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CHAPTER III 

 

DYNAMIC MODELING OF A WHEELED MOBILE ROBOT 

 

The motion of a mechanical system is related through a set of dynamic equations, 

and the forces or torques the system is subjected to. The dynamics of a mechanical 

system has been discusses in a numerous scholarly literatures related to engineering 

mechanics and analytical mechanics. The study of this subject is important due to the 

problem of the control of the system, which is in contact with its environment.  Indeed, 

for a model-based controller, the synthesis of the controller of such system depends 

heavily on the mathematical model of the physical structure of the system, which is 

intrinsically nonlinear. Thus, the goal here is to develop a model that can describe the 

dynamics of the system as close to the real system so that we can have a better chance to 

develop a controller for the system that is effective in real-world situation. In the case of 

a WMR, the contact with the environment occurs at the contact point between the wheel 

outer surface and the ground surface. The interaction between these two surfaces has a 

significant influence over the dynamic motion of the system, and hence, need to be 

properly modeled.  

In general, there are two major methods for deriving the dynamic equations of 

mechanical systems namely Newton's method that is directly related to Newton's 2
nd

 law 

and Lagrange's method that has its root in the classical work of d'Alembert and Lagrange 

on analytical mechanics. The main difference between the two methods is in dealing with 

constraint equations. While Newton's method treats each rigid body separately and 



13 

 

explicitly model the constraints through the reactive force required to enforce them, 

Lagrange's provides systematic procedures for eliminating the constraints from the 

dynamic equations, typically yielding simpler system equations. Thus, it is not surprising 

that the majority of the conventional WMR models we found in the literature were 

developed using Lagrange's as a method of choice. 

In this chapter, we first describe system constraints and formulate the dynamic 

equation of the conventional WMR using Lagrange's method. While the parts of the 

generalized formulation are not new and were previously explored by several researchers 

(Conceicao et al. 2007, Dongbin et. al 2007, Eghtesad & Necsulescu 2006, Liyong & 

Wei 2007, Salerno & Angeles 2007), the formulation is needed and serves as an 

important platform to combine the slip dynamics with that of the WMR. We then develop 

a detailed model for a two-WMR (i.e., two differential driving wheels) that is one of the 

most commonly available WMRs using the generalized formulation. Following that is the 

detailed discussion on the formulation of the dynamics model of a two-WMR with the 

inclusion of slips. This model is first developed using Lagrange's, allowing us to present 

the model in the standard form. In order to ensure model consistency, we present the 

derivation of dynamic equations using Newton's method. We list down all the variables 

with their definitions to help in the modeling process of the WMR system in the 

following table. 

 

Table 3.1: Variables used in the model formulation and their definitions 

��, �� The coordinate system for the inertial frame 

�	, 
� The coordinate system for the WMR reference frame 
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�� the origin  of the WMR reference frame with coordinate �	� , 
�� 

�
 the center of mass of the WMR with coordinate �	
 , 

� 

�� the virtual reference point (the look-ahead point) attached to the WMR 

with coordinate �	�, 
��  

 � the angular displacement of WMR 

��, �� the angular displacement of the driving wheels 

��, �� the longitudinal displacement of the driving wheels due to slips 

��, �� the lateral displacement of the driving wheels due to slips 

�� the effective mass of the WMR without the driving wheels and the 

motors 

 �� the effective mass of the driving wheels and the motors 

��� the moment of inertia of the WMR without the driving wheels and the 

motors taken at the center of mass about the vertical axis. 

 ��� the moment of inertia of the driving wheels and the motors about the 

vertical axis 

 ��� the moment of inertia of the driving wheels and the motors about the 

wheel axis (the WMR lateral axis) 

 � the distance between the point �
 and �� 
� the distance between the point �� and �
 

� the distance between the driving wheel and the origin of axis of 

symmetry of the robot reference frame 

 � the length of the WMR platform parallel to it x-axis 

ℎ the height of the WMR platform in the direction of the z-axis 

  the radius of the driving wheels  
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System constraints 

Mechanical systems can be classified into linear and nonlinear systems. Nonlinear 

systems can be further classified into holonomic and nonholonomic systems. A wheeled 

mobile robot is an example of mechanical system that falls under the latter category. 

Holonomy and nonholonomy are fundamental concepts that describe the constraints of 

the systems, which play the essential part in governing the motion of those systems.  

In the following we define some terms related to the discussion. These definitions are 

taken from (Rosenberg 1977, Sarkar 1993). 

 Lagrangian coordinates: Set of coordinates, Q, (not necessarily a minimal set) that are 

required to distinctively specify the configuration of the system.   

If the number of Lagrangian coordinates is more than the number of degree of freedom 

(DOF) of a system, N, then we may assign N of the Lagrangian coordinates as primary 

coordinates. The remaining coordinates are called secondary coordinates. In classical 

mechanics, the primary coordinates are called generalized coordinates.   

Catastatic and acatastatic constraints: The general form of equality constraints 

considered in classical mechanics is given as, 

           ∑ "�#�$# + "��& = 0     ,  ∈ �1,2, … , ��-#.�   

           in which $ = /$�  $�  … $-01 are the generalized coordinates of the dynamic 

systems, t is the time, and "�# and "� are at least one piecewise differentiable 

function of q. These m linear differential forms are called Pfaffian form. If "� is 

zero, and the set of constraint is called catastatic and the resulting dynamic system 

is called catastatic system. Otherwise the constraint is called acatastatic. 

Holonomic constraint: Any constraint of the form, 
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            2
3$, &4 = 0                                                                                                         (3.1) 

where $ is the generalized coordinate of the system and & is the  time. 

Nonholonomic constraint: Any constraint that cannot be reduced (i.e., non-integrable) to 

form Eq. (3.1)  

In general cases of mechanical systems, nonholonomic constraint can be written as, 

2
3$, $5 , &4 = 0                                                                                                                 (3.2) 

A holonomic constraint as in Eq. (3.1) reduces the degree of freedom (DOF) of 

the system. For instance if there is � number of holonomic constraints with 6 number of 

generalized coordinates $7, where 8 ∈ �1,2, … , 6�, the number of independent coordinates 

are 6 − �, which is the DOF of the system. Thus, 6 − � number of coordinates is 

needed to describe the system configuration and 6 − �  number of inputs is required to 

drive the system. 

