the two convolutional layers. We can observe that as we
increase the number of hidden units, the WER steadily decreases,
confirming our belief that having more hidden units with FWS
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Table 2
WER as a function of # of hidden units.

# of hidden units in first/second convolutional layer Params WER

128/256 5.1M 19.3

256/256 5.6M 18.9

384/384 7.6M 18.7

512/512 10.0M 18.5
Table 3

Limited vs. full weight sharing, with the number of LWS filters indicated in
parenthesis.

Method # hidden units in conv layers Params WER
FWS 256/256 5.6M 18.9
FWS 384/384 7.6M 18.7
FWS 512/512 10.0M 18.5
LWS (2) 128/256 5.4M 18.8
LWS (2) 256/256 6.6M 18.7
LWS (4) 256/256 7.6M 18.9

Table 4

Filter sizes (frequency x time).
Filter size — Layer 1 Filter size — Layer 2 WER
9x9 4x3 18.9
9x9 9x9 20.2
3x 14 4x3 19.6
15x4 4x3 19.1
9x9 3x 15 20.3
9x9 8x3 19.2

is important to help explain variations in frequency in the input
signal.

3.1.3. Limited vs. full weight sharing

Finally, for sake of completeness, we compare performance be-
tween FWS and LWS. Most LWS work in speech has looked at LWS
with one layer (Abdel-Hamid et al., 2012; Deng, Abdel-Hamid, &
Yu, 2013), where roughly 40 different LWS filters were used. Be-
cause Section 3.1.1 demonstrated the benefit of multiple convo-
lutional layers, in this paper we explore doing LWS with multiple
layers. Specifically, the activations from one LWS layer have local-
ity preserving information, and can be fed into another LWS layer.
In order to have LWS with multiple layers, we use fewer LWS filters.

Results comparing LWS and FWS are shown in Table 3. The
number of LWS filters is indicated in parenthesis. For both LWS
and FWS, we used 2 convolutional layers, as this was found in Sec-
tion 3.1.1 to be appropriate. If we use 2 LWS filters and match the
number of parameters to FWS, we get very slight improvements in
WER (0.1%). Furthermore, if we increase the number of LWS filters
to 4, performance starts to deteriorate, We hypothesize increasing
the number of LWS filters further and thus being forced to move to
a single convolution layer, as in Abdel-Hamid et al. (2012), would
deteriorate performance further. This justifies our choice to use
FWS with multiple convolutional layers in our CNN architecture.

While LWS with 2 filters and FWS offer similar performance,
FWS is simpler to implement, as we do not have to choose filter
locations for each limited weight ahead of time. Thus, we prefer
to use FWS. Because FWS with 5.6M parameters (256/256 hidden
units per convolution layer) gives the best tradeoff between WER
and number of parameters, we use this setting for subsequent
experiments.

3.2. Filter sizes

In this section, we explore performance with different the
frequency vs. time filter sizes for the two convolutional layers.
Table 4 shows the results for different filter sizes. A reasonable
filter size is 9 x 9 (frequency-time) for the first convolutional layer,
and 4 x 3 for the second convolutional layer.

3.3. Pooling strategies

In this section, we explore various pooling strategies, which
have been successful in computer vision tasks, for speech tasks.

3.3.1. Type of pooling

Pooling is an important concept in CNNs which helps to reduce
spectral variance in the input features. Max pooling is the most
popular pooling strategy for CNNs (LeCun et al., 2004; Sainath,
Mohamed, Kingsbury, & Ramabhadran, 2013). Given a pooling
region R; and a set of activations {ai, ..., a,} € R;, the operation
for max-pooling is shown in Eq. (2).

Sj = maxa;. (2)
ieR;

One of the problems with max-pooling is that experiments have
shown that is can overfit the training data, and does not necessarily
generalize to test data (Zeiler & Fergus, 2013). Two pooling alter-
natives have been proposed to address some of the problems with
max-pooling, I, pooling (Sermanet, Chintala, & LeCun, 2012) and
stochastic pooling (Zeiler & Fergus, 2013).

I, pooling looks to take a weighted average of activations g; in
pooling region R;, as shown in Eq. (3).

