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Abstract—This paper proposes a new object model of data for the in-depth analysis of network traffic. In con-
trast to the model used by most modern network analyzers (for example, Wireshark and Snort), the proposed
model supports data stream reassembling with subsequent parsing. The model also provides a convenient uni-
versal mechanism for binding parsers, thus making it possible to develop completely independent parsers.
Moreover, the proposed model allows processing modified—compressed or encrypted—data. This model
forms the basis of the infrastructure for the in-depth analysis of network traffic.
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1. INTRODUCTION
The problem of traffic analysis is now becoming

increasingly important due to the progress in network
technologies and the advent of a great number of new
application layer protocols. Some practical aspects of
such an analysis are

• detecting network malfunctions;
• testing (debugging) network protocols [1, 2];
• statistics gathering and network monitoring;
• intrusion detection and prevention [3].
There are a great many commercial and freeware

network analyzers [4]. Each such tool is usually ori-
ented to solving one particular problem, while its basic
functions generally include protocol headers parsing
and data streams reassembling.

The majority of modern network analyzers operate
in two modes:

• the real-time analysis of the traffic (hereinafter,
the online analysis);

• the analysis of previously saved file with traffic
(hereinafter, the offline analysis).

In the online analysis mode, the tool has to operate
continuously with the efficiency sufficient for parsing
the traffic f lowing through the network interface. In
this case, the analyzer must be capable of processing a
potentially infinite input data stream.

In the offline analysis mode, the tool receives input
(finite) data from a file, which enables a more detailed

analysis as compared to the online mode for similar
traffic.

In practice, for most presently available tools, the
off line analysis is completely equivalent to the online
analysis except that the packets are read from the file
rather than from the network interface. The freedom
from the constraints on the data processing rate in the
off line mode provides additional possibilities for

• visualizing the structure of all parsed data;
• analyzing the reassembled data streams of the

application layer;
• applying other parsers (different from the parsers

used by the system) to the data when viewing the
results;

• debugging the protocol parsing modules;
• investigating the intrusion events.
The constraints imposed on the in-depth offline

analysis are mostly due to the architectural design of
network analyzers: most of them are primarily ori-
ented to the online analysis. In this case, the subse-
quent parsing of reassembled data streams is impossi-
ble. Therefore, we propose to implement two indepen-
dent systems for online and offline analysis,
respectively. Both systems should use a unified infra-
structure, including parsers (the complete list of
requirements is given below). Such a unified infra-
structure allows taking full advantage of the offline
analysis, while enabling the protocol headers parsing
and data streams reassembling in the online mode.
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The main result presented in this paper is an object
model that is used by these two systems.

The requirements to the online systems for in-
depth traffic analysis are quite elaborated: the ITU-T
recommendations were approved in 2012 [5]. In con-
trast, the requirements for the offline systems have not
yet been refined. Section 2 presents a list of refined
functional requirements for both the systems (based
on these requirements, the corresponding require-
ments for the proposed model are formulated). Sec-
tion 3 describes the model used by modern network
traffic analyzers (for example, Snort [6], Wireshark
[7], and Bro Network Security Monitor [8]) with the
emphasis being placed on its various limitations. Sec-
tion 4 discusses how exactly these limitations are over-
come in the proposed model. The results are summed
up in the Conclusion section.

2. REQUIREMENTS FOR A PARSING SYSTEM

Hereinafter, network data are assumed to be trans-
mitted in packets. A network packet consists of control
information and payload. In the process of parsing,
the protocol headers in the packet are marked up
(detailed) and the values of the header fields are ana-
lyzed. While the header structure is specified, the pay-
load can contain arbitrary data. The latter is usually a
packet of a higher-layer protocol that should be iden-

tified by the analyzer. If the identification is success-
ful, then parsing continues (see Fig. 1).

According to the OSI model, the network packet
data can be interpreted using the stack of protocol
headers. The standard sequence order of these headers
is from lower-layer to higher-layer protocols. In the
case of tunneling, however, this sequence order can be
violated. The parsing system should handle such situ-
ations correctly.