On the other hand, for nonholonomic constrained system, there are two types of 

DOF, namely the DOF in the small (for infinitesimal displacements), which is 6 − � and 

DOF in the large (for finite displacements). The DOF in the large is the same as the 

minimum number of independent coordinates required to specify the configuration of the 

system. Nonholonomic system has fewer DOF in the small than that in the large. 

 For a nonholonomic WMR system, Eq. (3.2) can be further simplified to, 

 2
3$, $5 4 = 0                                                                                                                  (3.3) 

to form a nonholomic kinematic constraint of the system. Examples of such 

nonholonomic constraint equalities are the rolling of the wheels and the side wise motion 

of the WMR. Eq. (3.3) represents a velocity-level constraint of the system at the given 

configuration. The non-integrable nature of the constraint does not necessarily reduce the 
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number of generalized coordinates. Consequently, there arises possibility to steer the 

system using less number of inputs (Kurfess 2005, Melchiorri & Tornambe 1996). 

 

Dynamic model of a general nonholonomic WMR 

Let us consider a nonholonomic system whose vector of generalized coordinates, 

and vector of longitudinal and angular velocities are defined as $ ∈ ℜ-×�  and $5 ∈ ℜ-×�, 

respectively. If the system is subjected to a set of constraint forces given by <=, where 

> = 1,2, … , 6 − �, then there will be � nonholonomic constraint equations that must be 

explicitly satisfied by the system. We can write the constraint equations in Pfaffian form 

(Eq. (3.3)) as follows, 

"3$4$5 = 0, ? ∈ �1,2, … , � �                                                                                         (3.4)              

where "3$4 = @AB@C ∈ ℜD×- is the Jacobian of Eq. (3.3) and is called the constraint matrix. 

It is full rank matrix everywhere. By using the Lagrange's method, when the WMR is 

subjected to the nonholonomic kinematic constraints of the form Eq. (3.4), the 

Lagrangian equation of motion can be written as follows, 

��E F @G@C5 HI − @G@CH = J7+"3$41K=, 8 ∈ �1,2, … , 6�, > ∈ �1,2, … , 6 − ��                           (3.5)           

where, L = M − � is the Lagrangian function. M is the total kinetic energy and � is the 

total potential energy of the system. J7  is the generalized force corresponding to the 

generalized coordinate $7. K= is a vector of Lagrange multiplier that accounts for the 

constraint induced force "3$41K=. By solving the Lagrangian, we can formulate the 

general dynamic equation of the system as follows,  

N3$4$O + P3$, $5 4$5 = Q3$4J + "1K                                                                              (3.6) 
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where N3$4 ∈ ℜ-×- is called the inertia matrix of the system. P3$, $5 4 ∈ ℜ-×� is the 

centrifugal and Coriolis matrix. Q3$4 ∈ ℜ-×3-RD4 and J ∈ ℜ3-RD4×�  are the input 

transformation matrix and input vector, respectively. K ∈ ℜD×�  is a vector of Lagrange 

multipliers and "3$4 ∈ ℜD×-  is a constraint matrix that is adjoined to the dynamic 

equation. Several properties of the dynamic equation, Eq. (3.6) can be observed (Das & 

Kar 2006),  

P1: The inertia matrix N3$4 is symmetric and positive definite. 

P2: The matrix SN5 − 2PT is skew symmetric resulting in the following 

characteristic,  $1SN5 − 2PT$ = 0 for all $ ∈ ℜ- 

For the WMR shown in Fig. 3,1, the generalized system coordinates are given as, 

$ = /	
 , 

 , �, ��, ��, �U, … , �-R�, �-01                                                                         (3.7) 

where 3	
 , 

4 is the coordinate of the reference point on the WMR platform, � is the 

platform orientation with respect to an inertial frame �	V , 
V� and �W , X = 1,2, … , 6 are the 

wheel angular displacements. 

 

 

                                                                                           

 

 

 

 

 

 

 

 

 

Fig.  3.1: Generalized nonholonomic WMR platform 
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In many conventional WMR systems, the constraint equations in Eq. (3.4) are defined 

under the assumption that the wheel rolls without longitudinal slip and there is no lateral 

slip. That means, the longitudinal velocity of the WMR is governed by the linear velocity 

of the wheel that is solely defined using the wheel angular velocity and there is no 

velocity along the lateral direction. Hence, if slip occurs, these assumptions are clearly 

violated. 

In this dissertation, we argue that the modeling of the WMR that is based on the 

assumptions of wheel pure rolling and zero lateral slipping (for WMR with unicycle type 

of wheel) in a real practical situation is rather unrealistic. Our solution is to relax the 

assumptions by introducing new states due to wheel slip. 

  

As shown in Fig. 3.2, we introduce [W and �W to represent the longitudinal slip 

displacement and the lateral slip displacement, respectively, for the i-th wheel of the 

WMR. The wheels are rigidly connected to the WMR body as shown in Fig. 3.1. 

 

 

 

 

  

 

Fig. 3.2: System motion contributed by wheel's rolling and both longitudinal and lateral slips on a 

planar surface 
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We can write a new state, ^W to represent the total longitudinal displacement of the i-th 

wheel as, 

^W =  �W − [W                                                                                                                  (3.8) 

The new coordinate system allows us to describe the motion of the system in the presence 

of slip. We then define _3$4 ∈ ℜ-×3-RD4  to be a full rank matrix formed by a set of 

smooth and linearly independent vector fields, spanning the null space of "3$4. Thus, the 

result of multiplication of these matrices can be written as follows, 

_3$41"3$41 = 0                                                                                                            (3.9)                   

It is then possible to find a set of vector of time functions, that is, for all &, 

`3&4 ∈ ℜ3-RD4×�                                                                                                          (3.10) 

so as,  

$5 3&4 = _3$4`3&4                                                                                                          (3.11) 

We can use matrix _3$4 from Eq. (3.9) to eliminate the Lagrange multipliers in general 

dynamic equation, Eq. (3.6).  We further differentiate Eq. (3.11), to get the state 

acceleration as follows, 

$O 3&4 = _53$4`3&4 + _3$4 5̀3&4                                                                                       (3.12) 

By placing Eq. (3.11) and Eq. (3.12) into the dynamic equation, Eq. (3.6), we obtain, 

_1N_ 5̀ + _1N_5` + _1P_` = _1QJ                                                                           (3.13) 

Eq. (3.13) describes the dynamics of the nonholonomic WMR system in a new set of 

local coordinates `, such that matrix _3$4 projects the velocities, ` in the WMR base 

coordinate to velocities in Cartesian coordinate, $5 . Therefore the properties of the original 

dynamics hold for the new set of coordinates that is, 

 P3: The matrix 3_1N_4 is symmetric and positive definite 
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P4: The matrix3_1N_5 4 − 23_1N_54 is skew-symmetric. 

