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Breast Cancer Histopathology Image Analysis:
A Review

Mitko Veta∗, Josien P. W. Pluim, Paul J. van Diest, and Max A. Viergever

Abstract—This paper presents an overview of methods that have
been proposed for the analysis of breast cancer histopathology im-
ages. This research area has become particularly relevant with the
advent of whole slide imaging (WSI) scanners, which can perform
cost-effective and high-throughput histopathology slide digitiza-
tion, and which aim at replacing the optical microscope as the pri-
mary tool used by pathologist. Breast cancer is the most prevalent
form of cancers among women, and image analysis methods that
target this disease have a huge potential to reduce the workload
in a typical pathology lab and to improve the quality of the inter-
pretation. This paper is meant as an introduction for nonexperts.
It starts with an overview of the tissue preparation, staining and
slide digitization processes followed by a discussion of the different
image processing techniques and applications, ranging from anal-
ysis of tissue staining to computer-aided diagnosis, and prognosis
of breast cancer patients.

Index Terms—Breast cancer, computer-aided diagnosis, digital
pathology, histopathology, image analysis, object detection, object
segmentation.

I. INTRODUCTION

PATHOLOGY Labs are currently undergoing a transforma-
tion toward a fully digital workflow [1]. In addition to the

digital management of tissue samples, pathology orders, and
reports, this includes the digitization of histopathology slides
and use of computer monitors for viewing them, which aims
to replace the optical microscope as the primary tool used by
pathologists. This transformation has only recently been en-
abled by the introduction of cost and time efficient whole slide
imaging (WSI) scanners, as successors to microscope-mounted
digital cameras. This process of adoption of digital slide images
is somewhat analogous to the digitization of radiological imag-
ing. However, a full analogy is difficult to establish because
in pathology the primary object of analysis is the tissue rather
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than the image [2]. Adoption of a fully digital clinical workflow
in radiology benefitted from the ability to acquire radiologi-
cal images digitally. By contrast, the barrier to entry is higher
for histology, which is a distinctly analog modality that must
always undergo an analog-to-digital conversion before comput-
erized analysis.

A relatively large percentage of the samples that are analyzed
in pathology labs are from breast cancer patients, since this dis-
ease is the most prevalent form of cancer among women [3].
Analysis methods that are routinely performed by pathologists,
such as determination of the histological grade and the hormone
receptor status by immunohistochemistry (IHC), can be tedious
and are hampered by observer variability [4], [5]. The histo-
logical tumor grade is commonly determined according to the
modified Bloom–Richardson system, which consists of semi-
quantitative assessment of nuclear atypia, tubule formation, and
mitotic activity [6], [7]. The analysis of immunohistochemically
stained slides mainly involves the estimation of the number of
cells that are positive for a particular antigen and the degree of
positivity (staining intensity) [8], [9].

One of the main benefits of digital slides compared to con-
ventional glass slides is that they enable the use of quantitative
automatic image analysis methods. These methods have the
potential to tackle the problems that stem from the subjective
interpretation by pathologists and, at the same time, reduce their
workload [10].

In this paper, we give an overview of image analysis methods
that have been proposed for breast cancer histopathology im-
ages. We focus on automatic image analysis of histopathology
tissue preparations imaged by brightfield microscopy, since this
covers the bulk of the work that is performed by pathologists
for this disease. However, some techniques developed for other
tissue types or microscopy modalities that are relevant for the
scope of our paper are mentioned throughout the text when ap-
propriate. For a broader overview of digital pathology and the
use of automatic methods for analysis of histopathology slides,
we refer the reader to the recent reviews in [11]–[15].

II. TISSUE PREPARATION AND IMAGING

Before we proceed to discuss the different image analysis
algorithms and applications, we give an overview of the tissue
preparation and staining processes and digitization of histo-
logical slides. In the typical hospital workflow, breast tumor
excisions or biopsies are performed in the operating room after
which the material is sent for analysis to the pathology lab. The
first step of the tissue preparation process is formalin fixation
and embedding in paraffin. From the paraffin blocks, sections
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Fig. 1. Example histological stains. (a) Hematoxylin and eosin. (b) IHC staining for ER. The antibody is visualized with the DAB chromogen (3, 3’-
Diaminobenzidine) and the tissue is counterstained with hematoxylin. The nuclei that are dyed with the brown stain are considered to be positive. (c) IHC staining
fort HER2 with hematoxylin counterstaining. HER2 is expressed in the nuclear membranes.

with a thickness of 3–5 μm are cut using a microtome (a high
precision cutting instrument) and mounted on glass slides.