Some network protocols (for example, IPv4 [9])
are limited by the maximum allowed size of the pay-
load per a packet, which is referred to as the maximum
transmission unit (MTU) of a protocol. Thus, if the
MTU value is exceeded, then the payload is divided
into fragments of a permissible size so as to be trans-
mitted in several packets. In such cases, the parsing
system has to carry out the defragmentation of data
(see Fig. 2).

To provide a higher security of network communi-
cation, many protocols (particularly, TLS [10–12] and
SSH [13]) support data encryption. To parse the
encrypted data, they first need to be decrypted with
the key provided by the user (see Fig. 3). Generally
speaking, the parsing system should provide the user
with the interface for entering some additional data
required for parsing. This requirement is not manda-
tory according to the ITU-T recommendations.

Fig. 1. Protocol headers extraction and parsing.
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Traffic analysis is inevitably accompanied by pars-
ing errors. A parsing error is an inconsistency between
the protocol specification (parser code) and the net-
work packet parsed according to this specification.
Parsing errors occur due to various reasons:

• errors in the parser code;

• undocumented features of protocols;

• corruption of data during transmission.

The parsing system has to enable the localization of
the data parsed with errors. If an error detected is not
critical, then the analysis should continue.

Network traffic analyzers (for example, Wireshark
and Bro Network Security Monitor) generally have a
modular architecture, which is due to the continuous

Fig. 2. Data defragmentation (combining).
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development of new network protocols that need to be
supported. It is difficult to extend a system in which all
parsers are localized in one functional module. The
modular architecture allows creating for each particu-
lar protocol an individual module to parse header(s) of
this protocol. Therefore, a problem of inter-module
dependencies arises: when adding a new module, the
other modules must be “informed” about it. Modify-
ing the code of already implemented modules is diffi-
cult and ineffective (it is also a potential source of
errors). Moreover, such a modification requires
rebuilding the module. Therefore, it seems necessary
to implement a mechanism for adding new parsing
modules without modifying the existing ones.

The in-depth analysis of network traffic assumes
an exhaustive parsing: parsing the headers of the pro-
tocols of all OSI layers and saving the reassembled
data streams. The support of the exhaustive parsing is
a key requirement for the system.

Taking into account all the requirements formu-
lated above, let us consider the following (main) oper-
ating scenario. The online analysis system parses
packets (received from a certain network interface)
24/7. The parsing results—the set of all reassembled
data streams (see below) for all protocols—are saved
on the hard drive. The analyst monitors at certain reg-
ular intervals the error messages from the parsing sys-
tem. If the number of parsing errors for a particular
parser exceeds a predetermined threshold, then it
seems reasonable to fix the source code of this parser.
For the subsequent debugging of the parser code, the
corresponding network trace is saved. The decision on
modifying the parser code is made based on the results
of the offline analysis of the saved network trace.

In fact, the offline analysis system is intended to
acquire and accumulate sufficient knowledge about
the data structure for the further improvement of the
online analysis system. Therefore, it is highly import-
ant for the parsing modules of the two systems to be
compatible with each other. Such compatibility can

only be achieved by elaborating the architectures of
these systems.

The main (quite expectable) constraint imposed on
the online analysis system is a lack of computing
resources. Since input data stream is potentially
infinite, it is necessary (from time to time or upon
occurrence of a particular event) to save the parsing
results on the hard drive or to hand them over to
another analyzer. It should be noted that the online
analysis system does not provide any visualization of
the parsed data structure.

In contrast, the offline analysis system works with
the finite network trace, which imposes no constraints
on the computing resources. The main purpose of this
system is parser debugging. Visualizing the structure
of the parsed packets considerably facilitates the
debugging process. It is also not unreasonable to
implement a convenient mechanism to navigate
between the packets and properly reassembled
streams.

3. MODERN NETWORK TRAFFIC ANALYZERS

Most modern network analyzers support both
online and offline analyses. In the first case, network
card acts as a source of packets; in the second case,
such a source is a network trace file. Packet parsing
consists in extracting the fields of all protocol headers
in the packet. The extraction of a field means that a
certain continuous data block of a known size is made
to correspond to this field. The extracted blocks may
acquire certain semantics (for example, a block speci-
fying the packet length).

