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a b s t r a c t

The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in
hematoxylin and eosin stained histology sections, is considered to be one of the most important
prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low
inter-observer agreement. With the wider acceptance of whole slide images in pathology labs, automatic
image analysis has been proposed as a potential solution for these issues.

In this paper, the results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13)
challenge are described. The challenge was based on a data set consisting of 12 training and 11 testing
subjects, with more than one thousand annotated mitotic figures by multiple observers. Short
descriptions and results from the evaluation of eleven methods are presented. The top performing
method has an error rate that is comparable to the inter-observer agreement among pathologists.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction
Breast cancer patients can considerably benefit from adjuvant
therapy. However, aggressive adjuvant therapies are costly, can
lead to potentially serious side effects and thus are only given to
patients that are at a high risk. Assessing the patient risk requires
use of good prognostic factors. In this regard, prognostic factors

http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2014.11.010&domain=pdf
http://dx.doi.org/10.1016/j.media.2014.11.010
mailto:mitko@isi.uu.nl
http://dx.doi.org/10.1016/j.media.2014.11.010
http://www.sciencedirect.com/science/journal/13618415
http://www.elsevier.com/locate/media


1 http://amida13.isi.uu.nl.

238 M. Veta et al. / Medical Image Analysis 20 (2015) 237–248
related to tumor proliferation have proven to be among the most
powerful ones (van Diest et al., 2004).

The proliferation of cells occurs through a process that can be
divided into several phases: resting phase (G0), first gap phase
(G1), synthesis phase (S), second gap phase (G2) and mitotic phase
(M). After the M-phase, the cells either enter the G0-phase or the
G1-phase repeating the process. The cells that are in the M-phase
can be visually determined under a microscope by their character-
istic morphology. In hematoxylin and eosin (H&E) stained breast
cancer sections, mitoses are discernible as hyperchromatic objects
that lack a clear nuclear membrane and have therefore specific
shape properties. Counting of mitotic figures in H&E stained sec-
tions is the oldest and still most widely used form of assessment
of proliferation of breast cancer tumors by pathologists.

The proliferative activity of the tumor is estimated as the
number of mitoses in an area of 2 mm2, which corresponds to
8–10 microscope high power fields (HPFs; refers to the area that
is visible using the microscope under very high magnification,
usually �40) depending on the microscope model. This number
is referred to as the mitotic activity index (MAI). Mitosis counting
is routinely performed in pathology labs all over the world and is
widely used as a prognostic factor. Although MAI assessment can
be well reproducible if a strict protocol is followed after rigorous
training (van Diest et al., 1992), it is a subjective procedure that
is liable to intra-observer variation. Several factors contribute to
this. First of all, the task of identifying mitotic figures in H&E
sections is not trivial. They can display a number of different
appearances, with their hyperchromacity being the most salient
feature. Moreover, many other cellular components can have a
similar hyperchromatic appearance, such as apoptotic or necrotic
nuclei, compressed nuclei, ‘‘junk’’ particles and other artifacts from
the tissue preparation process. This makes the identification of
mitoses difficult. Furthermore, the assessment of the proliferative
state by counting mitotic figures is performed only in a small area
of the tumor selected to be at the tumor periphery and to have
high cellularity. The choice of the area is also a matter of
subjective interpretation and one of the potential sources of low
reproducibility.

In addition to being subjective, mitosis counting is a laborious
task, compared with the assessment of other prognostic factors
for breast tumors, such as nuclear pleomorphism and tubule for-
mation. For a typical case, it takes 5–10 min. for a pathologist to
perform mitosis counting, and the process must sometimes be
repeated in different areas or sections for borderline cases.

In the last decade, pathology labs have started to move towards
a fully digital workflow, with the use of digital slides being the
main component of this process (Stathonikos et al., 2013). This
was made possible by the introduction of scanners for whole slide
imaging (WSI) that enable cost-effective production of digital rep-
resentations of glass slides. In addition to many benefits in terms of
storage and browsing capacities of the image data, one of the
advantages of digital slides is that they enable the use of image
analysis techniques that aim to produce quantitative features to
help pathologists in their work. An automatic mitosis detection
method with good performance could alleviate both the subjectiv-
ity and the tediousness of manual mitosis counting, for example,
by independently producing a mitotic activity score or guiding
the pathologist to the region within the tissue with highest mitotic
activity.

This paper gives an overview of the Assessment of Mitosis
Detection Algorithms 2013 (AMIDA13) challenge that we recently
launched. The main goal of the challenge was to evaluate and
compare the performance of different (semi-)automatic mitosis
detection methods that work on regions extracted from whole
slide images on a large common data set. Since only the number
of mitoses present in the tissue is of importance, i.e. their size
and shape is not of interest, the challenge was defined as a
detection problem.

1.1. Challenge format

The challenge was opened on March 28th, 2013, at which point
interested groups or individuals could register on the challenge
website1 and download the training data set that they could use
to develop their methods. The training data set consisted of image
data accompanied by ground truth mitosis annotations. Approxi-
mately two months after the release of the training data set a testing
data set of similar size was released. The testing data set consisted
only of image data, i.e. the ground truth annotations were withheld
by the challenge organizers in order to ensure independent evalua-
tion. After the release of the testing data set, the participants were
able to run their methods and upload results to the challenge web-
site for evaluation. The number of submissions from each registered
participant was limited to three in order to avoid overfitting of the
method to the testing data. Each submission had to be accompanied
by a short method description, or, in the case it was the second or
third submission of the participating team, a description of how
the method differed from previous submissions. The submitted
results were evaluated by the challenge organizers and the evalua-
tion result was made available to the participants.

The first part of the AMIDA13 challenge was concluded with the
workshop held in conjunction with the Medical Image Computing
and Computer Assisted Interventions (MICCAI) 2013 conference on
September 22nd, 2013 in Nagoya, Japan. The deadline for submis-
sions that were to be presented at the challenge workshop and
included in this overview paper was September 8th, 2013. After
the conclusion of the workshop, the challenge website was reo-
pened for new submissions.