The structures of interest in the tissue, in most instances the
nuclei and cytoplasm, are not readily visible on the mounted
sections. They therefore need to be dyed with stains that high-
light them. The standard staining protocol uses hematoxylin and
eosin [H&E, Fig. 1(a)]. In spite of the fact that this staining pro-
tocol has been in use for around a century, the diagnostic and
prognostic procedure for all patients still almost always starts by
staining the sections with H&E. Hematoxylin binds to DNA and
thereby dyes the nuclei blue/purple, and eosin binds to proteins
and dyes other structures (cytoplasm, stroma, etc.) pink.

IHC is a more advanced staining technique, which makes use
of antibodies to highlight specific antigens in the tissue [see
Fig. 1(b) and (c)]. In breast cancer, IHC is commonly used to
highlight the presence of estrogen (ER), progesterone (PR), and
human epidermal growth factor 2 (HER2) receptors, as well as
to assess the proliferation of the tumor, for example, by high-
lighting the Ki-67 protein, which is associated with cell prolifer-
ation [8], [9], [16]. When performing IHC, the tissue is usually
counterstained with hematoxylin to identify the nuclei and to
visualize the tissue architecture (in case of nuclear antigens, vi-
sualize the nuclei in which the target antigen is absent). When
quantification is of primary interest, such as with the determina-
tion of the ER, PR, and HER2 receptor status for breast cancer
patients by IHC, the staining protocols need to be standardized
and quality controlled in order to obtain reproducible results,
which are comparable across different patients [17], [18].

Very often in breast cancer research, many different markers
highlighted by IHC from hundreds or thousands of patients need
to be considered. In order to achieve high-throughput analysis,
researchers resort to using tissue microarrays (TMAs) [19], [20].
TMAs are constructed by punching small core biopsies (usually
with a core diameter of 0.6 mm) from selected regions of the
paraffin blocks containing the tissue to be analyzed, and trans-
ferring them to a recipient paraffin block in a regular pattern.
The recipient paraffin block, which now contains tissue from
many different subjects, is then cut and stained in a standard-
ized manner. Because with TMAs tissues from different patients
are stained under the same conditions, the resulting staining
variability is significantly lower than with routinely prepared

histopathology slides, which makes them more suitable for im-
age analysis.

Currently, the typical pathology lab workflow is concluded by
staining and coverslipping of the glass slides, after which they
are sent to the pathologist for analysis. As digital pathology
becomes more commonplace, slide digitization is added as an
additional stage to this workflow [1]. The early slide digitization
systems were digital cameras mounted on standard microscopes,
which could capture still images. Present day WSI scanners,
which enable high throughput slide digitization at relatively low
cost, handle the entire scanning procedure automatically. This
includes loading of the slides on the scanning platform, detec-
tion of the relevant tissue regions and focus point selection,
image acquisition, compression, storing and registration on a
laboratory information system. Most of the WSI scanners that
are currently in use perform slide scanning at 20× or 40×mag-
nification with a spatial resolution in the order of 0.50 μm/pixel
and 0.25 μm/pixel, respectively. Because of the large size, the
captured RGB image is compressed most commonly with JPEG
or JPEG 2000. For faster navigation, the images can be stored in
a pyramid structure with increasing magnification at each level
of the pyramid. This also facilitates multiscale image analysis.

The tissue preparation, staining, and slide digitization pro-
cesses can have a significant impact on the tissue/image appear-
ance, and insight into them may lead to a better design of image
analysis algorithms. The impact can be manifested in several
ways. For example, improper fixation can lead to changes in
tissue morphology and thus induce incorrect tissue morphom-
etry by automatic image analysis. If sections are not properly
stained (i.e., over- or under-stained) and mounted, this may re-
sult in out-of-focus regions and/or missing parts. Even small
variations of the staining conditions can lead to variations in tis-
sue appearance and cause problems for automatic image analysis
algorithms. This issue of staining/appearance variability will be
considered in more detail in the following sections.

III. STAINING ANALYSIS

When performing image analysis of histopathology images,
it is of interest to separate the histological stains that dye differ-
ent tissue components. For instance, if the application is nuclei
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Fig. 2. Standardization of H&E stained histopathology image appearance. (a) Two raw images with notable difference in the staining appearance. (b) Same two
images with standardized appearance by a normalization method presented in [24].

detection in H&E stained sections, it can be beneficial to obtain
a hematoxylin only image since the eosin-only stained compo-
nents can contribute toward false positives. One approach is to
perform clustering or supervised classification of the RGB pixel
values in order to obtain binary or probability maps for the differ-
ent stains. These methods require labeled data or identification
of the cluster that corresponds to the stain of interest. Another
approach for staining separations is based on the fact that the im-
age formation process in brightfield microscopy can be modeled
according to the Lambert–Beer law for light absorption. Accord-
ing to this law, the optical density (the logarithm of the intensity)
is proportional to the concentration of stain in the tissue. Given
that with RGB image sensors there are three detection channels,
linear decomposition can be performed to determine the con-
centration of up to three stains for each pixel location [21]. Once
the stain concentrations are determined, single-stain images can
be derived by an inverse approach. These techniques require
definition of characteristic absorption spectra for the stains that
need to be separated. However, there are blind techniques that
do not have this limitation [22].