We can rearrange Eq. (3.13) to form, 

5̀ 3&4 = 3_1N_4R�_1S−N_5` − P` − QJT                                                                   (3.14)     5̀ 3&4 is the acceleration of vector time function defined in Eq. (3.10). Based on the 

equation Eq. (3.14), we can develop a suitable model-based controller for the WMR 

system. 

 

Detailed modeling of a two-wheeled nonholonomic mobile robot 

Now we develop a detailed model for a two-wheeled (i.e., two driving wheels) 

WMR that is one of the most commonly available WMRs using the above generalized 

formulation.  

 

Ideal model: A WMR without wheel slip 

 The WMR shown in Fig. 3.3 is a standard platform of a nonholonomic two-

wheeled mobile robot. 

 

 

 

 

 

 

 

Fig. 3.3: A two-wheeled nonholonomic mobile robot platform 
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It has two differential-driving wheels and a castor wheel used for balancing. The 

differential driving wheels are from unicycle type as shown in Fig. 3.4.  It has two 

degrees of freedom; the rotation around the motorized wheel axle and the contact point.  

 

 

 

 

 

 

 

 

Fig.  3.4: A standard unicycle wheel 

 

While the castor wheel as shown in Fig. 3.5 is located at the back of the WMR (i.e. can 

be located anywhere) and has three degrees of freedom which are the rotation around the 

wheel axle, the contact point and the castor wheel. In our wheel modeling, we assume all 

the wheels are deformable and rigidly held to the WMR platform. 

 

 

 

 

 

 

 

Fig.  3.5: A standard castor wheel 
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The two-driving wheels are powered by DC motors and have the same wheel radius, r. 

Point Po is the origin of WMR axis, which is located at the intersection of the 

longitudinal x-axis and the lateral y-axis. The center of mass (COM) is located at point 

Pc. This point cannot be located at the intersection point of axis of symmetry of the 

platform, Po to ensure no singularity in the control solution (Sarkar 1992, R. Zulli et. al. 

1995).  Pl is defined as a look-ahead point located on the x-axis of the WMR platform. b 

is the distance measured from the center of the WMR to the center of the wheel along the 

y-axis of the WMR reference frame. Here we assume the wheel model is represented by a 

thin, solid disk having a single point contact with the terrain surface. d denotes the 

distance between point Po and point Pc along the x-axis. The distance of the look-ahead 

point is l from point Pc, which is also along the x-axis. The origin of the inertial frame 

{X,Y} is shown as Pi  and as such allows the pose of the WMR to be completely specified  

through the following vector of generalized coordinates, 

$ = /	
 , 

 , �, ��, ��01                                                                                                  (3.15) 

where 	
 and 

  are the coordinate of the COM. �  represents the orientation of the 

WMR frame from the inertial frame and /��, ��0 is the angular displacement vector for 

the WMR driving YℎZZ�� and YℎZZ��, respectively. Due to the nonholonomy of the 

system and by following the ideal no-slip assumption, the rolling constraints for both 

wheels are written as, 

 �5� = 	5
 cos � + 
5
 sin � + ��5  
  �5� = 	5
 cos � + 
5
 sin � − ��5                                                                                   (3.16) 
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Eqn. (3.16) describes the longitudinal velocity of the WMR’s center of mass that is 

constrained by the longitudinal velocity of the wheels generated due to pure rotation. By 

using the same premise, the knife-edge constraint can be written as follows, 

0 = 
5
 cos � − 	
 sin � − ��5                                                                                      (3.17) 

where the lateral velocity measured along the turning axis of the WMR is constrained to 

zero velocity. In order to derive the dynamic equation of the system using Lagrangian 

formalism, the WMR platform can be partitioned into three parts namely the body of the 

platform and its two wheels (i.e., YℎZZ��, YℎZZ��). The expression of the kinetic energy 

of the WMR body is given as, 

M� = �� ��3	5 � + 
5 �4 + �� ����5 �                                                                                     (3.18) 

and the expression of the kinetic energy for both YℎZZ�� and YℎZZ�� are given 

respectively as, 

M�� = �� ��3	5 + ��5 cos � + � �5 sin �4� + �� ��3
5 +  ��5 sin � − � �5 cos �4� +            �� ����5 � + �� ����5��
                                                                                             (3.19) 

 M�� = �� ��3	5 − ��5 cos � + � �5 sin �4� + �� ��3
5 − ��5 sin � − � �5 cos �4� +            �� ����5 � + �� ����5��
                                                                                             (3.20) 

 

By using the constraint equations (Eq. 3.16 and 3.17) and energy equations (Eq. 3.18-

3.20), we can develop the dynamic equation for the WMR system without wheel slip as 

in the form of Eq. (3.6) or Eq. (3.14). The details of the derivation can be found in 

(Sarkar, Xiaoping & Kumar 1993).  