Prior to the challenge workshop, over 110 teams or individuals
from more than 30 countries registered to download the data set.
Fourteen teams submitted results for evaluation. All submissions
were automatic methods. Although the option was provided, none
of the submissions was a semi-automatic method. This overview
paper includes eight methods proposed by teams that submitted
results for evaluation and attended the challenge workshop. Addi-
tionally, three methods by teams that submitted results for evalu-
ation and achieved good performance but could not attend the
challenge workshop are also included. The full list of results along
with any new submissions after the challenge workshop is avail-
able on the challenge website.

1.2. Previous work

The earliest methods for automatic mitosis detection in breast
cancer tissue date back to more than two decades ago (Beliën
et al., 1997; Kaman et al., 1984; ten Kate et al., 1993). However,
those approaches were inevitably constrained in their performance
and potential use by the limited slide digitization technology and
available computational resources at that time. The recent interest
in this problem (Ciresan et al., 2013; Malon et al., 2012; Veta et al.,
2013) was ignited by the increased availability of WSI scanners.
This resulted in the organization of the MITOS challenge (Roux
et al., 2013) in 2012 on the same topic, which was well attended
and helped advance the state of the art for this problem. However,
the challenge was based on a data set of relatively small size
(5 slides in total, 10 annotated HPFs per slide) and it did not
account for the inter-subject variability in tissue appearance and
staining as regions of the same slides were included in both the
training and testing data sets. We aim to address these issues with
the data set used in this challenge.

http://amida13.isi.uu.nl
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For a wider overview of histopathology image analysis tech-
niques for breast cancer and other tissue types, we refer the reader
to the recent reviews in Gurcan et al. (2009) and Veta et al. (2014).
We would also like to point out that automatic mitosis detection is
a relevant application for other microscopy imaging modalities
such as live cell images (Harder et al., 2009; Padfield et al., 2011)
and there is a possibility for cross-over of the proposed methods.

2. Materials

In this section, we describe the process by which the challenge
data set was compiled and annotated.

2.1. Patient, slide and region selection

The histology slides that were used for the creation of the chal-
lenge data set were produced at the Pathology Department of the
University Medical Center Utrecht, Utrecht, The Netherlands. This
is a pathology laboratory of medium size handling more than
144,000 surgical pathology slides and 12,000 cytology slides each
year. From the archives of the department, slides from 23 consec-
utive invasive breast carcinoma patients, admitted between July
2009 and January 2010, were retrieved based solely on their
availability (other selection criteria were not employed). All slides
were prepared according to the standard laboratory protocol
that consists of formalin fixation and paraffin embedding of the
tissue, followed by cutting of 3–5 lm thick sections and staining
with H&E.

One of the most difficult challenges in histopathology image
analysis is the variability of tissue appearance, which is mostly
the result of the variability in the conditions of the tissue prepara-
tion and staining processes. The challenge data set consists of
slides that were routinely prepared at different time points during
a longer period of time. In this way, it can be expected that
appearance variability, which can be avoided when the tissues
are processed in a single batch, will be reflected in the data set
and the challenge will thus provide realistic performance estimates.

Data of a single patient typically consist of multiple slides. In
clinical practice, the pathologist selects the slide and the region
within the slide that is most suitable for the analysis at hand.
Automating these selection steps is interesting by itself, and is
certainly needed for a fully automatic workflow, however, for the
challenge data set we decided to perform these steps manually
and focus the challenge on the problem of mitosis detection.

An expert pathologist selected one representative slide per
patient and marked a large region of the tumor on the glass slides
in which mitosis annotation was to be performed. For the larger
tumors, the marked areas within the slides were selected to
encompass the most invasive part of the tumor, to be located at
the periphery and to have high cellularity, which are the standard
guidelines for performing mitosis counting. Smaller tumors were
included in their entirety. The size of the outlined area varied from
7 mm2 to 58 mm2 with a median of 26 mm2. It should be noted
here that this diverges from the routine pathology practice of esti-
mating the mitotic activity as the number of mitotic figures within
an area of 2 mm2. The choice of marking a larger area for mitosis
annotation was made in order to ensure that a larger number of
mitoses could be identified, which would result in data set of a size
that is sufficient for training and evaluation of an automatic mito-
sis detection method.

2.2. Image acquisition

The representative regions were digitized with a ScanScope XT
whole slide scanner (Aperio, Vista, CA, USA). This scanner model
can perform the steps of tissue selection, patch focus point
selection, calibration, image acquisition and compression in a fully
automatic manner. The digitization of the candidate regions was
done at 40� magnification with a spatial resolution of 0.25 lm/
pixel. The automatic focus points were manually reviewed before
single focus plane scanning to reduce the possibility of blurry
patches. High quality JPEG2000 compression (quality factor 85)
was used to store the images, almost completely eliminating any
visible compression artifacts, which was confirmed with side-
by-side comparison of compressed and uncompressed versions of
several regions. The slide digitization parameters were optimized
to ensure the highest image quality possible and differ from the
standard practice of digital slide archiving at the UMC Utrecht
(Huisman et al., 2010).
2.3. Ground truth annotation

The ground truth for the challenge was assigned based on the
annotations by multiple observers, to reduce the influence of
observer variability. We used the following protocol to establish
the ground truth mitosis annotations.

1. Two pathologists independently traversed the indicated regions
of interest and marked the locations of mitoses by drawing an
ellipse encompassing the object in the whole slide image
viewer.

2. The objects on which both pathologists agreed were directly
taken as ground truth mitosis objects. Two annotations were
considered to indicate the same mitotic figure if the Euclidian
distance between their centers was less than 7.5 lm (30 pixels),
which is the same criterion used to evaluate the automatic
detection methods.

3. The discordant objects (annotated as mitoses by only one of the
observers) were presented to a panel of two additional pathol-
ogists to make the final decision. Note that the panel did not
traverse the slides but only examined the discordant objects.