It should be noted here that the commonly used DAB chro-
mogen (3, 3’-Diaminobenzidine) is not a true light absorber,
but it exhibits light scattering behavior. Thus, the behavior
of DAB cannot be perfectly modeled by the Lambert–Beer
law. However, in practice, good unmixing results can still be
achieved [18].

One of the major difficulties in breast cancer histopathol-
ogy image analysis, particularly of H&E stained sections, is
appearance variability. In part, this can be explained by the het-
erogeneity of the disease, but a large portion is a result of the
tissue preparation and staining processes. The color appearance
can significantly vary between different labs owing to differ-
ences in fixation and in staining protocols and reagents. Color
appearance may also vary between samples produced in the
same lab as a result of preanalytic features as fixation delays
and inconsistencies in the staining conditions. Finally, variabil-
ity in appearance can be due to slide digitization conditions,
including notably differences in optics, light detectors, or light
sources used in the scanners.

Automatic image analysis methods can be significantly ham-
pered by the variability of the tissue appearance. In addition,
methods that are developed and tested on data from a single

center often must be reevaluated and adjusted when used with
slides from external labs. It is desirable that histopathology im-
age analysis methods are designed in a way that is robust to
appearance variability, such as in [23]. Alternatively, the im-
age appearance can be standardized prior to further process-
ing. One simple approach is to determine the concentrations of
the individual stains for each pixel with some of the staining
separation techniques mentioned before, normalize the staining
concentrations and then digitally mix the stains with common
characteristic absorption coefficients to obtain a standardized
image [24], [25]. This approach is illustrated in Fig. 2. In [26], a
method for color standardization was proposed based on unsu-
pervised segmentation into tissue components. The tissue was
divided into four components: nuclei, stroma, epithelium, and
background and the RGB histograms for each component were
aligned to a template image.

IV. QUANTIFICATION OF IHC

In H&E stained slides, the features of the nuclei that are
of interest to pathologists are relatively complex—their size,
shape and texture, their spatial arrangement and organization
into tubules, interaction with the stroma, etc. In contrast with
this, most of the information that is of interest in IHC-stained
sections is contained in the color and the intensity of the staining,
which makes IHC-stained samples more open to design and
implementation of image processing algorithms. For example, a
useful and readily obtained characteristic of IHC digital slides is
the determination of the percentage of pixels that are positively
stained for a particular antigen.

In breast cancer patients, the ER, PR, and HER2 receptor
statuses can have a major influence on the planning of adjuvant
systemic treatment. Currently, the standard method of scoring
IHC stained slides is by visual examination under a microscope.
This procedure is prone to variability among pathologists even
when strict guidelines are followed. Recent recommendations
issued by the American Society of Clinical Oncology and the
College of American Pathologists for testing of the ER, PR, and
HER2 receptor status include encouragement of the use of quan-
titative image analysis techniques with the goal of improving the
consistency of the interpretation [8], [9].
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The ER and PR receptor statuses are customarily determined
by counting the percentage of positively stained nuclei. If this
percentage is above a predefined threshold (10% in Europe and
1% in the USA) the tissue is defined positive. The automatic
quantification of the ER and PR status thus usually involves
the use of an automated nuclei detection or segmentation al-
gorithm [27] (this topic will be covered in detail in the fol-
lowing section). As an alternative to this, the percentage of
positively stained nuclear area can be determined [28]. In [29],
a method which computes features that reflect the area of pos-
itively stained nuclei and the nuclear intensity was proposed.
These features were then mapped to an ordinal scale that is used
by pathologists.

In comparison with the ER and PR receptors, which are
expressed in the cell nuclei, the HER2 receptor is expressed
on the cell membranes. The tumors are scored positive when
more than 30% of the cell membranes show complete, uniform,
and intensive staining. Cases with complete but nonuniform
or weak staining in more than 10% of the cells are equivocal,
and cases with no staining or incomplete staining are defined
to be negative. Equivocal cases are further evaluated by other
methods [30].

The largest challenge in HER2 staining quantification lies
in correct membrane segmentation, which can be particularly
challenging in negative cases and cases with incomplete and
faint staining. A method for automated assessment of HER2
IHC is presented in [31]. In the first stage of this approach, all
image pixels are classified as belonging to epithelial nuclei or
cell membranes. The nuclear regions are further segmented into
individual nuclei by watershed segmentation and the cell mem-
branes are determined by adaptive ellipse fitting. Slides are then
classified into one of the three scoring groups based on features
describing the membrane staining intensity and completeness.
In [32], following nuclei segmentation, approximate membrane
contours were determined by Voronoi tessellation. The approxi-
mate contours were then refined based on the membrane staining
intensity. Hall et al. [33] proposed a method where features for
HER2 quantification were extracted based on positive controls,
thus eliminating the variability in the staining between different
slides.