In the next paragraph, we discuss the focus of this research, where the WMR is 

now subjected to wheel slip. For such a condition we basically relax the constraint 

equations and develop a new dynamic model of the WMR. 
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Non-ideal case: A WMR with wheel slips 

 In this research we want to investigate the navigation problem of a nonholonomic 

WMR when the ideal no-slip assumption does not hold true. In order to model that 

condition, we need to include slip into the dynamics of the system. We start by 

introducing the new set of generalized coordinates vector after no-slip condition is 

relaxed as follows, 

$ = /	
 , 

 , �, ��, ��, ^�, ^�, ��, ��01                                                                           (3.21) 

Note that, the slip-contributed states (i.e., iρ and iη  ) can be easily expanded to 

accommodate a WMR with more fixed wheels. Using the new generalized coordinate 

vector, we can formulate the rolling constraints of the WMR with two fixed driving 

wheels in the following form, 

5̂� = 	5
 cos � + 
5
 sin � + ��5                                                                                     (3.22) 

5̂� = 	5
 cos � + 
5
 sin � − ��5                                                                                     (3.23) 

where 5̂W =  �5W − [5W. The constraint equations, Eq. (3.22) and Eq. (3.23) relaxes the 

assumption of no-slip by allowing the longitudinal velocity at the wheel hub to be the 

summation of the longitudinal velocity generated by the wheel angular velocity,  and the 

longitudinal slip velocity. 

The same basis can be applied to develop the knife-edge/lateral constraints.  Note that 

lateral slip in each wheel of a WMR is independent if the wheels are connected to the 

body of the WMR with mechanisms that allow relative motion (e.g., connected using 

springs and dampers). However, in our case as shown in Fig. 3.3, the two wheels of the 

WMR are rigidly connected to the body of the WMR and thus cannot have two different 
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lateral slips as can be seen from the following equations where both 
1η&  and 

2η&  have the 

same expressions, 

�5� = 
5
 cos � − 	
 sin � − ��5                                                                                     (3.24) 

�5� = 
5
 cos � − 	
 sin � − ��5                                                                                     (3.25) 

where lateral slip is allowed to occur along the turning axis of the WMR during 

cornering. In this research, we analyze the effect of both slips, particularly, to investigate 

the agility of WMR navigation to negotiate sharp cornering. Now, after we rearrange the 

coordinate system, the new constraints defined above can be rewritten in the form of Eq. 

(3.4), where "3$4 ∈ ℜh×i   is given as follows, 

"3$4 = j cos � sin � � 0 0 −1 0 0 0cos � sin � −� 0 0 0 −1 0 0−sin � cos � −� −1 0 0 0 0 0− sin � cos � −� 0 −1 0 0 0 0k                                 (3.26) 

which is a full rank matrix. We can find matrix _3$4 ∈ ℜi×l   from m3"3$44 to fulfill 

the requirement of Eq.(3.9) as, 

_3$4 =

no
ooo
ooo
oo
p−sin� 3qrstuR�tvwu4�q 3qrstux�tvwx�tv w u4�q 0 0cos� 3�rstuxqtvwu4�q 3R�rstuxqtvwu4�q 0 00 ��q − ��q 0 01 0 0 0 01 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1yz

zzz
zzz
zz
{
                                    (3.27) 

In order to formulate the inertia matrix, we define the kinetic energy of the WMR as 

follows, 

M� = �� ��3	5 � + 
5 �4 + �� ����5 �                                                                                     (3.28) 



27 

 

M�� = �� ��S 5̂��T + �� ��S�5��T + �� ����5 � + �� ����5��
                                                (3.29) 

M�� = �� ��S 5̂��T + �� ��S�5��T + �� ����5 � + �� ����5��
                                               (3.30) 

where M� is the kinetic energy of the WMR body and, M�� and M�� are the kinetic 

energies for  1wheel  and 
2wheel , respectively. We found the inertia matrix, N3$4 ∈ ℜi×i   

to be, 

N =
noo
ooo
ooo
p�� 0 0 0 0 0 0 0 00 �� 0 0 0 0 0 0 00 0 ��� + 2��� 0 0 0 0 0 00 0 0 �� 0 0 0 0 00 0 0 0 �� 0 0 0 00 0 0 0 0 �� 0 0 00 0 0 0 0 0 �� 0 00 0 0 0 0 0 0 ��� 00 0 0 0 0 0 0 0 ���yzz

zzz
zzz
{
                            (3.31) 

which is positive definite and symmetric. We later introduce a vector of lateral traction 

force,  2�|E_W  and longitudinal traction force, 2��-_W as 

~3$5 4 = /0,0,0, 2�|E�, 2�|E�, 2��-�, 2��-�, − 2��-�, − 2��-�01                                          (3.32) 

where each individual element of the traction force vector is calculated from the 

magnitude of the respective slips. The dynamic equation of WMR system can now be 

represented as, 

N3$4$O = Q3$4� + ~3$5 4 + "1K                                                                                   (3.33) 

where the transformation matrix, Q3$4 takes the form of, 

Q3$4 = �0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 1�1
                                                               (3.34) 

The input � is the torques to the driving wheels, given in the vector form, 

� = ������                                                                                                                        (3.35) 
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and the Lagrange multiplier, 

K = /K� K� KU Kh01                                                                                              (3.36) 

We expand the dynamic equation, Eq. (3.33), to obtain the following set of equations, 

��	O = cos � 3K� + K�4 − sin � 3KU + Kh4                                                                  (3.37) 

��
O = sin � 3K� + K�4 + cos � 3KU + Kh4                                                                  (3.38) 

3��� + 2���4�O = b3K� − K�4 − d3KU + Kh4                                                                 (3.39) 

���O� = 2�|E� − KU                     (3.40) 

���O� = 2�|E� − Kh                      (3.41)  

3��� + �� �4�O� = ��− 2��-�         (3.44) 

3��� + �� �4�O� = ��− 2��-�                    (3.45) 

From these set of equations, we note that the last two equations (Eq. (3.44) and Eq. 

(3.45)) are independent of Lagrange multipliers, which are due to the constraint 

equations. This allow us to separate these two equations from the dynamic equation, 

Eq.(3.33), and eliminate the last two column of matrix _3$4, in Eq.(3.27).  By following 

the procedure described in Eq. 3.4-3.14, we present the dynamics of the WMR in the 

following form, 

5̀ = ��O�Ô�Ô�� = 3_1N_4R�_1S−N_5`T + 3_1N_4R�_1~ = � + �~                                 (3.46) 

����O� = ��− 2��-�                                                                                                       (3.47) 

����O� = ��− 2��-�                                                                                                       (3.48) 
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Derivation of the dynamic equation using Newton's method 

 Newton's method is another main formalism to derive the governing equation 

pertaining to the dynamics of a mechanical system. The Newton equations relate forces 

and torques to the linear and rotational accelerations of the body masses. In the following, 

we use Newton's method to rederive the dynamic equation of WMR to ensure the 

consistency of the model previously developed using Lagrange's method.  