Most modern parsing systems use the concepts of a
packet, protocol, and data block. A data model corre-
sponding to such an approach (hereinafter, the basic
model) is shown in Fig. 4.

Each data block stores a pointer to a parent block
(parent_block) and a list of pointers to children blocks
(children_blocks). A parent block is a block contain-
ing a given block, while a child block is a block con-
tained in a given one. This enables block nesting, so a
network packet (data buffer) can be associated with a
corresponding parse tree. Note that the size of a block
is a sum of sizes of all its child blocks (if any).

Each block has a size, offset relative to the parent
block (offset_in_parent), and type. The type provides
a parser (parse_routine) that is suitable for analyzing
the data in a given block. In addition, the type has a
flag (proto) indicating (if set) that the block of this
type is a header of a network protocol. This enables
block grouping and allows emphasizing protocol
headers when viewing the structure of the parsed
packets.

Each block also has an additional attribute: either
name (string) or index (integer). The indexed blocks
describe network packets and array elements, while
the named blocks describe fields of protocol headers.

Fig. 4. Basic model of data.
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In the case of the basic model, the data are pro-

cessed as follows. A data buffer (in the offline mode, a

network trace) is inputted to the parsing system. Then,

a proper parser is selected according to the type of the

data in the buffer. The parser extracts the blocks and,

if necessary, calls other parsers for them. The parsing

system yields a certain tree representation of the buffer

with each extracted block corresponding to the node

of the tree. The system allows the analyst to view the

data in each block.

The basic model has the following limitations.

1. Each parser has to determine directly which

parser should be called next. The system thus loses its

f lexibility: when adding new parsers , the existing ones

have to be modified so as to make them capable of

using these new parsers. In fact, this means that, in

order to provide the ability of adding new parsers, the

developer has to open the source code of all already

implemented parsers. None of the commercial ana-

lyzers allow this.

2. The tree representation cannot be applied to the

packets containing encrypted or compressed data.

Meanwhile, the share of such (modified) data circu-

lating through the networks steadily increases.

3. To describe the assembly of sessions, more than

one buffer containig all packets is required. In this

case, a session is a reassembled (completely or par-

tially) transmission unit of the streaming protocol that

is sent (or received) through more than one network

packet. In certain analyzers (for example, Snort and

Bro Network Security Monitor), the sessions are reas-

sembled by plug-in modules but without subsequent

parsing. Yet, analyzing the reassembled sessions

makes it possible to restore high-level data of the

application protocols, thereby clarifying the logic of

the interaction between network nodes.

It should also be noted that most analyzers are ori-

ented either to the long-term operation in a statistics

gathering mode without exhaustive parsing and saving

the data structure or to the short-term operation in a

data accumulation mode with subsequent parsing and

viewing the data structure.

4. FORMAL DESCRIPTION OF THE DATA 
REPRESENTATION MODEL

Hereinafter, we refer to the proposed model of net-
work data as the extended model (in contrast to the
basic model).

In the extended model, the parsing process consists
in extracting logically continuous data blocks. Essen-
tially, such a block is a generalization of a field in the
basic model: in the extended model, a field is a block
with particular characteristics. When analyzing the
block, it may be required to process some of its parts
individually. To do so, a new block is created that is a
child block relative to the original one. The concepts
of the parent and children for the blocks are similar to
those for the fields. Each block has a size (positive
number). While parsing, each block is made to corre-
spond to a particular type. This (parsing) type sets a
parser suitable for analyzing data in a given block.
Each type has a unique name.

To describe the assembly of sessions, the concept of
a data buffer is introduced. The data from the blocks
can be added to the end of the buffer by copying.
The size of the buffer is always a sum of the sizes of the
data blocks added into it. The content of the buffer is
analyzed (by parsers) just like the data of the blocks. It
is essential to distinguish between the blocks that own
the buffer (streams) and the blocks that do not (frag-
ments). When it is required to assemble a session (par-
ticularly, when parsing TCP packets [14]), a stream is
created and the necessary data of fragments are then
added into its buffer (see Fig. 5). Note that the stream
can be created or supplemented with any parsing func-
tion.