Most of the commercially available image analysis tools in-
clude algorithms for positive nuclei counting and membrane
staining quantification. A review of imaging solutions for quan-
titative IHC can be found in [34]. Two publicly available web
applications for ER/PR and HER2 quantifications are described
in [28] and [35]. In various recent studies, automatic scoring has
shown high agreement with expert scoring and other methods
(such as FISH for HER2 scoring) [36]–[44].

V. OBJECT DETECTION AND SEGMENTATION

A. Tissue and Tissue Components Segmentation

The typical histopathology slide contains a tissue area of
approximately 15 mm × 15 mm. At the resolutions at which
digital slides are captured, this will result in images with a
size of up to several gigapixels. Because processing of these
very large images might result in computational problems, it is

common practice to identify the regions of the slides that are of
interest prior to performing more detailed image analysis.

Generally, large portions of the slides are empty, i.e., they
do not contain tissue. Most WSI scanners have the ability to
identify empty tiles in the slide during the scanning process and
avoid scanning them, which results in reduction of scanning
time. One such approach for supervised tissue localization was
proposed in [45].

When analysis of TMAs is performed, the individual TMA
cores need to be identified and segmented and their coordinates
on the TMA grid need to be assigned so they can be matched to
the donor paraffin block [46]–[48].

In general, large areas of the tissue are not relevant for the
problem at hand. For example, for computer-aided diagnosis
of breast cancer (classification into the classes benign or ma-
lignant) only the epithelial regions of the tissue are relevant.
When quantification of IHC or histological grading needs to be
performed, only the tumor tissue is of interest and nontumor
regions need to be excluded from the analysis. Furthermore,
epithelial and stromal regions of the tumor have different sig-
nificance for prognosis. Segmentation of the tumor into these
components is often used as a preprocessing step when per-
forming automatic morphometry and histological grading, or
for guidance when constructing TMAs [49]. In the majority of
the published studies on tissue segmentation, this kind of com-
partmentalization is achieved by supervised pixel-wise classi-
fication of small rectangular image regions based on color and
texture features [50]–[54], although unsupervised methods have
been proposed [55].

B. Nuclei Detection and Segmentation

The segmentation of nuclei in breast cancer histopathology
images can be considered a basic functional block in many dif-
ferent applications. Quantification of IHC nuclear staining has
already been mentioned in the previous section. Other applica-
tions include extraction of prognostically relevant morphomet-
ric features (size, shape, chromatin texture), automatic nuclear
pleomorphism grading as part of a computer-aided prognosis
system, detection of lymphocytic infiltration, and detection of
malignancy and tubule formation in a bottom-up manner.

Nuclei segmentation remains a very challenging problem,
particularly for routinely stained H&E sections, despite the nu-
merous attempts to solve it. Many of the challenges arise from
the variability of the tissue appearance, which is in part due
to imperfections in the staining process. Furthermore, there is
an inherent diversity of the appearance of epithelial cancer-
ous nuclei, which may vary from almost normal-like round to
highly irregularly shaped and enlarged nuclei with coarse and
marginalized chromatin and prominent nucleoli (small round
structures inside the nuclei). This is illustrated in Fig. 3. Differ-
ent nucleus types, such as elongated fibroblasts and lymphocyte
nuclei, often appear together with epithelial nuclei, which can
decrease the specificity when only epithelial nuclei need to be
detected or segmented. Additionally, nuclei may be overlap-
ping, clustered or tightly clumped, which makes them difficult
to separate. Lastly, hematoxylin-stained “junk” particles, which
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Fig. 3. Different nuclei appearances in breast cancer histopathology images (from left to right): small and round with relatively uniform chromatin, organized
into tubules, marginalized chromatin, and prominent nucleoli.

tend to appear in high-grade tumors, can hamper the nuclei
segmentation.

A large variety of approaches for segmentation of nuclei in
breast cancer histopathology images have been proposed. They
vary not only as concerns the segmentation method proper, but
also in the pre- and postprocessing steps that aim to improve
segmentation performance.