1

p
sj = Z al . (3)
i€R;

p = 1 can be seen as a simple form of averaging while p = oo
corresponds to max-pooling. One of the problems with average
pooling is that all elements in the pooling region are considered, so
areas of low-activations may downweight areas of high activation.
I, pooling for p > 11is seen as a tradeoff between average and max-
pooling. I, pooling has shown to give large improvements in error
rate in computer vision tasks compared to max pooling (Sermanet
etal., 2012).

Stochastic pooling is another pooling strategy that addresses
the issues of max and average pooling. In stochastic pooling, first a
set of probabilities p for each region j is formed by normalizing the
activations across that region, as shown in Eq. (4).

_ G (4)
pl - Z ak
keR;
Sj:al WherelNP(p17p27""p‘Rj‘)' (5)

A multinomial distribution is created from the probabilities
and the distribution is sampled based on p to pick the location [
and corresponding pooled activation q;. This is shown by Eq. (5).
Stochastic pooling has the advantages of max-pooling but prevents
overfitting due to the stochastic component. Stochastic pooling
has also shown huge improvements in error rate in computer
vision (Zeiler & Fergus, 2013).

Given the success of I, and stochastic pooling, we compare both
of these strategies to max-pooling on an LVCSR task. Results for the
three pooling strategies are shown in Table 5. For all three pooling
strategies, we use a pooling size of 3 for the first convolutional
layer, and no pooling for the second convolutional layer, as we
found this to be appropriate across different speech tasks of both
8 kHZ and 16 HZ in Sainath, Mohamed, et al. (2013).

Stochastic pooling seems to provide improvements over max
and [, pooling, though the gains are slight compared to gains
seen on vision tasks. For example, stochastic pooling seemed to
help on smaller vision which have thousands of training examples,
such as MNIST, CIFAR AND Street View House Numbers (Zeiler &
Fergus, 2013). However, the LVCSR tasks we look at are between
50 and 400 h, amounting to between 20 and 160 million training
frames. With a larger amount of training data, we hypothesize that
regularization methods, such as I, and stochastic pooling, do not
offer great improvements over max pooling.
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Table 5

Results with different pooling types.
Method WER
Max pooling 18.9
Stochastic pooling 18.8
I, pooling 18.9

Table 6

Pooling with and without overlap.
Method WER
Pooling no overlap 18.9
Pooling with overlap 18.9

3.3.2. Overlapping pooling

The pooling layer in CNNs consists of a set of pooling units
which span over a neighborhood of size z. Each pooling unit is
spaced s apart. If s = z, the pooling is non-overlapping, while if s <
z, the pooling is overlapping. Work in computer vision has shown
that overlapping pooling can improve error rate by 0.3%-0.5%
compared to non-overlapping pooling (Krizhevsky, Sutskever, &
Hinton, 2012).

Table 6 compares overlapping and non-overlapping pooling on
an LVCSR speech task. For non-overlapping pooling we sets = z =
3, while for non-overlapping pooling we set z = 3 and s = 2. One
thing to point out is that because overlapping pooling has many
more activations, in order to keep the experiment comparable
between overlapping and non-overlapping pooling, the number
of parameters for the two experiments was matched. The table
shows that there is no difference in WER between overlapping or
non-overlapping pooling. Again, on tasks with a lot of data such
as speech, regularization mechanisms such as overlapping pooling,
do not seem to help compared to smaller computer vision tasks.

3.3.3. Pooling in time

Most previous CNN work in speech explored pooling in fre-
quency only (i.e., y dimension) (Abdel-Hamid et al., 2012; Deng
et al., 2013; Sainath, Mohamed, et al., 2013), though Waibel,
Hanazawa, Hinton, Shikano, and Lang (1989) did investigate CNNs
with pooling in time, but not frequency. However, most CNN work
in vision performs pooling in both space and time (i.e., x and y di-
mensions) (Krizhevsky et al., 2012; Sermanet et al., 2012). In this
paper, we do a deeper analysis of pooling in time for speech. One
thing we must ensure with pooling in time in speech is that there
is overlap between the pooling windows. Otherwise, pooling in
time without overlap can be seen as subsampling the signal in
time, which degrades performance. Pooling in time with overlap
can thought of as a way to smooth out the signal in time, another
form of regularization.