It should also be noted that the data of a fragment
are localized by an offset value relative to the beginning
of the data in a parent block. When a parent block is a
stream, the offset is done relative to the beginning of
the buffer of this stream.

Session assembling sequentially raises the data rep-
resentation level (in terms of the OSI model): once
assembling is complete, the session is parsed with the
possibility of reassembling the sessions for higher-
layer protocols (see Fig. 6).

To make the parsing system capable of handling
modified (e.g., encrypted) data, the concept of a sub-
stitutional fragment is introduced (the other fragments
are hereinafter referred to as simple). Encrypted data
cannot be parsed directly: a preliminary decryption is
required (in this case, the analyst may know the
decryption algorithms and the values of the encryp-

Fig. 5. Adding the data from several fragments into the
stream buffer.
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tion keys used). The decrypted data are placed into a
preliminary created buffer associated with the frag-
ment that describes the encrypted data. Thus, the
fragment can have an additional memory buffer, and it
is the data of this (substitutional) buffer that are sub-
jected to parsing. The proposed approach can be gen-
eralized to any modification of data that allows for
inverse transformation. The child blocks of the substi-
tutional fragment have their offset values relative to the
beginning of the data in the corresponding substitu-
tional buffer. Note that, in the general case, the size of
the substitutional buffer is by no means related with
the size of the original data in the fragment. It should
also be noted that, to describe the substitutional frag-
ments within the tree structure, a distinctive feature
needs to be introduced for the nodes that own the buf-
fer (such nodes are hereinafter referred to as data
sources). Then, a simple fragment is characterized by
the offset relative to the “nearest” (when passing to the
parent) data source.

To implement universal parsers (that do not
require code modifications when adding new types),
the concept of a recognizer is introduced. A recognizer
is a function that, based on the block data and, per-
haps, some additional information, identifies the type
of a given block. At the beginning of parsing, the type
of the block is either known or not. In the latter case,
the type of the block is identified by the recognizers.
The parsing system allows the analyst to register new
recognizers and ensures the correct use of the already
registered ones.

Such recognition is mostly required for the fields in
protocol headers that contain data of various types.
For instance, the field “payload” in the header of the
IPv4 protocol can contain data of other protocols such
as TCP, UDP [15], etc. In this case, the type is deter-
mined by the value of the field “protocol” of the same
header. More formally, the type of a fragment is iden-
tified using the data of its parent. Such recognizers are
called field recognizers. To register a field recognizer in
the system, it is required to specify the name of the
corresponding field and the type of the parent block.
The field recognizer is used only for the field with a
specified name provided that the corresponding par-
ent block has a specified type.

To identify the type of assembled sessions, stream
recognizers are used. As input data, a stream recognizer
uses only data of the corresponding buffer. In addi-
tion, the assembly type of the stream can be used for

recognition. An assembly type is determined based on
the type of the data blocks added into the stream buf-
fer. The assembly type allows one to narrow (if neces-
sary) the set of recognizers applied to the stream. Such
recognizers are referred to as stream recognizers with
known assembly type. A stream recognizer that does
not use the assembly type can also be applied to iden-
tifying the type of a fragment; such recognizers are
referred to as stream recognizers with unknown assembly
type.

The recognizers are an integral part of the system
(see Fig. 7); their primary purpose is to provide the
mutual independence between the parsers (and,
therefore, the parsing modules): when adding new
types into the system, it is sufficient to register the cor-
responding recognizer. In the opposite case where the
recognition functionality is concentrated in the pars-
ers, it would require to modify their code. Note also
that recognizers can be located in any parsing module.