 Using free-body approach, we isolate the WMR into three parts namely, the body 

of the WMR and its two wheels (i.e.,YℎZZ��, YℎZZ��), and account for all the forces and 

torques acting on the joints of the parts. Fig. 3.6 depicts the acting forces and torques on 

the parts using free body diagram. 

 

Fig. 3.6: Free body diagram of a wheeled-mobile robot 

 

By letting �W to be the reactive forces acting on the respective joints, the Newton 

equations for the body of the WMR are given as follows,                           

��	O = cos � 3�� + ��4 − sin � 3�U + �h4                                                                (3.49)                                                

��
O = sin � 3�� + ��4 + cos � 3�U + �h4                                                                (3.50) 
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����O = b3�� − ��4 − d3�U + �h4 − 2����O                                                                 (3.51) 

and for YℎZZ�� and YℎZZ�� , the equations can be written as,  

���O� = 2�|E� − �U                     (3.52) 

���O� = 2�|E� − �h                      (3.53) 

3��� + �� �4�O� = ��− ��          (3.56) 

3��� + �� �4�O� = ��− ��          (3.57) 

We observe the set of equations (Eq. 3.49-3.57) derived using Newton's method have the 

same form as the equations derived using Lagrange's method (Eq. 3.37-3.45) if we let the 

relationship between Lagrange's multipliers and the reactive forces to be, 

�W = KW                                                                                                                          (3.58) 

This shows the consistency between the two models developed using Newton's and 

Lagrange's methods. In the following chapter, we discuss the model of traction force and 

its relationship to wheel slips. 
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  CHAPTER IV 

 

WHEEL SLIP AND TRACTION FORCE 

 

Increasing requirements on ride safety and comfort of vehicles inspired many 

research areas such as advanced vehicle control system, online system monitoring and 

wheel-surface (wheel-ground surface) traction force modeling. The latter involves the 

study on the mechanism to convert motor torque to traction force. The analysis of wheel-

surface interaction can provide an insight into the understanding of vehicle dynamics so 

as to improve ride and trajectory performance. This is particularly important for an 

autonomous system like the WMR, where the control performance based on the model-

based controller depends heavily on its dynamic model. 

The main task of wheel-surface traction force modeling and monitoring is to 

determine the relationship between traction forces and slip velocity. However, the 

relationship is difficult to analyze due to the following three challenges. First, traction 

force is generated through tire deformation, tire adhesion as well as tire wear and tear, 

and it is influenced by several factors including wheel-surface conditions, tire pressure, 

and load etc. When there is a continuous interaction between the tire and the surface, the 

result is the elastic deformation at a molecular level of the outer layer of the tires called 

asperities shown in Fig. (4.1). The load of the WMR causes these asperities to penetrate 

the surface asperities. When this happens, it yields a resistance force or a traction force. 

Deformation of the tire provides most of the traction force. Adhesion is a property of the 

rubber that causes it to stick to other materials at the contact point. It is caused by the 



molecular bonds between the rubber thread and the surface. The strength of the bonds 

relies on the temperature and the amount of slip occurs at the contact point. In addition to 

tire deformation and tire adhesion, the wear and tear of the wheel also contributes to the 

traction force. 

 

 

 

 

 

 

 

 

Fig.  4.1: Asperities deformation of two surfaces before load is applie

 

Second, the nonlinear and dynamic properties of traction force such as the viscous 

and hysteresis phenomenon are difficult to describe analytically. On the other hand, most 

empirical traction force models are ha

Third, the complexity of the traction force model can affect the performance of 

the systems. For instance, for a system application, which is time critical, the model of 

the traction force should be able to be employed 

In this chapter, we describe the choice of traction force model used in this 

research. Our requirement is to have a traction model that is made up of a continuous, 

differentiable function. 
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molecular bonds between the rubber thread and the surface. The strength of the bonds 

e and the amount of slip occurs at the contact point. In addition to 

tire deformation and tire adhesion, the wear and tear of the wheel also contributes to the 

: Asperities deformation of two surfaces before load is applied (top) and after load is 

applied (bottom)  

Second, the nonlinear and dynamic properties of traction force such as the viscous 

and hysteresis phenomenon are difficult to describe analytically. On the other hand, most 

empirical traction force models are hard to rationalize by physical laws.  

Third, the complexity of the traction force model can affect the performance of 

the systems. For instance, for a system application, which is time critical, the model of 

the traction force should be able to be employed in real-time.  

In this chapter, we describe the choice of traction force model used in this 

research. Our requirement is to have a traction model that is made up of a continuous, 

molecular bonds between the rubber thread and the surface. The strength of the bonds 

e and the amount of slip occurs at the contact point. In addition to 

tire deformation and tire adhesion, the wear and tear of the wheel also contributes to the 

d (top) and after load is 

Second, the nonlinear and dynamic properties of traction force such as the viscous 

and hysteresis phenomenon are difficult to describe analytically. On the other hand, most 

 

Third, the complexity of the traction force model can affect the performance of 

the systems. For instance, for a system application, which is time critical, the model of 

In this chapter, we describe the choice of traction force model used in this 

research. Our requirement is to have a traction model that is made up of a continuous, 
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Traction force models 

The model of traction force can generally be classified into two types namely 

empirical (or semi-empirical) and analytical models. The former are developed based on 

curve-fitting techniques and can accurately capture the nonlinear characteristics of the 

traction force. However, most of these models lack physical interpretation, and cannot 

directly reflect the effects of some dynamic factors like tire hysteresis, humidity of the 

surface and tire pressure. Meanwhile, most analytical model of traction force is composed 

of differential equation. For example, Brush model can model the dynamic factors 

mentioned above (Li & Wang 2006). However, these models lack the empirical (semi-

empirical) accuracy and as a result, the choice of the traction models greatly depends on 

the type of system applications. For a WMR that is equipped with standard unicycle 

wheels as described in Chapter III, the traction force acting on the longitudinal and lateral 

directions can be modeled separately, resulting in two independent traction force models, 

longitudinal and lateral traction models. Table 4.1 lists some of the most useful traction 

models found in the literatures. 