With this annotation protocol, all objects that were accepted as
ground truth mitoses have been agreed upon by at least two
experts.

The first set of annotations was done by a pathologist at the
UMC Utrecht using the ImageScope whole slide viewer (Aperio,
Vista, CA, USA). The second set of annotations was done by an
external pathologist using pathoconsult.nl – an online digital slide
viewing and collaboration platform maintained by the UMC Utr-
echt. The second observer was blinded to the results from the first
observer. The observers did not receive a standardized definition
for mitotic figures, but were instructed to perform the mitosis
counting using the criteria they employ in daily practice.

The total number of annotations made by the first and second
observers was 1088 and 1599, respectively. The number of loca-
tions upon which they agreed was 649, which left 1389 annota-
tions to be resolved by the panel of two additional observers. The
panel revisited all discordant objects and after discussion, decided
together which objects to accept as ground truth mitoses. The total
number of remaining objects after the consensus annotation was
1157 (this number also includes the concordant objects that were
directly accepted as ground truth).

We note here that although the difference in the absolute
counts between the two initial observers is quite large (1088 com-
pared to 1599), a large portion of it can be traced back to only a few
subjects (Table 1). Later investigation into this showed that this
discrepancy can be largely attributed to the difference in the inter-
pretation of objects that are difficult to interpret without fine
focusing ability. It is also reasonable to assume that some of the
difference can be attributed to the inter-institutional differences
in mitosis counting.

http://pathoconsult.nl


Table 1
Data set summary.

ID Outlined
area
(mm2)

Number of
annotated
objects by
observer 1

Number of
annotated
objects by
observer 2

Number of
HPFs in the
challenge
data set

Number of
ground truth
mitotic
figures

Training data set
1 20 60 188 39 73
2 36 51 32 28 37
3 41 13 46 16 18
4 24 178 338 61 224
5 20 5 8 10 6
6 43 104 89 61 96
7 22 55 140 43 68
8 21 2 5 10 3
9 58 0 12 10 2

10 26 0 4 10 0
11 20 5 25 13 15
12 41 9 5 10 8

Testing data set
1 7 2 4 10 3
2 36 1 37 15 16
3 40 69 73 49 66
4 21 11 10 10 9
5 27 8 9 10 6
6 26 277 247 67 212
7 7 0 2 10 2
8 26 0 5 10 0
9 31 111 155 44 115

10 34 93 133 48 72
11 23 34 32 22 32

2 Note that the annotation procedure led to rejection of some HPFs that had only
discordant annotations by the two initial observers that were then in turn all rejected
by the consensus annotation. This produces higher values for the Dice overlap when
only the selected HPFs are considered.

3 CCIPD at Case Western Reserve University, USA and MindLab at National
University of Colombia.
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2.4. Image data distribution

For simplicity, the image data for the challenge was not distrib-
uted as whole slide images, but instead, each whole slide image
was divided into a number of smaller TIFF images that could be
easily read by most image analysis platforms. We chose the size
of the TIFF images to be 2000 � 2000 pixels, representing an area
of 0.25 mm2, which is in the order of one microscope high power
field (the exact area of one HPF is different for different microscope
models). We refer to the TIFF images as HPFs. HPFs that were out-
side the marked region of interest on the slide or that intersected
the black marker annotation that indicates the region of interest
were excluded (Fig. 1B). Since for some subjects the total number
of HPFs was very high (in the order of several hundreds), only
the HPFs that contained at least one mitosis were included as part
of the data set. For the subjects that had fewer than 10 HPFs with
mitosis occurrence, additional empty HPFs were included to
extend the total number to 10 in order to include sufficient back-
ground image data, necessary for good training and evaluation.
Note that some mitotic figures fell into a HPF that intersects the
black marker annotation and are thus not included in the data
set. This was the case with around 6% of the annotations.

The set of 23 subjects was split into two subsets – one intended
for training of the methods and one used as an independent testing
data set. The division into training and testing data sets was done
in such a way that the number of HPFs and ground truth mitoses
was approximately balanced. A summary of the two data sets is
given in Table 1. The ground truth was provided to the participants
only for the training data set, in the form of coordinates of mitoses
(the centers of the elliptical annotations) for each HPF.

2.5. Object-level observer agreement

Given the notorious difficulty of the mitosis detection task even
for expert pathologists, the performance of the automatic mitosis
detection methods should be evaluated within the context of the
inter-observer agreement.
The similarity of two sets of annotations can be expressed using
the Dice overlap coefficients, which is computed as:

DðA;BÞ ¼ 2jA \ Bj
jAj þ jBj

where A and B are the two sets of annotations and |�| indicates the
number of elements in the sets.

On the entire data set of 23 subjects, prior to the separation and
selection of HPFs, the Dice overlap coefficient was 0.483 (i.e., there
were 2687 annotations by the two observers in total and they
agreed for 649 objects). For the HPFs in the training data set, the
Dice overlap coefficient between the sets of annotations by the
two independent observers was 0.527, and for the testing data
set 0.566. These numbers are higher2 compared to the value for
the entire data set (prior to separation into HPFs and rejection)
due to the selection of non-empty HPFs based on the consensus
annotation.

The Dice overlap coefficients between the individual annota-
tions and the consensus annotation are 0.749 and 0.763 for the first
and second observer respectively for the selected HPFs in the
training data set, and 0.796 and 0.773 for the selected HPFs in
the testing data set. It should be noted however that this is a biased
measure since the consensus annotation is partly based on the two
independent annotations.

3. Methods

3.1. CCIPD/MINDLAB3

3.1.1. Preprocessing
In addition to the three color channels from the RGB input

images, four additional color channels were computed and used
for candidate segmentation and feature extraction: L from the
LAB color space, V and L from the LUV color space and the blue
ratio image (ratio of the blue color channel and the sum of the
other two channels in the RGB color space).