The proposed modifications make it possible to
overcome the above-mentioned limitations of the
basic model. However, a new problem arises that con-
cerns session assembling: when adding new data, the
corresponding session must be uniquely identified.
As an example, let us consider the IPv4 protocol used
for transferring data between network nodes with
unique IP addresses. This uniqueness, however, holds
only within a particular IP subnetwork, while network
traffic generally represents lots of such subnetworks.
Moreover, packets of one IP subnetwork can be nested
into packets of another IP subnetwork. Thus, a pair of
IP addresses is insufficient to identify an IP session
within a global network. When transferring data via the
TCP protocol, a pair of ports—sender and receiver—
need to be given; i.e., to identify a TCP session, it is
required to specify the values of these ports. In sum-
mary,

• different protocols use different concepts of a
session; i.e., there are different types of sessions;

Fig. 7. Extended data processing scheme.
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• each network protocol determines a set of identi-
fication characteristics (a key) for its sessions;

• the identification characteristics of a session
(determined by a protocol) are unique within a partic-
ular context.

For an IP session, such a context is a certain IP
subnetwork, while, for a TCP session, it is an IP ses-
sion in an IP subnetwork. Note that the higher is the
OSI layer of a protocol, the larger is the set of identifi-
cation characteristics for the session of this protocol in
the global network. Particularly, for a TCP session,
this set includes an IP session and its characteristics.
Thus, there is a tree of contexts where each node rep-
resents the set of characteristics for the corresponding
session; this set contains all characteristics of the parent
node and at least one extra characteristic (see Fig. 8).
For the root of the tree, this set is empty.

Each node of the context tree is associated with a
set of context instances. A context instance is a context
for which the values of all identification characteristics
are known.

The concept of a stream, which is introduced
above, fully describes a session with the assembly type
of a stream (by definition) being the type of the ses-

sion. The stream is assembled (and subsequently
stored) within the context instance.

To describe the contexts, we extend the concept of
a type (see above) with a feature that indicates the
necessity of creating a context. If a type has this fea-
ture, then, before parsing the block of this type, the
system kernel switches the context (particularly, before
parsing the header of the IPv4 protocol). At every
instant of analysis, exactly one context is active.
Switching consists in changing the active context: if
there is no desired context by the time of switching,
then it is created. We refer to the type of the block that
requires creating a context for its parsing as a context
type.

Less formally, the contexts and context instances
are meant for grouping the blocks of the same nesting
level. In fact, this refers to the problem of traffic clas-
sification (for more detail about traffic classification
methods see [16]). The grouping criterion is provided
by the context type and is given by the function that,
having analyzed the content of a block, classifies it as
belonging to a particular group (each instance within a
certain context describes one such group).

A stream is assembled within the context instance
where it has been created, which implies that the

Fig. 9. Extended model of data.
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blocks belonging to different context instances cannot
become parts of the same stream.

Figure 9 shows the object model that implements
all the features described above. Note that, according
to the type (“flags” attribute), a block is either a struc-
ture (similar to the “struct” in C) or a sequence. There-
fore, in the first case, the child blocks are regarded as
fields and, in the second case, as sequence elements.
Each field is characterized by its name, while each
sequence element by its index. Thus, the extended
model completely covers the functionality of the basic
one.

It should also be noted that, within a context
instance, the streams are identified using a key (attri-
bute “stream_extension”); the size (attribute
“stream_ext_size”) and structure of the key are given
by the type of the corresponding context.

5. CONCLUSIONS

In this paper, an object model of data for both
offline and online analyses has been proposed. Unlike
the basic model used by most modern network traffic
analyzers, this extended model supports session
assembling and modified data processing, as well as
allows one to develop completely independent parsing
modules. The Wireshark analyzer operates on the
basis of a similar model, but it has a significant disad-
vantage: session assembling is completely shifted on to
the developer. At the kernel level, the Wireshark has no
analogs for the concepts of a stream, context, and con-
text instance, so they need to be created independently
for each parsing module (if session assembling is
required). As a result, the parser code proves to be
overloaded with the session assembling logic. In con-
trast, the proposed model introduces the abstractions
for session assembling at the kernel level, which makes
it possible to considerably simplify (and shorten) the
parser code, as well as to avoid unnecessary errors.
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