Table 7 compares pooling in frequency to pooling in both time
and frequency for both max, stochastic and I, pooling. In our exper-
iments, we pool in time using a pooling size of 2, with an overlap
of 1, as this is the most conservative form of pooling. We see that
pooling in time and frequency helps slightly compared to pooling
in frequency only. However, the gains are not large, and are likely to
be diminished after sequence training, and thus our further exper-
iments pool in frequency only. It appears that for large tasks with
more data, regularizations such as pooling in time are not helpful,
similar to other regularization schemes such as I,/stochastic pool-
ing and pooling with overlap in frequency.

3.4. Conclusions
Analysis from Section 3.1 indicated that FWS, with 2 convolu-

tional layers of 256 hidden units, followed by 4 fully connected
layers, was the best strategy. Furthermore, investigation of filter

Table 7
Pooling in time.

Pooling type WER, Pooling in time WER, Pooling in time+frequency
Max 18.9 18.9
Stochastic 18.8 18.8
I 18.9 18.8
Table 8
WER as a function of input feature.
Feature WER
Mel FB 19.7
VTLN-warped mel FB 19.5
VTLN-warped mel FB +d + dd 18.9

sizes in Section 3.2 indicated that a 9x9 frequency-time filter for
the first convolutional layer, followed by a 4x3 filter for the second
convolutional layer, was best. Finally, pooling strategy analysis in
section shows that non-overlapping pooling max-pooling, and
pooling only in frequency, was a reasonable strategy. A pooling size
of 3 was used for the first layer, and no pooling was done in the sec-
ond layer. Prior experience has shown us that settings which work
well for the smaller 50 hr Broadcast News task seem to generalize
well to larger data sets, and thus we use the settings we found best
for 50 hr when exploring gains with CNNs on larger data sets.

4. Analysis of input features

Convolutional neural networks require features which are
locally correlated in time and frequency. This implies that Linear
Discriminant Analysis (LDA) features, which are very commonly
used in speech, cannot be used with CNNs as they remove locality
in frequency (Abdel-Hamid et al., 2012). Mel filter-bank (FB)
features are one type of speech feature which exhibit this locality
property (Mohamed, Hinton, & Penn, 2012).

Typically, various speaker adaptation techniques are applied
to speech recognition features and have been shown to improve
speech recognition performance tremendously (Gales, 1998; Lee
& Rose, 1996; Sainath, Ramabhadran, Picheny, Nahamoo, and
Kanevsky, 2011). Vocal tract length normalization (VTLN) (Lee &
Rose, 1996) is a popular technique that warps the speech from dif-
ferent speakers and different vocal tract lengths into a canonical
speaker with an average vocal tract length. VTLN is attractive be-
cause it applies the warping to the mel-filterbank of each speaker,
and therefore preserves the locality in frequency. Another common
practice to improve performance is to include extra time-dynamic
information of the feature by including time-derivative informa-
tion of features, known as deltas (d) and double-deltas (dd) (Young,
Evermann, Gales, Hain, Kershaw, Liu, Moore, Odell, Ollason, Povey,
Valtchev, & Woodland, 2006). While previous experiments in Sec-
tion 3 were done with VTLN-warped log-mel+d+dd features, we
analyze if the extra complexity of these features is really needed
with a CNN. Specifically, since both pooling and VTLN attempt to
remove translational variance from the input signal, its possible
both are not needed.

Table 8 shows that indeed the performance of CNNs improves
by incorporating VTLN and delta information, confirming the com-
plementarity between VTLN and pooling is needed for CNNS. Note
that the CNN for each input feature in Table 8 has the same number
of parameters. Note that we have not given the performance with
DNNs with different transformations of log-mel features, as we
have observed better performance for DNNs using feature-space
maximum likelihood linear regression features (fMLLR) (Gales,
1998) features rather than VTLN-warped log-mel features (Lee &
Rose, 1996). Rather, we leave the comparison between CNNs and
DNNs with the best feature sets to Section 6.
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Fig. 2. Joint CNN/DNN architecture.

In speech recognition, we have seen further improvements
in performance can be achieved using speaker-adapted features
which do not display locality in frequency, including feature-space
maximum likelihood linear regression features (fMLLR) (Gales,
1998) and speaker identity vectors (i-vectors) (Saon et al., 2013).
In the sections below, we discuss how to effectively incorporate
these features into our CNN framework.

4.1. fMLLR transforms

fMLLR (Gales, 1998) is a popular speaker-adaptation technique
used to reduce variability of speech due to different speakers. The
fMLLR transformation applied to features assumes that either fea-
tures are uncorrelated and can be modeled by diagonal covariance
Gaussians, or features are correlated and can be modeled by a full
covariance Gaussians.