3.1.2. Candidate detection and segmentation
For each HPF, a set of candidate regions was defined by

thresholding the blue ratio image.

3.1.3. Feature extraction and classification
This method fuses two classification strategies: a feature learn-

ing method based on Convolutional Neural Networks (CNN), and a
set of handcrafted features combined with a random forests (RF)
classifier (Wang et al., 2014). For each candidate region, both
learned features and handcrafted features were extracted indepen-
dently, and then classified using the corresponding classifier.

The CNN model has 4-layer architecture, including two consec-
utive convolution-pooling layers, a fully-connected layer and a
softmax classification layer. It operates on 80 � 80 pixel patches
in the YUV color space centered at the candidate regions. The first
3 layers comprise 64, 128, and 256 neurons, respectively. For the
convolution-pooling layers, fixed 8 � 8 convolutional kernel and
2 � 2 pooling kernel were applied. The CNN was trained using
stochastic gradient descent.

In addition, morphological, statistical and texture features were
extracted for each of the seven color channels. Principal compo-
nent analysis (PCA) was applied to reduce the dimension of the



Fig. 1. Separation into high power fields (HPFs). (A) Example slide with the area for annotation indicated with a black marker. (B) Each rectangle from the grid is one HPF.
HPFs that intersect the black marker lines (given in red) are not included in the data set. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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extracted features by retaining 98.5% of the principal components.
Using this reduced representation, a cascade of two RF classifiers
with 100 random trees was trained. To balance the numbers of
mitosis and non-mitosis objects, the number of non-mitosis nuclei
was reduced by eliminating overlapping objects and oversampling
the positive class.

The final prediction score is a weighted average of the outputs
of the two classifiers. More details about this method can be found
in Wang et al. (2014).

3.2. DTU4

3.2.1. Preprocessing
Candidate detection was performed on the blue ratio image, cal-

culated as the ratio of the blue color channel and the sum of the red
and green channels.

3.2.2. Candidate detection and segmentation
Candidate detection was performed by thresholding of the

Gaussian of Laplacian blob detector applied to the blue ratio image,
followed by connected component labeling.

3.2.3. Feature extraction and classification
For each detected candidate object, a 100 � 100 pixel patch was

extracted and each RGB color channel was independently normal-
ized to have values in the range [0 1]. From the color normalized
patches, three types of image features were extracted:

1. Color intensity histograms, one for each color channel.
2. Gradient orientation histograms. The orientations of the gradi-

ents are calculated relative to a vector from the cell center to
the location of the gradient.

3. Shape index histograms (Larsen et al., in press). The shape index
captures second-order differential structure from the local Hes-
sian eigenvalues. The two eigenvalues are mapped to a contin-
uous interval providing a smooth and intuitive transition
between the second-order shapes (cup, rut, saddle, ridge and
cap).

Each image feature was computed for different concentric
donut-like spatial pooling regions centered on the candidate
object. The donut-shaped pooling regions vary in radius and width
4 Technical University of Denmark.
such that they capture image structure in different parts of the
candidate object. Note that the features are rotationally invariant
because both the image features and the spatial decomposition
are rotationally invariant.

The extracted image features were used to train a support
vector machine (SVM) classifier with radial basis function (RBF)
kernel.

3.3. IDSIA5

In this approach, Multi Column Max-Pooling Convolutional
Neural Networks (MCMPCNN) are used for supervised pixel classi-
fication. MPCNNs alternate convolutional layers with max-pooling
layers. A similar technique won the MITOS mitosis detection com-
petition (Ciresan et al., 2013) and recently produced outstanding
results in image classification (Ciresan et al., 2012b) and segmenta-
tion (Ciresan et al., 2012a). The inputs to the MPCNN are
63 � 63 pixel patches directly sampled from the raw RGB images.
The output is the probability that the central pixel of the patch is
within 20 pixels of the centroid of a mitosis. Three networks with
identical 10-layer architecture were trained on 20 million patches
extracted from the training images. One tenth of such instances
were randomly sampled from mitosis pixels (which represent a
tiny fraction of all pixels in the training data set); 40% were ran-
domly sampled from all non-mitosis pixels; the remaining 50%
were sampled only from non-mitosis pixels that were found to
be similar to mitosis (therefore, more challenging to classify) dur-
ing a simple preprocessing phase. The resulting training data set
was augmented by adding rotated and mirrored instances. Each
network was trained for a maximum of five epochs, which required
about three days of computation using an optimized GPU imple-
mentation. Mitoses in the test images were detected by sliding
the neural network detectors over the images by means of an effi-
cient algorithm (Giusti et al., 2013). This resulted in a map where
each pixel represented the probability of belonging to the mitosis
class. Each test image was processed in eight different rotation/
mirroring combinations by each of the three networks. The 24
resulting probability maps were averaged, and then convolved
with a 20-pixel radius disk kernel. Nonzero values obtained after
performing non-maxima suppression in a 50-pixel radius corre-
sponded to detected centroids of mitotic figures.
5 IDSIA, Dalle Molle Institute for Artificial Intelligence, USI-SUPSI, Lugano,
Switzerland.
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3.4. ISIK6

This method is an extension of previous work on mitosis detec-
tion (Tek, 2013).

3.4.1. Preprocessing
Prior to candidate detection, image contrast stretching was

performed.

3.4.2. Candidate detection and segmentation
Candidate objects were initially segmented by a morphological

double threshold operation. The resulting binary image was fil-
tered by an area opening operation (with the minimum area set
to 50 pixels), to remove isolated spurious regions. The candidate
extraction procedure was finalized with a morphological hole fill-
ing step.

3.4.3. Feature extraction and classification
The candidate object classification consists of two separate

stages. In the first stage, a set of simple object features were
employed to significantly reduce the number of false objects, while
keeping the loss of true mitotic figures to a minimum. The follow-
ing set of features was used in this stage: area, major- and minor-
axis lengths, perimeter, equivalent diameter, ratio of the area to
the perimeter, eccentricity, extent, mean intensities of the three
RGB channels and the ratios of the mean intensities of the three
RGB channels to the corresponding means of all candidate compo-
nents of the same image.