 

Table 4.1: Traction force models and their brief descriptions 

MODEL NAME PROPERTIES FEATURES 

Piecewise Linear 

(longitudinal) 

Empirical Easy to identify but cannot accurately fit 

curves 

Burckhardt model 

(longitudinal) 

Semi-empirical Can accurately fit curve 

Rill model 

(longitudinal) 

Semi-empirical Easy to identify 
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Delft model or 

Magic formula 

(longitudinal and 

lateral) 

Semi-empirical Can accurately fit curves and model 

different factors 

Dahl model  

(longitudinal) 

Analytical Can describe Coulomb friction and 

produce smooth transition around zero 

velocity 

Bliman-Sorine 

(longitudinal) 

Analytical An improvement over Dahl's with an 

additional Stribeck effect 

LuGre model 

(longitudinal) 

Analytical An improvement over Bliman-Sorine's 

with additional combination of pre-

sliding and sliding factors 

Linear Proportional 

(lateral) 

Empirical Cannot accurately reflect saturation 

properties but easy to identify 

Nonlinear 

Proportional 

(lateral) 

Semi-empirical Can accurately fir curves 

Bicycle  

(lateral) 

Analytical Does not reflect the traction force directly 

 

The Delft model or famously known as Magic formula model is an elegant, semi-

empirical model based on curve fitting. It has been widely accepted in the industry and 

academia (Politis et al. 2001, Li and Wang 2006) to generalize the model of both 

longitudinal and lateral traction forces. It was introduced by (Bakker, Nyborg & Pacejka 

1987) and since then has been revised several times. The advantages of this model over 

the others stem from its accuracy, simplicity and ability to be interpreted. Due to these 

reasons, in this research we employ the Magic formula model of traction force. Moreover 

the model is composed of a continuous, differentiable function. 

Slip (wheel slip) is a major component in the Magic formula model of traction 

force. It is an indirect measure of the fraction of the contact point that is sliding when the 
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velocity of the tire with respect to the surface at the contact patch is nonzero. In this 

dissertation, we define longitudinal slip as a slip that happened along the mean plane of 

the moving wheel and side slip as a slip that happens in lateral direction of a moving 

wheel. In the following we describe both types of slips under the framework of 

longitudinal and lateral traction force, respectively. 

 

Longitudinal slip and longitudinal traction force 

Longitudinal slip, [5, also known as circumferential or tangential slip, happens 

along the mean plane of the wheel and is responsible for the generation of the 

longitudinal traction force. It is defined as a difference between the resultant linear 

velocity due to the angular velocity of the wheel,  �5 , and the instantaneous velocity of 

the hub centerline of the wheel, ��� with respect to the ground during acceleration and 

deceleration phases of motion. The term slip ratio, sr, is generally used to represent 

longitudinal slip and is defined as follows, 

� W = ��5 �R���_�D|�S��5 �,���_�T = �5 �D|�S��5 �,���_�T                                                                               (4.1) 

where i denotes the i-th wheel. From Eq. (4.1), a free rolling wheel, where ��� = 0 has 

the slip ratio, sr = 1 and for the wheel that rolls without slip, ��� =  �5 , the slip ratio, sr = 

0. In this research we assume the wheel is rolling with slip. Thus, ��� =  �5 − �5 is an 

expression to represent the total longitudinal velocity of the WMR at the wheel hub 

centerline. In this research, the relationship between the longitudinal slip and the 

longitudinal traction force, 2��- in the Magic formula model of traction is presented as, 
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2��- = ��X6 ���&�6R�S_Q + �3&�6R�3_Q4 − _Q4T�                                                 (4.2) 

where all the variables are given and described below, 

��� = ��~� + ��                                                                                                             (4.3) 

� = ���~�                     (4.4) 

Q��� = 3�U~�� + �h~�4ZR|l��                                                                                      (4.5) 

� = ��~�� + ��~� + ��                                                                                                   (4.6) 

_ = 100� + �i~� + ���                                                                                                (4.7) 

~�  is the weight of the WMR in kN and the eleven empirical numbers, �W  , X ∈
�1,2, … ,11�, are used to characterize a particular tire. Eq. (4.3) is a linear function of 

weight that estimates the peak of longitudinal friction coefficient. In Eq. (4.4), we see D 

as a linear function of ~�, where ���  can be treated as a regular coefficient of traction 

function and  �� in Eq. (4.3) can be seen as a direct measurement of the degree of tire 

stickiness. B in Eq. (4.5) scales the other independent variable, ��� and is known as a 

stiffness factor. Eq. (4.6) represents E as a factor known as the curvature factor. It 

determines the shape around the peak of the curve. The last variable, S in Eq. (4.7) is a 

function of slip ratio, sr which can be measured directly from the system. Fig. 4.2 shows 

some examples of longitudinal traction force or longitudinal traction curve for rubber 

wheel for different type of surfaces. A region on the left of the peak force starts linearly 

and is known as a stable region. Increasing the slip ratio passing the peak force will 

significantly decreases the traction force and thus the whole region on the right of the 

peak force should be avoided as it represents instability. 
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Fig. 4.2: Some examples of traction curves for a variety of surface types 

 

Lateral slip and lateral traction force 

Lateral traction force, 2�|E, is generated as a result of slip angle, sa, during wheel 

cornering. It is sometimes known as cornering force. Slip angle is defined as the angle 

between the instantaneous velocity of the WMR and the instantaneous linear velocity of 

the wheel. In this research this term is defined as follows, 

��W = &�6R� ��5 ��5 ��                                                                                                            (4.8) 

where  �5W is the lateral slip of the i-th wheel and ^W =  �W − [W is total longitudinal 

displacement of the i-th wheel. The Magic formula model to define lateral force is almost 

identical to its longitudinal counterpart but requires significantly different interpretation. 
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Besides sa, there are fifteen more empirical numbers, �W  , X ∈ �1,2, … ,15� that help to 

construct the lateral traction model, which can be written as follows, 

~� = ��X6 ���&�6R�S_Q + �3&�6R�3_Q4 − _Q4T� + ��                                             (4.9) 

where the variables and their brief descriptions are given below. 