The most difficult aspect of nuclei segmentation in breast can-
cer histopathology images is the detection of individual nuclei,
especially when they are clustered closely together and overlap.
Some proposed methods try and identify the individual nuclei
prior to performing the segmentation procedure (marker extrac-
tion), whereas others first segment clumps of nuclei from the rest
of the tissue and then proceed to separate those into individual
nuclei. Methods such as the Hough transform [56] and voting
along the direction of the image gradient to infer the center of
the object [57], [58] have been used for both identification of
nucleus markers and separation of segmented clumps. Another
popular approach to separate clumps of nuclei is to split them
along points of high concavity [59], [60]. In [61], separation of
clustered nuclei is achieved by unsupervised Bayesian classifi-
cation. Supervised methods for nuclei detection have also been
proposed, with good performance [62].

With regards to the core segmentation technique, active con-
tours are among the more popular methods [56], [57], [63]. Their
objective is to find a minimum energy fit of moving contours
to the image, the energy being defined in such a way that the
contours are attracted to the boundaries of the objects of inter-
est. The contours need to be seeded close to the target nuclei
locations, which is why the approach is usually paired with a
nuclei detection method. In [57], the level set active contours
segmentation includes a repulsion term to prevent the contours
of adjacent cells from overlapping. The active contour model for
nuclei and lymphocyte nuclei segmentation proposed in [63] in-
corporates boundary, region and shape prior terms, and performs
simultaneous segmentation of multiple objects in the image.

Several methods have been proposed that work by initially
defining a large number of candidate regions and then selecting
the ones that are likely to represent a correctly segmented object.
In [64], candidate regions are identified by the maximally sta-
ble extremal regions (MSER) detector. This detector produces
a large number of potentially overlapping regions. Each candi-
date region is evaluated with a statistical model, and dynamic

programming is used to select a set of nonoverlapping regions
that best fit the model. The authors of [59] proposed gener-
ating a very large number of candidate objects by identifying
all possible closed contours within the image by contour trac-
ing. A set of nonoverlapping contours is obtained by defining
the objects that are most “fit” based on the contour gradient
strength. In [58], candidate regions are initially identified by
a marker-controlled watershed approach at multiple scales and
using multiple marker types, which yields a large number of
overlapping contours. Regions unlikely to represent valid nu-
clei are removed based on size, shape, boundary, and chromatin
distribution features. Local concurrences are resolved by greedy
selection of the contours most likely to represent nuclei, using
the solidity of the object as a fitness value.

Other recently proposed and promising methods for nuclei
segmentation in breast cancer histopathology are based on dic-
tionaries of discriminative image patches [65] and marked point
processes [66], [67].

Detection and segmentation of lymphocyte nuclei and detec-
tion of lymphocytic infiltrations can be considered specials case
of nuclei detection/segmentation. In [68], region growing with
high sensitivity and low specificity is used to initially segment
lymphocyte nuclei and other objects. Then, maximum a poste-
riori estimation that incorporates size, luminance, and spatial
proximity information is used to improve the specificity of the
detector. Finally, the results from the lymphocyte nuclei de-
tection are input to a classifier that discriminates between the
lymphocyte infiltration phenomenon and the baseline level of
lymphocytes. In [60], output from a Gaussian mixture clus-
tering algorithm is used to initialize geodesic active contour
segmentation. The overlapping objects are resolved by split-
ting them along high concavity points. Lymphocyte nuclei are
distinguished from other objects by texture-based clustering.

The choice of the segmentation method is closely related
to the intended application and the available time and com-
putational resources. For example, active contours may yield
superior nuclear segmentation, but at the cost of increased com-
putational complexity, which limits their use for high throughput
applications. When such high throughput processing is needed,
a simple thresholding of the hematoxylin channel followed by
morphological operations and splitting of clusters along high
concavity points might be used, but at the cost of less accurate
segmentation results.
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Fig. 4. Mitotic figures in breast cancer histopathology images. a) Region from a PPH3 labeled section. This staining method is specific to cells in the M phase
which are clearly visible as dark brown objects (marked with green arrows). b) The same section stained with H&E. The corresponding four mitotic figures are
visible as hyperchromatic objects. However, many other similar objects appear which complicates mitosis counting.

So far we have only listed methods that specifically aim at
dealing with nuclei segmentation in breast cancer histopathol-
ogy sections imaged with brightfield microscopy as an ap-
plication. However, methods developed for other tissue types
(e.g., prostate) or microscopy modalities (e.g., fluorescence mi-
croscopy) can also be applied to this problem [69]–[77]. In order
to use these methods, some adaptation of some of the image pro-
cessing steps will likely be needed, for example, modification
of the way a nuclear staining image is obtained.

C. Tubules Segmentation

Along with nuclear pleomorphism, the degree of structural
differentiation of the tissue is one of the earliest prognostic
factors for breast cancer patients that have been identified by
pathologists. Cancer disrupts the ability of the nuclei to commu-
nicate with each other and organize themselves into structures
such as tubules, making the lack of tubule formation an indica-
tor for advanced malignancy. The tubules are generally round
or oval structures consisting of lumen surrounded by a layer of
epithelial cells. The major challenge in tubule segmentation is
the similar appearance of other structures, such as adipose tis-
sue or tears formed during the tissue preparation process, which
only lack the outside layer of well-arranged epithelial nuclei.