In the second stage, which operates on candidate objects that
have not been eliminated in the first stage, a set of windows of
increasing width around the candidate object were defined. For
each window, a feature vector that is formed of five different
groups of features is calculated: color (statistics of the RGB color
channels and similarities to the average mitosis and non-mitosis
histograms), binary shape, Laplacian, morphological (area granul-
ometry) and gray-level co-occurrence. For both stages of the clas-
sification, an ensemble of multi-stage AdaBoost classifiers was
used.

3.5. MINES7

3.5.1. Preprocessing
Separate hematoxylin and eosin channels were obtained with

color unmixing (deconvolution) (Ruifrok and Johnston, 2001).

3.5.2. Candidate detection and segmentation
The segmentation of candidate objects was performed entirely

using the hematoxylin channel. In order to detect potential nuclei
(candidates), a diameter closing operation (Walter et al., 2007) was
applied to the median filtered image removing all dark structures
with maximal extension smaller than a predefined parameter
(the diameter was chosen to be 80 pixels). By calculating the differ-
ence to the median filtered image, these small dark structures
could be segmented by simple double thresholding (low threshold:
34, high threshold: 60). The connected components of this binary
image were considered candidate objects.

3.5.3. Feature extraction and classification
The candidate segmentation procedure failed to identify only 2

mitoses in the training data set. With the aim to reduce the high
number of false positives, a supervised classifier was trained. For
6 Department of Computer Science and Engineering, Isik University, _Istanbul,
Turkey.

7 Centre for Computational Biology – Mines ParisTech, Institut Curie and U900
INSERM, Paris, France.
each candidate object, shape and texture features (basic geometric
and gray level features, Haralick features, statistical geometric fea-
tures, morphological granulometries, convex hull features, etc.), as
defined in Walter et al. (2010), were computed. In addition, Hara-
lick and basic gray level features were calculated for the candidate
region in the eosin channel and for a ring around each candidate
region in the hematoxylin channel in order to quantify the local
environment.

A training data set of three classes was built: non-mitosis, early
mitosis (prophase/prometaphase) and late mitosis (metaphase,
anaphase). The rationale of transforming the binary classification
problem into a three-class problem was that the two mitosis clas-
ses are morphologically very different and some preliminary runs
showed that this strategy gives better results (for this particular
problem). In order to distinguish the three classes, an SVM classi-
fier was trained (RBF kernel, parameters automatically determined
by a grid search with 5-fold cross validation). The mitotic cells
were taken as the union of the early mitosis and the late mitosis
class obtained from this classifier.
3.6. NTUST8

In this approach, a diverse cascade learning framework (Wang
and Hunter, 2010a) with the cwBoost learning algorithm (Wang
and Hunter, 2010b) is used for supervised pixel classification.
The hierarchical ensemble classifier contains 10 layers of simple
mitosis detectors, which evaluate various types of inputs with dif-
ferent models, and can quickly filter out negative areas. A similar
technique was used for obscured human head detection in video
sequences (Wang and Hunter, 2010a). The inputs to the learning
methods were 50 � 50 pixel patches directly sampled from image
data extracted from the red color channel. The red color channel
was chosen because in preliminary tests it was found to give the
best cross-validation accuracy compared to the other color chan-
nels. Ten layers of boosting ensembles were trained on image
patches extracted from the training images. Each ensemble con-
tained 10 C4.5 decision tree classifiers (Quinlan, 1996). Mitoses
in the test images were then detected by sliding the hierarchical
boosting detectors over the images. The output from the detector
was the probability that the central pixel of the patch is within
25 pixels of the centroid of a mitosis. A confidence weight is gener-
ated by computing the number of detections in the same area, and
regions with a weight greater than 2 are defined as possible mitosis
regions.
3.7. PANASONIC9

3.7.1. Preprocessing
The RGB images were first transformed into a number of differ-

ent color spaces that later facilitated the candidate segmentation
and feature extraction: L ⁄ a ⁄ b, HSV, blue ratio image (BR), red
ratio image (RR) and blue–red ratio image (BRR). The BR image,
which accentuates the nuclear dye, was computed as the ratio of
the blue channel and the sum of the other two channels. The RR
and BRR images were computed in a similar manner.
3.7.2. Candidate detection and segmentation
Candidate mitosis regions were extracted by binary threshold-

ing of the BR image. The threshold was automatically determined
as three times the standard deviation of the BR image. Regions that
were smaller than 80 pixels were eliminated.
8 Graduate Institute of Biomedical Engineering, National Taiwan University of
Science and Technology.

9 Panasonic Healthcare Co., Ltd., Osaka, Japan.
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3.7.3. Feature extraction and classification
The following morphological features were computed for each

candidate region: area, major axis length, minor axis length, eccen-
tricity, orientation, convex area, filled area, equivalent diameter,
solidity, extent, and perimeter. In addition to this, for each candi-
date region, a rectangular window was defined, and the following
features were extracted within the window:

1. Histogram of local binary patterns (LBP) for the BR, RR, BRR, L⁄,
H, S, and V images. The LBP features were computed for three
radii (1, 3 and 5 pixels), and the histograms were concatenated.

2. Haralik features (contrast, correlation, energy, and homogene-
ity) for the BR, RR, BRR, L⁄, H, S, and V images.

The candidate objects were classified as mitoses or non-mitoses
using a random forest classifier.

3.8. POLYTECH/UCLAN10

3.8.1. Preprocessing
The candidate detection was performed in the blue corrected

images, which were intensity adjusted to calibrate both the image
contrast and the average intensity, partially compensating for the
differences in tissue appearance.

3.8.2. Candidate detection and segmentation
Candidate objects were detected by thresholding and binary

morphological operations. Patches of 128 � 128 pixel were then
extracted around the centroid of each candidate object and subse-
quently used for feature extraction and classification.