While correlated features are better modeled by full-covariance
Gaussians, full-covariance matrices dramatically increase the
number of parameters per Gaussian component, oftentimes lead-
ing to parameter estimates which are not robust. Thus fMLLR is
most commonly applied to a decorrelated space. When fMLLR
was applied to the correlated log-mel feature space with a diag-
onal covariance assumption, little improvement in WER was ob-
served (Sainath, Mohamed, et al., 2013).

Semi-tied covariance matrices (STCs) (Gales, 1999) have been
used to decorrelate the feature space so that it can be modeled by
diagonal Gaussians. STC offers the added benefit in that it allows a
few full covariance matrices to be shared over many distributions,
while each distribution has its own diagonal covariance matrix.

In this paper, we explore applying fMLLR to correlated features
(such as log-mel) by first decorrelating them such that we can
appropriately use a diagonal Gaussian approximation with fMLLR.
We then transform the fMLLR features back to the correlated space
so that they can be used with CNNs.

The algorithm to do this is described as follows. First, starting
from correlated feature space f € R", we estimate an STC matrix

S € N™™ to map the features into an uncorrelated space. This
mapping is given by transformation (6).

To estimate the STC matrix, we build a GMM/HMM system on
feature space f for a set of context-dependent states. Because of
data sparsity issues in estimated full-covariance Gaussians, the co-
variance matrix ¥ for each Gaussian m consists of a component
specific diagonal covariance matrix 25?;; and a non-diagonal semi-
tied covariance matrix S, as shown by Eq. (7). The semi-tied covari-
ance matrix S, along with other Gaussian parameters (i.e., mean,
diagonal covariance) are estimated via expectation-maximization.
We refer the reader to Gales (1999) for further details regarding
STC matrices.

St (6)
M =sxins'. (7)

Next, in the uncorrelated space, an fMLLR matrix is estimated
for each speaker p, and is applied to the STC transformed features.
fMLLR assumes a linear transformation between the initial feature
Sf and the transformed features T, as shown by transformation (8).

T = A,Sf+ by, (8)
Given an GMM model 6, the goal in fMLLR is to find a transfor-

mation of feature vectors to maximize their likelihood. An fMLLR
matrix Mp = {Ap, bp} € R™™ is estimated for each speaker p.

{A*, b*} = argmax P(T|0). (9)
(A,b)

After estimating an fMLLR transformation per speaker p, this
transformation is applied to the uncorrelated log-mel features,
i.e. Sf. This transformation is given in transformation (10).

M,Sf. (10)

Thus far, transformations (6) and (10) demonstrate standard
transformations in speech with STC and fMLLR matrices. However,
in speech recognition tasks, once features are decorrelated with
STC, further transformation (i.e. fMLLR, fBMMI) are applied in this
decorrelated space, as shown in transformation (10). The features
are never transformed back into the correlated space.

However for CNNs, using correlated features is critical. By mul-
tiplying the fMLLR transformed features by an inverse STC matrix,
we can map the decorrelated fMLLR features back to the correlated
space, so that they can be used with a CNN. The transformation we
propose is given in (11).

S'M,Sf. (11)

4.2. Joint CNN/DNN architecture

Typically, fMLLR transformations are applied to Linear Dis-
criminant Analysis (LDA) features, which are already decorrelated.
When fMLLR features are created in such a manner, a CNN cannot
be used, though a DNN can be used. We explore whether feeding
fMLLR features to a DNN layer, and combining this with a CNN, is
more effective than creating fMLLR log-mel features, as described
in Section 4.1. The architecture for combining CNNs and DNNs is
shown in Fig. 2.

Specifically, log-mel features are fed to a CNN layer, and fM-
LLR features are fed to a DNN layer. The output of the fMLLR
fully-connected layer and log-mel convolutional layers are joined
together and fed to subsequent fully-connected layers. The entire
network is trained jointly. This can be thought of as combining fea-
tures generated from a DNN-style and CNN-style network.