A color gradient-based geodesic active contour model for
segmentation of the tubular lumen areas was proposed in [78].
The segmentation is initialized by weighted mean shift cluster-
ing and normalized cuts, and performs more favorably than the
Chan-Vese region-based active contour model. This study was
extended in [79] by incorporating domain knowledge to distin-
guish between tubules and other lumen-like areas. The authors
show that the segmentation result can be used to infer the de-
gree of tubule formation as defined in the Bloom–Richardson
grading system. Although the literature for tubule segmentation
in breast cancer is not extensive, methods developed for seg-
mentation of other related structures are also applicable to this
problem. A very closely related application is segmentation of
glands in prostate cancer histopathology images [70], [80]–[82].
The methods developed for this application might be used for
tubule segmentation in breast cancer with little adaptation. It
should also be mentioned that some of the features that can

be derived by performing segmentation of tubules, can also be
captured by computing features that describe the overall archi-
tecture of the tissue [83], [84].

D. Mitotic Figures Detection and Assessment of Proliferation

Of the three components that are part of histological grading
of breast cancer, the assessment of tumor proliferation is proba-
bly the most important and prognostically significant one [85].
The oldest and still most widely used form of assessment of
tumor proliferation is counting of mitotic figures in a predefined
tissue area (usually 2 mm2). The nuclei of the cells that are in
the M phase of the cell cycle have distinctive morphological
appearance in the H&E sections. Most commonly, mitotic fig-
ures manifest themselves as hyperchromatic objects without a
clear nuclear membrane, with “hairy” protrusions around the
edges and basophilia instead of eosinophilia in the surrounding
cytoplasm. However, these are more instructive than defining
features, and the bulk of the training of pathologists consists
of looking at specific examples of mitotic figures designated as
such by experts. The task of identifying mitotic figures is noto-
riously time-consuming and difficult, due to the fact that many
other objects such as apoptotic and necrotic nuclei may have
similar appearance, which renders it difficult even for trained
experts to make a distinction. Lymphocyte nuclei, compressed
nuclei, “junk” particles, and other artifacts from the tissue prepa-
ration process can also have a hyperchromatic appearance.

In addition to mitosis counting in H&E sections, there are
also IHC techniques that can be used for assessment of prolif-
eration of breast cancer tumors. However, they are not routinely
used owing to increased cost and additional time delay. The
most widely used IHC technique is labeling of the Ki-67 anti-
gen that is associated with cell proliferation and expressed in
all cell cycle phases except G0 [86]. Because Ki-67 labeling
is unspecific to the M phase, the assessment of the number of
mitotic figures is usually higher than by counting in H&E sec-
tions and it might not have the same significance. A proposed
alternative to Ki-67 is phosphohistone H3 (PPH3) that has the
advantage of targeting only nuclei in the M phase, and has been
shown to have prognostic significance [87]. An example region
labeled for PPH3 is shown in Fig. 4(a). In both of these staining
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methods, the techniques for quantification of positively stained
nuclei discussed in Section III can be used.

The standard approach of assessing tumor proliferation in
pathology labs, however, still remains mitosis counting. Given
that this is the most tedious part of the Bloom–Richardson grad-
ing system, there is a large incentive to develop an automatic
mitosis detection algorithm that works with the routinely pre-
pared H&E sections.

The earliest proposed approaches were unavoidably ham-
pered by the limited image acquisition quality and computa-
tional power [88] and the need of specialized staining such as
Feulgen to better highlight the chromatin [89], [90]. Recently,
two publicly available datasets of H&E stained breast cancer
histopathology images with annotated mitotic figures were made
available [91], [92], which sparked further development of dif-
ferent mitosis detection approaches [93]–[102].

The majority of the proposed approaches work by first iden-
tifying candidate objects or locations that are then classified
as mitotic figures or other objects. By far, the most distinctive
feature of the mitotic figures is their hyperchromicity. In most
cases, the intensity of the staining of the mitotic figures is notice-
ably darker than normal epithelial nuclei and only comparable
to apoptotic, necrotic or compressed nuclei (artifact from the
tissue preparation) and lymphocyte nuclei. This is illustrated in
Fig. 4(b). The candidate extraction phase often may make use of
this distinctiveness by performing thresholding, local intensity
minima detection or pixel-wise classification followed by refin-
ing of the detected regions by morphological operations and/or
active contours segmentation. In the second stage, more spe-
cialized features designed to capture the specific morphology of
mitotic figures are used to train a classification model. However,
convolutional neural networks that operate on raw RGB image
patches appear to exhibit the best performance for this detection
task [93], [97], [98]. The approach that was proposed in [93]
is unique in the sense that it uses deep convolutional neural
networks and does not perform candidate detection as an initial
stage. Instead, it performs classification at every pixel location,
which achieves excellent results.