3.8.3. Feature extraction and classification
The features used for classification of the candidate objects

were selected to represent both textural and shape information.
The first set of 10 features was extracted from the average of the
run–length matrices calculated in four directions
{0�,45�,90�,135�} (Irshad, 2013). The second set of eight features
was extracted from the average of the co-occurrence matrices for
the same four directions and includes: energy, entropy, correlation,
difference moment, inertia, cluster shade, cluster prominence and
Haralick’s correlation. To capture spatial information, each patch
was divided into seven rings and a central circle, and for each
region an eight-bin intensity histogram was calculated giving in
total 64 features. The final feature that was calculated is the area
of the segmented candidate region by binary thresholding. The
OpenCV implementation of random forests was used for classifica-
tion. Due to the highly imbalanced training data set, additional
positive (mitosis) patches were randomly selected within a small
neighborhood of the ground truth mitosis location.

3.9. SURREY11

3.9.1. Preprocessing
To compensate for the variability of the tissue staining and

preparation, the images were first aligned in color space. This
was done using histogram matching, with the mean histogram
from the whole training data set as the target, and the histograms
of the individual subjects as the input. Each color channel was
adjusted independently. The computed histograms excluded pixels
that belong to regions that do not contain tissue (i.e., white
regions), found by thresholding of the green channel.
10 University Nice – Sophia Antipolis, France and University of Central Lancashire,
UK.

11 Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, UK.
3.9.2. Candidate detection and segmentation
Candidate mitosis locations were detected based on color. Each

color channel was quantized to 64 levels, and these values were
used to address a 3-dimensional (RGB) lookup table that points
to the likelihoods of the color being present in a mitotic figure.
The color lookup table was defined based on the histograms of
10-pixel circular neighborhoods of ground truth locations.

After obtaining a likelihood map for an input image, it was low-
pass filtered and thresholded, and the centers of the connected
component regions were taken as candidate locations. Around each
candidate location, 70 � 70 pixel patches were extracted and con-
verted to grayscale. Up to two largest objects within the patch
were segmented by a threshold that provides the best combination
of high boundary gradient and low variance within the object(s).
Objects that had area and contrast with the background below pre-
defined thresholds were removed. When a pair of objects was seg-
mented, it was ensured that they had roughly the same area and
intensity.
3.9.3. Feature extraction and classification
For each candidate, a set of rotation invariant features reflecting

the shape, contrast, edge properties and texture of both the seg-
mented object and the background was calculated. In addition,
pairs were characterized by the ratio and average of a subset of
parameters from each of the objects. For more details on the
descriptors, please refer to the Results page on the challenge web-
site. For classification, RBF SVM classifier was used with dominant
class subsampling and model averaging, to deal with the class
imbalance.
3.10. SHEFFIELD/SURREY12

This method requires a minimal input in its design and models
the space of mitosis images using a low-dimensional manifold. An
advantage of manifold learning models is that they enable practi-
tioners to easily visualize the range of mitosis appearances.

The preprocessing and candidate extraction steps of this sub-
mission are the same as the ones described in SURREY, but instead
of computing a set of predefined features, the normalized gray-
level candidate patches were represented as vectors and modeled
as observations by a Bayesian Gaussian Process Latent Variable
Model (BGPLVM) (Titsias and Lawrence, 2010). This method learns
a low dimensional latent space that is mapped nonlinearly back to
the original space of observations. In addition, it enables the com-
putation of an approximate density function of novel samples
given the known image samples. Therefore, one BGPLVM was used
for the positive samples (mitotic cells) and another for the negative
samples (false-positive candidate objects). The two classes were
assumed to be independent and classification was done using max-
imum likelihood. Visual inspection of the models (by reconstruct-
ing samples in different positions of the latent space) showed that
images reconstructed from the positive model were sharper than
those of the negative samples, i.e., there was a higher appearance
variation among negative samples. Furthermore, by navigating
through the positive latent space, the reconstructed images
showed a smooth transition between different phases of mitosis
as well as between different types of mitosis appearances
(including tripolar mitoses that occur in cancer cells). However,
the classification results were relatively poor, probably because
the assumption of independence between the classes does not
hold, indicating that a method that jointly models samples and
12 Department of Computer Science and Sheffield Institute for Translational
Medicine, University of Sheffield, UK and Centre for Vision, Speech and Signal
Processing (CVSSP), University of Surrey, UK.
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labels can be more promising (e.g. using Manifold Relevance Deter-
mination (Damianou et al., 2012)).

3.11. WARWICK13

3.11.1. Preprocessing
Staining normalization by non-linear color mapping (Khan

et al., in press) was performed in order to neutralize the inherent
variation in the color of the staining.

3.11.2. Candidate detection and segmentation
Candidate objects were extracted by statistical modeling of the

pixel intensities of the b-channel from the Lab color space. The
pixel intensities from mitosis regions were modeled by a Gamma
distribution and those from non-mitosis regions by a Gaussian dis-
tribution (Khan et al., 2013). Maximum-likelihood estimation was
employed in order to estimate the unknown parameters of the dis-
tributions. The posterior probability map was then binarized to
identify candidate objects. The threshold value for obtaining the
binary map was selected by performing receiver operating charac-
teristic (ROC) curve analysis. All candidate objects with an area
between 40 and 500 pixels were considered candidate objects. This
range of areas was obtained by examining the size of the ground
truth mitoses in the training data set.

3.11.3. Feature extraction and classification
For each candidate object, a set of object level color, shape and

texture features were computed. In addition, a small context win-
dow around the candidate objects was defined, and used to com-
pute contextual features (first order statistics over a set of
textural features). These contextual features were combined with
the object features to train a classifier.