Related to this idea is the work of Sermanet et al. (2012), which
considered the same input feature into the network, and looked at
combining outputs from different layers of the neural network. Our
work is different in that it provides a flexible joint architecture for
combining different feature sets which can be modeled by CNNs or
DNNs. We call the proposed architecture a joint CNN/DNN model.
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Table 9

WER, incorporating i-vectors into CNNs.
Method WER
log-mel 19.5
log-mel + [-vector, CNN only 18.8
log-mel + I-vector, joint CNN/DNN 18.7

4.3. I-vectors

Identity vectors (i-vectors) are commonly used features for
speaker verification and speaker recognition applications, as they
encapsulate relevant information about a speaker’s identity in a
low-dimensional feature vector. This also makes these attractive
speaker-adaptive features for ASR applications. For example, Saon
et al. (2013) explored combining i-vectors with fMLLR features, as
input into a DNN. The paper showed that incorporating i-vectors
provided an additional 5%-6% relative improvement.

Incorporating i-vectors into a CNN architecture is a bit more
challenging, as CNN require features which obey a frequency (and
time) locality property, a property which i-vectors do not have. We
compare two different methodologies to incorporate i-vectors into
CNNs.

[-vectors can be incorporated into the convolutional layer by
concatenating the feature with every localized frequency patch.
For example, if the CNN sees a 9x9 time-frequency patch of
localized features, we concatenate the 100-dimensional i-vectors
into this feature so that the new filter size becomes 9x109. Every
time the CNN shifts in frequency, the same i-vector is concatenated
to the current set of localized features. This idea has been explored
before when incorporating the non-localized energy feature into
a CNN (Abdel-Hamid et al., 2012). Alternatively, since we know
i-vectors can be incorporated into fully connected DNN layers,
we can use a joint CNN/DNN modeling approach discussed in
Section 4.2. Specifically, we can feed the i-vectors into one fully
connected DNN layer, and then join this output into the first fully
connected layer of the CNN.

Table 9 shows the WER for the two different methodologies. Just
for simplicity to avoid the extra dimensions with d+dd, we com-
pare the two different ideas of incorporating i-vectors with just
log-mel features. We see there is an improvement in WER when
i-vectors are incorporated, but there is not a huge difference in fi-
nal performance when incorporating i-vectors at the CNN or DNN
level. Incorporating at the DNN layer is a bit faster, as we do not
need to add i-vectors into the localized features for each CNN shift.
For this reason, we use this approach for i-vectors in subsequent
experiments.

4.4. Results

Results with the various discussed speaker-adaptation tech-
niques are shown in Table 10. Notice that by applying fMLLR in a
decorrelated space, we can achieve WER of 18.3%, a 0.5% improve-
ment over the baseline VTLN-warped log-mel system. However,
using fMLLR in the DNN stream of the joint CNN/DNN architecture
is even more promising with a WER of 18.0%. Finally, incorporat-
ing i-vectors into the fMLLR DNN stream provides even further im-
provements. Overall, the proposed speaker adaptation techniques
achieve a WER of 16.9%, a 10% relative improvement in WER over
the baseline at a WER of 18.8%.

5. Sequence training with rectified linear units and dropout

At IBM, two stages of Neural Network training are performed.
First, DNNs are trained with a frame-discriminative stochastic
gradient descent (SGD) cross-entropy (CE) criterion. Second, CE-
trained DNN weights are re-adjusted using a sequence-level

objective function (Kingsbury, 2009). Specifically, using the cross-
entropy trained DNN, sequence information is saved out in the
form of a numerator lattice, representing the correct set of words,
and a denominator lattice, representing competing hypotheses.
A state-level minimum Bayes risk (sMBR) sequence objective
function is used. More details of sequence training can be found
in Kingsbury (2009). Since speech is a sequence-level task, this
objective is more appropriate for the speech recognition problem.
Numerous studies have shown that sequence training provides
an additional 10%-15% relative improvement over a CE trained
DNN (Kingsbury et al., 2012; Sainath, Mohamed, et al., 2013). Using
a 2nd order Hessian-free (HF) optimization method is critical for
performance gains with sequence training compared to SGD-style
optimization, though not as important for CE-training (Kingsbury
etal, 2012).

Rectified Linear Units (ReLU) and dropout (Hinton, Srivastava,
et al., 2012) have recently been proposed as a way to regularize
large neural networks. In fact, ReLU+dropout was shown to provide
a 5% relative reduction in WER for cross-entropy-trained DNNs
on a 50 hr English Broadcast News LVCSR task (Dahl et al., 2013).
However, subsequent HF sequence training (Kingsbury et al., 2012)
that used no dropout erased some of these gains, and performance
was similar to a DNN trained with a sigmoid non-linearity and
no dropout. Given the importance of sequence-training for neural
networks, in this paper, we propose a strategy to make dropout
effective during HF sequence training. Results are presented in the
context of CNNs, though this algorithm can also be used with DNNs.