��� = ��~� + ��                                                                                                           (4.10) 

� = ���~�                                                                                                                    (4.11) 

Q��� = �U�X6S2&�6R�3~�/�h4T31 − �l|¢|4                                                              (4.12) 

_ = �� + ��¢ + �i~� + ���                                                                                         (4.13) 

� = ��~� + ��                                                                                                              (4.14) 

_� = S3���~� + ���4¢ + ��UT~� + ��h                         (4.15) 

Eq. (4.10) defines the peak of lateral friction coefficient. The variable, D, in Eq. (4.11) 

defines the product of the friction coefficient and the normal force, ~�. In general, the 

term �� in the equation must be significantly larger than ��~� to maintain the Newtonian 

behavior of the traction force.  The variable B given in Eq. (4.12) has different 

interpretation where ¢ is the camber angle of the wheel measured in degree. The fourth 

variable in Eq. (4.13) and the last variable in Eq. (4.14) can be measured in a straight 

forward manner. In addition to the above-mentioned variables, the lateral traction form of 

Magic formula requires an additive correction term for ply steer and conicity, (Eq. 

(4.15)). Fig. (4.3) shows a plot of lateral traction force or also know as traction curve for 

different surfaces with different friction coefficient (Pasterkamp 1997).  
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Fig. 4.3: Some examples of lateral traction curves for a variety of surfaces with different friction 

coefficients 
 

 

 

 

 

 

 

 

 

 

 

 

 



40 

 

CHAPTER V 

 

WMR MODEL VERIFICATION 

 

Designing new planners and controllers for the WMR through experimentation 

can be hazardous as well as costly in terms of time and resources. Realistic simulation 

can be an attractive alternative to the real experiments. If we are able to develop a 

realistic WMR model, predictions regarding the output of the real experiments could be 

made from the simulation study. It allows systematic analysis of the WMR dynamic 

behavior and provides fast and flexible development of new planners and controllers for 

the WMR. (Nehmzow 2003) quotes the computer simulation as, 

"model which is amenable to manipulations which would be impossible, too 

expensive or impractical to perform on the entity it portrays. The operation of the model 

can be studied and, from it, properties concerning the behavior of the actual system or its 

subsystems can be inferred." 

The basic requirement of a realistic WMR simulation implies the existence of a reliable 

model of the system. The majority of the on-shelf wheeled mobile robot platforms 

available, such as Robulab, Roburoc (URL 5.1), Trilobot Research Robot (URL 5.2), and 

Pioneer, AmigoBot and PowerBot (URL 5.3) come with their own simulator software 

(i.e. MobileSim for Pioneer robot). Additionally, a number of more general purpose 

WMR simulators have also been developed based on the open-source platform, which 

allows wider access to multiple WMR platforms such as Stage and OpenSim. While 

majority of the WMR simulators have become quite useful for general WMR 
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applications, they do not model wheel slip and thus may not be able to describe the robot 

behavior correctly and effectively where wheel slip is a critical factor (URL 1.10). At low 

speed, these WMR models may be valid but when the slip is significant the navigation 

and control algorithms develop based on these models may result in undesirable 

performance. 

 In this chapter, we present the verification of the WMR model developed in 

Chapter III through a series of experimental studies. In particular, we want to investigate 

the dynamics of the WMR while taking a sharp turn at high speed and when asked to 

move along a straight line on slippery surface. 

 

WMR motion task: sharp cornering at high speed 

One of the reasons to have high speed navigation for a WMR is to achieve service 

efficiencies. However, there are fundamental difficulties when we want to increase the 

speed of a WMR. (Chung, Kim, & Choi. May 2006) classified the difficulties into three 

categories: i) unexpected dynamic changes of the environment likes the abrupt 

appearance of obstacles; ii) the control and computational limitations due to the system 

response for real time applications; and iii) the dynamic and mechanical limitations.  

In this chapter, we first discuss the dynamics of the WMR during sharp cornering 

at high speed when the lateral velocities are generated and the wheel side slip, �5 , could 

become large enough to impact the overall performance of the system (Travis, Bevly 

2005). Here the term high speed is a relative concept and is defined with respect to the 

surface on which the WMR is traversing. For example, for the WMR under study we 



42 

 

define high speed to be 0.8m/s when the WMR is traversing on the slippery surface (it 

may not be the case if the surface has higher traction such as a dry pavement). 

 

Simulation parameters 

In the model simulation, our objective is to observe the dynamics of the WMR 

that is asked to follow an L-shape path (i.e., a sharp corner) in an open-loop manner with 

torque as the input to both wheels. The simulated model is based on Pioneer P3DX (two 

wheeled mobile robot) manufactured by MobileRobot Inc. shown in Fig. 5.1 and can be 

represented schematically as in Fig. 3.3.  

 

 
 

Fig.  5.1: Pioneer P3DX, the two wheeled mobile robot platform  

 

We employ Eq. (3.33) to model the dynamics of the Pioneer PD3X WMR and set the 

WMR parameters (refer Fig. 3.3) as follows: � = 0.24�; � = 0.05�;  = 0.095; 

�� = 17>§; �� = 0.5>§; ��� = 0.537>§��; ��� = 0.0023>§��; ��� = 0.0011>§��. 

The respective moment of inertia values are obtained by assuming the WMR body to take 

a solid cuboid shape of height x width x length = 0.245m x 0.4m x 0.45m and each wheel 

to be of the form of a thin, solid disk of radius, r and mass, ��. 
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Experimental setup 

 The goal of the experiment is to replicate the results obtained from the simulation 

studies as best as possible in order to verify the WMR analytical model developed for this 

research. For a particular Pioneer P3DX WMR platform, the lack of lateral velocity 

sensing unit requires us to select a proper sensor to measure the quantity. We opt for an 

accelerometer, MDS302, manufactured by Mechworks System Inc. as shown in Fig. 5.2. 