Since the number of non-mitosis candidate objects was dispro-
portionately higher compared to mitosis candidate objects, the
classification was performed with the RUSBoost classifier (Seiffert
et al., 2010), which combines under-sampling and boosting to han-
dle the class imbalance problem. Other classifiers (such as SVM and
LDA) were also evaluated, but their cross-validation performance
on training data proved to be lower than RUSBoost.
4. Evaluation

A detected object was considered to be a true positive if the
Eucledian distance to a ground truth location is less than 7.5 lm
(30 pixels). This value corresponds approximately to the average
size of mitotic figures in the data set, and provides a reasonable tol-
erance for misalignment of the ground truth location and the
detection. When multiple detections fell within 7.5 lm of a single
ground truth location (e.g., when two components of a single mito-
tic figure were detected separately), they were counted as one true
positive. All detections that were not within 7.5 lm of a ground
truth location are counted as false positives. All ground truth loca-
tions that do not have detected objects within 7.5 lm were
counted as false negatives.

For each proposed method two types of evaluation measures
relating to the detection accuracy were computed. The first evalu-
ation measure was the overall F1-score, where all ground truth
objects were considered a single data set regardless to which
patient they belong. The F1-score14 is defined as the harmonic mean
13 University of Warwick, UK.
14 The F1-score is equivalent to the Dice overlap coefficient between the set of

detections and the set of ground truth objects. The Dice overlap coefficient is used to
characterize the inter-observer agreement, which makes it possible to directly
compare the detection results to the inter-observer agreement.
of the precision (Pr; positive predictive value) and the recall (Re;
sensitivity):

F1 ¼
2Pr� Re
Prþ Re

; Pr ¼ TP
TPþ FP

; Re ¼ TP
TPþ FN

;

where TP, FP and FN are the number of true positive, false positive
and false negative detections, respectively. The overall F1-score is
dominated by the subjects that have a high number of mitotic fig-
ures. To complement this measure, individual F1-scores for each
subject were also calculated. For the submissions that included
probability estimates associated with the detections, the preci-
sion–recall (PR) curves were also computed.

After a visual inspection of the detection results, it was
observed that many of the false positives produced by the top per-
forming methods closely resemble mitotic figures. Indeed, owing
to the difficulty of the task it is possible that some mitotic figures
were missed during the ground truth annotation, but were then
detected by the automatic methods. To further examine this, the
false positives from the top two methods, which had notably better
performance than the remaining methods, were presented to a
panel of two observers for re-evaluation, along with the ground
truth mitoses as a control. This panel consisted of one of the
observers that initially traversed the slides and one of the observ-
ers that participated in the panel that resolved the discordant
objects. Separate images of size 200 � 200 pixels, centered at the
false positive detections and the ground truth objects, were
extracted and presented in random order to the new panel for
re-evaluation, i.e., labeling as mitosis or non-mitosis.

The mitotic activity of the tumors is ultimately expressed as the
density of mitotic figures, i.e., the number of mitoses per tissue
area. To evaluate the performance of the methods for this task,
the correlation coefficient between the number of detections and
the number of ground truth mitoses per HPF for the subjects in
the testing set was computed.
5. Results

5.1. Mitosis detection

The overall F1-scores along with the precision and recall of the
proposed methods are summarized in Table 2 and Fig. 4. The top
ranking method is IDSIA with an overall F1-score of 0.611.

The individual F1-scores for each subject are summarized in
Table 3, along with the average across all subjects. Note that sub-
ject #8 from the testing data set has zero annotated ground truth
mitotic figures, thus the F1-score is undefined. Instead of the
F1-score, for this subject, Table 3 contains the number of false posi-
tive detections. According to average F1-score, the top ranking
method is again IDSIA with value of 0.445.

Fig. 2 gives the PR curves for the IDSIA and DTU methods. The
performance of the other methods is also plotted on the same
graph for comparison.

Note that these results are based on the original ground truth
data and are not influenced by the re-annotation of false positives.

5.2. Re-annotation of false positives

The results from the re-annotation experiment are given in
Fig. 3. The proportion of false positives from the IDSIA method
re-annotated as mitotic figures was p = 0.29, 95% CI [0.23,0.36].15

In other words, out of the 208 false positives from the IDSIA method,
61 were re-annotated as true mitotic figures. The proportion of false
positives from the DTU method re-annotated as mitotic figures was
15 CI refers to the 95% confidence interval.



Table 2
Overall F1-scores of the proposed methods. To compute the overall F1-score, all
ground truth objects were considered a single data set regardless to which subject
they belong.

Team name Precision Recall F1-score

IDSIA 0.610 0.612 0.611
DTU 0.427 0.555 0.483
SURREY 0.357 0.332 0.344
ISIK 0.306 0.351 0.327
PANASONIC 0.336 0.310 0.322
CCIPD/MINDLAB 0.353 0.291 0.319
WARWICK 0.171 0.552 0.261
POLYTECH/UCLAN 0.186 0.263 0.218
MINES 0.139 0.490 0.217
SHEFFIELD/SURREY 0.119 0.107 0.113
NTUST 0.011 0.685 0.022

Fig. 2. Precision–recall curves of the two top ranking methods. The performance of
the other methods is plotted for comparison.
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p = 0.16, 95% CI [0.12,0.19]. In other words, out of the 397 false pos-
itives from the DTU method, 62 were re-annotated as true mitotic
figures. This is illustrated in Fig. 3A.

The proportion of objects re-annotated as mitotic figures from
the entire set of detections produced by the IDSIA method was
p = 0.61, 95% CI [0.57,0.65]. This means that out of the 534 detec-
tions that this method produced, 326 were re-annotated as true
mitotic figures. The corresponding proportion for the DTU method
was p = 0.42, 95% CI [0.39,0.46] (293 out of 693 detected objects).
For comparison, the proportion of objects re-annotated as mitotic
figures from the ground truth dataset was p = 0.71, 95% CI
[0.67,0.75] (379 out of 533 objects). This is illustrated in Fig. 3B.
5.3. Number of mitoses per HPF

The scatter plots for the number of detections and the number
of ground truth objects per HPF (averaged for each of the 12 test
cases) for the five methods with highest performance according
to the overall F1-score is given in Fig. 4. The plots for the other
methods are omitted for brevity. The best correlation was achieved
by the IDSIA method (r = 0.90, 95% CI [0.62,0.96]).