5.1. Hessian-free training

One popular 2nd order technique for DNNs is Hessian-free (HF)
optimization (Martens, 2010). Let # denote the network parame-
ters, £(#) denote a loss function, V.£(#) denote the gradient of the
loss with respect to the parameters, d denote a search direction,
and B(#) denote a Hessian approximation matrix characterizing
the curvature of the loss around 6. The central idea in HF optimiza-
tion is to iteratively form a quadratic approximation to the loss and
to minimize this approximation using conjugate gradient (CG).

LO+d) ~ LO)+VLO)d+ %dTBw)d. (12)

During each iteration of the HF algorithm, first, the gradient is
computed using all training examples. Second, since the Hessian
cannot be computed exactly, the curvature matrix B is approxi-
mated by a damped version of the Gauss-Newton matrix G(6) + AI,
where X is set via Levenberg-Marquardt. Then, Conjugate gradient
(CG) is run for multiple-iterations until the relative per-iteration
progress made in minimizing the CG objective function falls below
a certain tolerance. During each CG iteration, Gauss-Newton ma-
trix—-vector products are computed over a sample of the training
data.

5.2. Dropout

Dropout is a popular technique to prevent over-fitting during
neural network training (Hinton, Srivastava, et al., 2012). Specifi-
cally, during the feed-forward operation in neural network train-
ing, dropout omits each hidden unit randomly with probability p.
This prevents complex co-adaptations between hidden units, forc-
ing hidden units to not depend on other units. Specifically, using
dropout the activation y' at layer I is given by Eq. (13), where y'~!
is the input into layer I, W' is the weight for layer I, b is the bias, f is
the non-linear activation function (i.e. ReLU) and r is a binary mask,
where each entry is drawn from a Bernoulli(p) distribution with
probability p of being 1. Since dropout is not used during decod-
ing, the factor ﬁ used during training ensures that at test time,
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Table 10

WER with speaker-adapted features.
Feature WER
VTLN-warped log-mel+d+dd 18.8
CNN only, fMLLR + VTLN-warped log-mel+d+dd 18.3
Joint CNN/DNN, fMLLR (DNN) + VTLN-warped log-mel+d+dd (CNN) 18.0

Joint CNN/DNN, fMLLR + i-vectors (DNN)+ VTLN-warped log-mel+d+dd  16.9

when no units are dropped out, the correct total input will reach
each layer.

y=f (;W’(rH xy 1) —l—b’) . (13)
1—p

5.2.1. Combining HF + dropout

Conjugate gradient tries to minimize the quadratic objective
function given in Eq. (12). For each CG iteration, the damped
Gauss-Newton matrix, G(@), is estimated using a subset of the
training data. This subset is fixed for all iterations of CG. This is be-
cause if the data used to estimate G(@) changes, we are no longer
guaranteed to have conjugate search directions from iteration to
iteration.

Recall that dropout produces a random binary mask for each
presentation of each training instance. However, in order to guar-
antee good conjugate search directions, for a given utterance, the
dropout mask per layer cannot change during CG. The appropriate
way to incorporate dropout into HF is to allow the dropout mask
to change for different layers and different utterances, but to fix it
for all CG iterations while working with a specific layer and spe-
cific utterance (although the masks can be refreshed between HF
iterations).

As the number of network parameters is large, saving out the
dropout mask per utterance and layer is infeasible. Therefore, we
randomly choose a seed for each utterance and layer and save this
out. Using a randomize function with the same seed guarantees
that the same dropout mask is used per layer/per utterance.

5.2.2. Results

We experimentally confirm that using a dropout probability of
p = 0.5 in the 3rd and 4th layers is reasonable, and the dropout
in all other layers is zero. For simplicity, the CNNs in these experi-
ments are trained with VTLN-warped log-mel+d+dd features only.
The CE WER with sigmoid is 18.9% and with RelU it is 18.7%.