 

 
 

Fig. 5.2: Accelerometer, MDS302 

 

The accelerometer can read up to ±2g acceleration, which is suitable for our WMR 

application. We found that on a planar surface, the choice of using accelerometer is 

sufficient to measure the lateral slip in order to validate our dynamic model. We also 

realize that, by using direct integration method to find lateral slip measurement from 

accelerometer signal is prone to 'drift' problem.  However, with proper adjustment of the 

offset value we are able to minimize this problem. The availability of an extra serial port 

on the Pioneer P3DX allows this external accelerometer to be directly tethered and 

positioned on the system as shown in Fig. 5.1.  

We program the accelerometer to run along the program of the Pioneer P3DX in 

synchronous mode where several tasks are done in multithread with proper prioritization. 
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(the sample program can be found in the Appendix). The data from each task are updated 

for every 100ms of robot command cycle. As a result, the processing of accelerometer 

signal (i.e., filtering, data conversion) into velocity during each command cycle limits the 

sampling rate of the accelerometer data to 10samples/s from each axis. The faster 

sampling rate used, causes delay and overflow in the system buffer and the slower 

sampling rate, lessens the signal resolution. We reduce the effect of noise by applying a 

built-in 5
th

 order Butterworth filter with cut off frequency of 50Hz.  

  

Sharp cornering motion through open loop control: results and discussion 

We run the simulation studies and the experiments to investigate the Pioneer 

P3DX dynamics using the open loop control. The idea to apply the open loop control is to 

provide a common platform for the simulated dynamic model of the Pioneer P3DX to be 

compared to the real Pioneer P3DX and to isolate any input that exists in the 

feedforward/feedback control approach. With regard to this point, we consider the closed 

loop response of the low-level built-in PID controller in the Pioneer P3DX to have 

insignificant impact especially on the overall, qualitative performance of the system.  

In our studies, the Pioneer P3DX  is commanded to move on two surfaces:  

Surface 1: a clean tiled surface (non-slippery)  

Surface 2: a powder-layered tiled surface (slippery) 

In order to identify the friction coefficient between the wheel (i.e., tire) of the Pioneer 

P3DX and these surfaces, we conduct a simple experiment to measure the friction 

coefficient of these surfaces. Fig. 5.3 shows the surfaces we conduct the experiment on 

and Fig. 5.4 displays the type of tire the Pioneer P3DX is equipped with.  
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(a)                                                                 (b) 

Fig.5.3: Type of surfaces, (a): clean tiled surface (non-slippery), (b): powder-layered tiled surface 

(slippery) 

 

 

(a)                                                           (b) 

Fig.5.4: (a): Wheel of Pioneer P3DX (b): Tire thread 

 

In Fig. 5.5, we show the experiment set-up. The electronic scale, acting as a 

dynamometer is hooked up to one end of the robot. 
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Fig. 5.5: Experimental setup to measure friction coefficient, �� 

 

We pull the robot using the dynamometer and once the wheels start to slip, we 

continuously pull the dynamometer at constant speed and record the measurement. We 

run the experiment at random locations around the surface area so as to capture as  much 

variations in the value of friction coefficient for that surface. Table 5.1 and 5.2 show the 

measurement of longitudinal and lateral traction forces data respectively, where for each 

surface we take 10 samples of data. 

 

Table 5.1: Data of longitudinal traction force measurement 

Longitudinal traction force on 

non-slippery surface (kgf) 

Longitudinal traction force on 

slippery surface (kgf) 

 

11.45 4.90 

11.19 5.03 

10.43 4.60 

9.19 4.79 

10.96 5.60 
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9.20 5.00 

12.50 5.17 

11.79 5.30 

10.62 4.80 

12.60 5.40 ~|�©  =10.993 ~|�©=5.095 

 

Table 5.2: Data of lateral traction force measurement 

Lateral traction force on non-

slippery surface (kgf) 

Lateral traction force on 

slippery surface (kgf) 

 

6.27 3.82 

6.50 3.89 

6.80 4.02 

6.02 4.32 

7.90 4.19 

7.63 3.97 

6.59 3.85 

7.66 4.50 

7.95 4.31 

7.38 4.22 ~|�©  =6.941 ~|�©=4.109 

 

The Pioneer P3DX weighs 18kg and to estimate the value of longitudinal and lateral 

friction coefficients, ����-  and ���|E , we use the following equation, 

~|�© = ���ª«¬§                                                                                                          (5.1) 

where �ª«¬ is the weight of the WMR, g is the gravitational acceleration and �� is 

����- for longitudinal case and ���|E for lateral case. We find ����-  and ���|E  for the 

non-slippery surface to be 0.6107 and 0.3856 respectively, and for the slippery surface to 

be 0.2811 and 0.2283. 

In order to study the effect of slip in sharp cornering motion, we command the 

WMR to start turning at a reference point (i.e., the point that connects two straight 

segments to form an L-shaped path). Fig. 5.6(a) shows the resultant trajectory of the 
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Pioneer P3DX on the clean, tiled surface (non-slippery surface).  We find the trajectory is 

stable with negligible lateral slip and the Pioneer P3DX is able to respond to sharp 

cornering command satisfactory by moving parallel to the second straight segment of the 

path with insignificant deviation. Similar trajectory is also produced from the standard 

Pioneer simulator (i.e., MobileSim 3.0) shown in Fig. 5.6(b). (Note: The MobileSim 

produces small deviation from the L-shaped path, due to the strict 100ms robot command 

cycle, the program has to obey. However this is not the case for the real system where the 

command cycle can be from 90ms to 110ms resulted in the consistent L-shape trajectory 

for non-slippery surface). In Fig. 5.6(c), we present the result of the Pioneer P3DX 

simulation based on the new dynamic model where the surface is not slippery (i.e., the 

surface provides high traction). The trajectory of this model matches the real trajectory of 

the WMR when taking a sharp corner. Here, the magnitude of the lateral slip is shown to 

be relatively small as discussed later. In this experiment, we set the longitudinal friction 

coefficient ����-  and the lateral friction coefficient ���|E  to be 0.6107 and 0.3856 

respectively. 
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(a) 

 

(b) 

 

(c) 

Fig.5.6: Trajectories of Pioneer P3DX on surface with negligible slip (a): experiment, (b): 

standard simulator model, (c): new dynamic model 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.5

0

0.5

1

1.5

2

2.5

3

x-position (m)

y
-p

o
s

it
io

n
 (

m
)

reference L-shaped path

trajectory without slip model