A limiting factor of automatic mitosis detection is that whole
slide images are typically scanned at a single focal plane. Dur-
ing mitosis counting, pathologists rely on “fine tuning” of the
focus—something that is missing in whole slide images at a
single focal plane. Digital slide scanners that perform image
acquisition at multiple focal planes are now becoming more
common; however, this feature is not widely used because of
the increased storage demands. We anticipate that in the future,
as storage costs go down and new image compression techniques
become available, this limitation will be removed.

VI. COMPUTER-AIDED DIAGNOSIS AND PROGNOSIS

The objective of image analysis of digitized histopathology
slides is to facilitate, and preferably automate, computer-aided
diagnosis and prognosis (CAD and CAP) in pathology labs.
CAD is defined as the detection of cancer within the examined
tissue, whereas CAP addresses the more complex problem of
predicting the outcome for the patient based on the available

data. There are numerous challenges in achieving this objective,
including the large image sizes and the lack of representative
datasets with high quality annotations by multiple observers,
and with patient follow-up. On the other hand, the incentives for
developing CAD and CAP systems are overwhelming. Patients
that are suspected of having breast cancer undergo a biopsy that
is examined by a pathologist. Large numbers of cases are found
to be benign [103], often easily distinguishable from cancer,
which implies that a CAD system operating at high sensitivity
can significantly reduce the workload of the pathologist, even
if the specificity is moderate. This kind of system can also be
used for quality control and assurance, for example, to identify
positive cases that have been missed during the routine exam-
ination. Furthermore, the extraction of quantitative parameters
from tumor regions can go a long way toward reducing the inter-
and intraobserver variability of breast cancer grading, which has
been well documented in the literature.

Some of the proposed breast cancer detection techniques op-
erate by examining nuclear features, as cancer nuclei have a
distinct morphology—large size, coarse chromatin texture, and
irregular shape. In [56], ROIs from breast cancer histopathol-
ogy slides are classified as benign or malignant based on two
features related to the nuclear size: the median nuclear area and
the number of large well-formed nuclei in the region. Nuclear
morphometric features are also used in [104] in combination
with texture and topology features for malignancy detection in
breast cancer histopathology. The extraction of nuclear morpho-
metric features, in most cases, relies on a nuclei segmentation
procedure. The influence of the nuclei segmentation accuracy
on the subsequent feature extraction for classification into the
classes benign and malignant is examined in [105]. The con-
clusion of the authors was that perfect segmentation accuracy is
not needed as it does not necessarily guarantee optimal perfor-
mance. In [84], cancer tissue is distinguished from noncancer-
ous tissue based on Gabor texture features, without relying on
a nuclei segmentation algorithm.

In order to arrive at computer-aided prognosis of breast can-
cer patients, researchers have both developed image analysis
systems in the context of the currently employed grading sys-
tems, and aspired to discover novel imaging biomarkers from
histopathology images. In some cases, the output of the staining
quantification and object detection and segmentation techniques
discussed in the previous section can be directly used as part of
established clinical practice, provided their output is compara-
ble to the performance of human experts. This, for example, is
the case with the quantification of positively stained nuclei and
the detection of mitotic figures. In most cases, however, these
techniques are used only as building blocks of more complex
systems. Some proposed methods aim at predicting the cancer
grade assigned by pathologists, most commonly according to the
Bloom and Richardson grading system, or one of its constituent
components such as the nuclear pleomorphism score [106].
Classifiers trained with features describing the tissue architec-
ture in combination with nuclear features have been shown to
be successful in distinguishing between different breast cancer
grades [84], [107]. In [108], two features were identified that
can successfully discriminate between the three breast cancer
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grades—the density of nuclei with irregular chromatin and the
density of tubules in the tissue.

It should be noted here that breast cancer grades can be seen as
estimates of patient outcome based on an expert opinion. In that
sense, CAP systems that aim at predicting the histological tumor
grade use this as an intermediate end-point for the prediction of
survival. The use of reliable intermediate end-points is crucial
in a situation where the actual patient survival is not known
or it is difficult to obtain. Besides the histological grade, other
intermediate end-points can be used, for example, the risk scores
from gene expression assays. Such work was presented in [109]
and [110], where tissue architecture features were used to predict
the Oncotype DX recurrence score with high accuracy, which
suggests that image analysis methods have the potential to be
used as a cheap alternative or supplement to gene expression
profiling.