Results with different dropout techniques after HF sequence
training are shown in Table 11. Notice that if no dropout is used, the
WER is the same as with sigmoid, a result which was also found for
DNNs in Dahl et al. (2013). By using dropout but fixing the dropout
mask per utterance across all CG iterations, we can achieve a 0.6%
improvement in WER. Finally, if we compare this to varying the
dropout mask per CG training iteration, the WER increases. We did
not run experiments using sigmoids with dropout for CNNs, as we
found in Dahl et al. (2013) that sigmoids with dropout was not
helpful.

Further investigation in Fig. 3 shows that if we vary the dropout
mask, there is slow convergence of the loss during training,
particularly when the number of CG iterations increases during
the later part of HF training. This shows experimental evidence
that if the dropout mask is not fixed, we cannot guarantee that
CG iterations produce conjugate search directions for the loss
function.

6. Results on LVCSR tasks

In this section, we compare CNN performance to two state
of the art techniques used for LVCSR tasks, namely DNNs and

Table 11
WER of HF sequence training + dropout.
Non-linearity WER
Sigmoid 15.7
ReLU, no dropout 15.6
ReLU, dropout fixed for CG iterations 15.0
ReLU, dropout per CG iteration 15.3
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Fig. 3. Held-out loss with dropout techniques.

GMM/HMMs. We report CNN performance with the architecture
described in Section 3, and also break down the improvements
due to speaker-adaptation and ReLU, described in Sections 4 and
5 respectively.

The GMM system is trained using our standard recipe (Soltau
et al., 2010), which is briefly described below. The raw acoustic
features are 13-dimensional MFCC features with speaker-based
mean, variance, and vocal tract length normalization (VTLN) (Lee
& Rose, 1996). Temporal context is included by splicing 9 suc-
cessive frames of MFCC features into supervectors, then project-
ing to 40 dimensions using LDA. Next, a set of feature-space
speaker-adapted (FSA) features are created using feature-space
maximum likelihood linear regression (fMLLR) (Gales, 1998). Fi-
nally, feature-space discriminative training and model-space dis-
criminative training are done using the boosted maximum mutual
information (BMMI) criterion (Povey, Kanevsky, Kingsbury, Ram-
abhadran, Saon, & Visweswariah, 2008). At test time, unsupervised
adaptation using regression tree MLLR is performed.

Both CNN and DNN systems are trained in a hybrid setup, where
output probabilities of the network are taken to be HMM emission
probabilities. The networks are first trained using the cross-
entropy objective function, followed by Hessian-free sequence-
training (Kingsbury et al., 2012). Unless otherwise stated, the DNNs
are trained with fMLLR features with a 9-frame context around
the current frame, as this was found to be the best feature set for
DNNs (Sainath, Kingsbury, et al., 2011).
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Table 12 Table 14
WER on broadcast news, 50 hr. WER on switchboard, 300 hr.
Model Feature Non-linearity dev04f Model Feature Non-linearity Hubb5’00
GMM/HMM fBMMI 18.8 GMM/HMM fBMMI 14.5
DNN fMLLR sigmoid 16.3 DNN fMLLR features sigmoid 12.2
CNN log-mel sigmoid 15.8 CNN log-mel sigmoid 11.8
CNN+DNN log-mel+(fMLLR+i-vectors) sigmoid 14.2 CNN+DNN log-mel+(fMLLR+i-vectors) RelLU 10.7
CNN+DNN log-mel+(fMLLR+i-vectors) ReLU 13.6
DNN log-mel+(fMLLR+i-vectors) RelLU 14.2
6.3. 300 hr switchboard
Table 13
WER on broadcast news, 400 hr. 6.3.1 Experimental setup
Model Feature Non-linearity ~ dev04f Finally, we explore CNNs performance on 300 hr of conversa-
GMM/HMM fBMMI 16.0 tional American English telephony data from the Switchboard cor-
ESII\‘I‘ fMLLR | S!gm"%g E; pus. Results are reported on the Hub5? 00 set.
og-me sigmoi . . .
CNN+DNN log-mel+(fMLLR+i-vectors) ReLU 127 The GMM systems are trained using the same methods used

6.1. 50 hr broadcast news

6.1.1. Experimental setup

Our first set of experiments are conducted on the same 50 hr
English Broadcast News (BN) task used in Section 2, and results
reported on the EARS devO04f set. The GMMs are trained with 3000
quinphone states and 30 K diagonal covariance Gaussians. The CNN
system has 2 convolutional layers with 256 hidden units and 3
fully connected layers, while the DNN system has 5 fully connected
layers. Both the CNN and DNN systems have 1024 hidden units for
each fully connected layer, and a softmax layer with 3000 output
targets.