When patient cohorts with known survival outcome are avail-
able, systems can be built that directly predict patient survival
based on the available data, both from imaging and from other
sources, thus avoiding the use of possibly unreliable interme-
diate end points. One such example can be found in [111],
where the mean nuclear area calculated by automatic nuclei
segmentation was shown to be prognostically relevant for male
breast cancer patients in addition to other histological and clini-
cal features. The fractal dimension of the tissue, extracted from
invasive breast cancer TMAs stained with pan-cytokeratin (spe-
cific to epithelial components), which was previously associ-
ated with tumor grade [112], was also shown to have prognostic
value [113]. In [114], the authors proposed a system that success-
fully predicts patient outcome based on automatically extracted
quantitative features from histopathology images. In addition,
they identified three novel and previously unrecognized stromal
features that are significantly associated with patient survival.

An exciting and promising area of research is the integration
of imaging biomarkers from histopathology images with ge-
nomic data. Structural information about the tissue is lost when
preparing the molecular assays, hence imaging biomarkers may
be complementary to genomic data. In a recent study [115], the
authors used an image analysis approach to derive knowledge
about the tumor cellular composition (percentage of cancer, stro-
mal and lymphocytic nuclei), which they used to correct copy
number data and more accurately estimate the HER2 amplifica-
tion. In addition, they combined image features with genomic
information to train a predictor of survival of ER-negative breast
cancer patients. This predictor had a better performance in com-
parison with using image features or genomic information only.
In another study [116], the authors developed a workflow for
image analysis of histopathology images and integration of mor-
phological features with genomic data for biomarker discovery.
Four of the morphological features were identified as biomarkers
that can separate patients into groups with different outcomes.

Many of the proposed methods for automatic breast cancer
detection, grading, and prognosis have been trained and eval-
uated only on relatively small regions from the image slides,
either digitized TMA slides or manually selected regions from
whole-slide images. Although these methods are useful in a
semiautomatic setting, it is necessary for a high throughput and

automatic application to either produce an output for the entire
slide (or even, from a set of slides originating from one speci-
men), as in [107], where this is achieved by using a multifield-
of-view framework, or to perform extraction of relevant ROIs
for the problem at hand and limit the analysis solely to those
regions [50], [54], [117].

VII. DISCUSSION

Over the past few years the interest in analysis of histopathol-
ogy images has been steadily increasing, prompted by the intro-
duction of WSI scanners into pathology labs and the imminent
acceptance of digital slides as a primary diagnostic modality.

The use of quantitative techniques is viewed as a solution
to the problem of observer variability of the interpretation of
histopathology slides, both by pathology professionals and im-
age analysis experts. In the case of breast cancer, several ap-
plications for quantification of immunohistochemically stained
tissue have already gained approval from the United States Food
and Drug Administration (FDA). Methods that work with rou-
tinely prepared H&E stained slides have great potential to make
an impact on the pathology workflow. However, ensuring ro-
bustness is challenging owing to the complexity of the tissue
characteristics that need to be analyzed. Nevertheless, progress
has been made both in the development of basic image anal-
ysis tools for H&E stained sections (i.e., object detection and
segmentation methods) and in the development of systems that
predict patient outcome either directly or by use of interme-
diate endpoints such as the histological grade as assigned by
pathologists. Further improvements are needed in order to pro-
duce methods that have performance levels that are suitable for
clinical application.

At multiple points throughout the text we have mentioned that
the steps of tissue preparation, staining, and slide digitization
that precede image analysis can influence the results. The more
quantitative analysis of histopathology image data will become
part of routine pathology practice, the more optimization of
tissue preparation, staining, and slide digitization will be needed.
However, some variation in the appearance will still be present
even under closely monitored conditions, so analysis methods
will have to be developed in a way that is robust to such a
variation.

Perhaps the main obstacle in the development of new
histopathology image analysis methods lies in the lack of large
publicly available annotated datasets. While the advent of WSI
scanners has produced vast quantities of image data, it is diffi-
cult to obtain ground truth annotations in a form that can readily
be used for development and testing of image analysis methods,
even when this data is tied to the pathology reports. For example,
the tumor grade or the mitotic activity index that can be found in
pathology reports are often based on the analysis of a particular
region from a single slide viewed under a microscope, while
the slide itself has been selected from a set of slides originating
from the same sample. Information about the selected slide and
the region within that slide where analysis was performed is
not recorded and thus correspondence between the routine an-
notation and the image data is difficult to establish. In addition,
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owing to the large observer variability, annotation by multi-
ple observers is needed to produce high quality ground truths,
which is both time-consuming and expensive, particularly for
large datasets. Making annotated image datasets publicly avail-
able will provide a breeding ground for the development of new
image analysis algorithms and will enhance the objectivity of
method comparison and improve the quality of computer-aided
diagnosis and prognosis.
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