6.1.2. Results

Table 12 shows the performance of CNN hybrid systems, and
compares this to DNN and GMM/HMM systems. The table indicates
that the DNN hybrid offers a 13% relative improvement over
the GMM/HMM, consistent with gains observed in the literature
with DNNs vs. GMM/HMMs (Kingsbury et al., 2012). However,
the CNN systems are far better than the DNNs. The CNN hybrid
trained with log-mel offers a 3% relative improvement over this
DNN hybrid. Furthermore, by including the speaker-adaptation
and ReLU+dropout improvements, we can achieve an 11% relative
improvement over the CNN alone, and a 14% relative improvement
over the DNN. Finally, we see that if we train a DNN with the best
feature set (i.e., log-mel+fMLLR+i-vectors), the CNN still achieves a
4% relative improvement in WER over the DNN.

6.2. 400 hr broadcast news

6.2.1. Experimental setup

We next explore scalability of CNNs on 400 h of English Broad-
cast News (Kingsbury, 2009). Results are reported on the DARPA
EARS dev04f£ set. The GMMs use 5999 quinphone states and 150 K
diagonal-covariance Gaussians. The CNN system has 2 convolu-
tional layer with 256 hidden units and 3 fully connected layers,
while the DNN system has 5 fully connected layers. Both the CNN
and DNN systems have 1024 hidden units for each fully connected
layer, and have a softmax layer with 5999 output targets.

6.2.2. Results

Table 13 shows the performance of the CNN systems compared
to both DNNs and GMM/HMMs. The CNN trained on log-mel
features alone offers a 16% relative improvement over the
GMM/HMM system, and a 11% relative improvement over the DNN
hybrid system. Furthermore, by including the speaker-adaptation
and ReLU+dropout improvements, we can achieve an 6% relative
improvement over the CNN alone, and a 16% relative improvement
over the DNN. This helps to strengthen the hypothesis that CNNs
are better than DNNs for speech tasks.

for Broadcast News, namely using speaker-adaptation with VTLN
and fMLLR, followed by feature and model-space discriminative
training with the BMMI criterion. Results are reported after MLLR.
The GMM s use 8192 quinphone states and 372 K Gaussians. Similar
to the Switchboard experiments in Kingsbury et al. (2012), the DNN
hybrid system are trained with fMLLR features with an 11-frame
context (£5) around the current frame. The DNNs have six hidden
layers each containing 2048 sigmoidal units, and a softmax layer
with 8192 output targets. For the CNNs, two convolutional layers
have 512 hidden units, and five fully connected layers have 2048
hidden units, and the softmax layer has 8192 output targets.

6.3.2. Results

Table 14 shows the performance of the CNNs compared to both
DNNs and GMM/HMMs. The CNN system trained with log-mel
features offer a 20% relative improvement over the GMM/HMM
system, and 3% relative improvement over the hybrid DNN. Fur-
thermore, by including the speaker-adaptation and ReLU+dropout
improvements, we can achieve an 9% relative improvement over
the CNN alone, and a 12% relative improvement over the DNN.
Again, this confirms that across a wide variety of LVCSR tasks, CNNs
are better than DNNs.

7. Conclusions and future work

In this paper, we explored how to make CNNs a more power-
ful model for speech tasks compared to DNN. Specifically, we ex-
perimentally determined an appropriate number of convolutional
layers, hidden units, filter size and pooling strategy for CNNs. In
addition, we introduced a joint CNN/DNN architecture to allow
speaker-adapted features to be used in this framework. Finally, we
investigated a strategy to make dropout effective after HF sequence
training. Experiments on 3 LVCSR tasks, namely a 50 and 400 hr BN
task and a 300 hr SWB task, indicate that a CNN with the proposed
speaker-adapted and ReLU+dropout ideas allow for a 12%-14% rel-
ative improvement in WER over a strong DNN system. The perfor-
mance with the proposed ideas are state-of-the-art, giving a WER
of 13.6% on 50 hr BN, 12.7% on 400 hr BN and 10.7% on 300 hr SWB
are state-of-the art, surpassing the previous best DNN results of
16.3% on 50 hr BN, 15.1% on 400 hr BN and 12.2% on SWB (Sainath,
Mohamed, et al., 2013).
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