Tables with more detailed results are available for download
from the challenge website.
6. Discussion

6.1. Summary of the proposed methods

The majority of the proposed methods followed a two-step
object detection approach. The first step identified candidate
objects that were then classified in the second step as mitoses or
non-mitoses. Some of the proposed methods prior to the candidate
Table 3
Individual (per subject) and average F1-scores of the proposed methods. To compute the i

Team name 1 2 3 4 5 6

IDSIA .50 .00 .66 .57 .29 .73
DTU .00 .11 .41 .56 .20 .63
WARWICK .13 .34 .14 .59 .40 .62
ISIK .00 .10 .37 .44 .00 .47
PANASONIC .00 .00 .28 .20 .40 .52
CCIPD/MINDLAB .00 .15 .36 .38 .00 .42
SURREY .00 .10 .48 .30 .00 .47
MINES .00 .14 .11 .40 .16 .49
POLYTECH/UCLAN .00 .00 .07 .18 .00 .50
SHEFFIELD/SURREY .03 .07 .35 .15 .00 .05
NTUST .01 .03 .01 .09 .03 .23

a Subject #8 has no ground truth mitotic figures, thus the F1-score is not defined. In th
when computing the average F1-score.
extraction and classification steps performed transformation of the
color channels (DTU, PANASONIC, POLYTECH/UCLAN) or staining
unmixing (MINES) to obtain a nuclear/hematoxylin channel, thus
eliminating eosinophylic structures that can hamper the detection
performance. Three of the proposed methods (SURREY, SHEFFIELD/
SURREY and WARWICK) perform explicit staining normalization to
tackle the problem of staining variability.

The most popular technique for candidate extraction was thres-
holding of a grayscale image in combination with linear filtering or
morphology operators. This technique worked relatively well
because of the hyperchromacity of the mitoses – by selecting only
the ‘‘darkest’’ nuclei in the images as candidates, a large number of
the non-mitoses can be rejected while achieving high sensitivity
for the mitosis class. Three of the proposed methods (SURREY,
SHEFFIELD/SURREY and WARWICK) used a supervised method to
obtain a mitosis likelihood map, which was then thresholded in
order to obtain candidate objects.

In the second step, features were computed for segmented
mitosis candidates and/or image patches centered at the detected
candidate locations. The size of the image patches varied from
63 � 63 to 128 � 128 pixels. These patch sizes were selected to
be somewhat larger than the expected size of mitotic figures in
order to capture contextual information. Spatial pooling was
employed by some methods (DTU, POLYTECH/UCLAN) to capture
information about structures in different regions of the candidate
objects.
ndividual F1-scores, every subject was considered a separate dataset.

7 8a 9 10 11 Average F1-score

.00 0 .46 .60 .64 0.445

.00 0 .35 .61 .68 0.352

.00 3 .09 .38 .34 0.302

.00 1 .16 .26 .46 0.226

.00 0 .10 .30 .33 0.213

.00 0 .07 .38 .33 0.208

.00 2 .14 .19 .38 0.205

.00 1 .07 .32 .34 0.203

.00 0 .04 .30 .39 0.148

.00 54 .09 .08 .18 0.099

.02 29 .01 .05 .21 0.068

is case, the number of false positives is given in the table. This subject was excluded



Fig. 3. Results from the re-annotation of the false positives. (A) Proportion of the false positives from the IDSIA and DTU methods that were re-annotated as mitoses and non-
mitoses. (B) Proportion of the entire set of detections from the IDSIA and DTU methods that were re-annotated as mitoses and non-mitoses. The re-annotation of the ground
truth is also given for comparison.

Fig. 4. Scatter plots for the estimated and ground truth number of mitoses per HPF for the first five methods with highest overall F1-score.

Fig. 5. Examples of the most commonly detected and missed mitotic figures. (A) Mitotic figures that were detected by most (at least ten) of the proposed methods. (B) Mitotic
figures that were not detected by any of the proposed methods.
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A variety of different generic color, texture and shape features,
with emphasis on rotational invariance, was employed by the dif-
ferent methods. The CCIPD/MINDLAB method used a combination
of classification based on handcrafted features and a feature learn-
ing method (convolutional neural networks), and SHEFFIELD/SUR-
REY models the set of observations with manifold learning.

For classification, RBF SVMs (DTU, SURREY, MINES) and random
forests (CCIPD/MINDLAB, PANASONIC, POLYTEC/UCLAN) were the
most commonly used classifiers, with some methods employing
different boosting techniques (ISIK, WARWICK, NTUST). The prob-
lem of class imbalance was addressed by subsampling of the dom-
inant negative class or oversampling of the class of mitotic figures.

The IDSIA and NTUST methods did not perform candidate
extraction, but instead, evaluated the detector for every pixel
location. IDSIA used a very efficient implementation of deep convo-
lutional neural networks to obtain a mitosis probability map for
each image, from which mitoses were detected by non-maxima
suppression.

6.2. Performance of the proposed methods

The best performing method according to all evaluation mea-
sures was IDSIA. The overall F1-score of this method was compara-
ble to the inter-observer agreement among pathologists. The DTU
method also achieved solid performance according to the overall
and average F1-scores. The performance of these two methods
was notably better than that of the remaining methods. The anal-
ysis of the PR curves (Fig. 2) indicated that this is not related to the
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choice of the operating point of the detectors (the points indicating
the performance of the other methods are in the interior of the
areas spanned by the curves).

The majority of the false positives produced by the methods
with lower performance were dark objects that lack other charac-
teristics of mitotic figures such as protrusions around the edges. On
the other hand, many of the mitotic figures that had less intensive
staining were not correctly detected. This can be either explained
by the fact that the texture and shape features used lack discrimi-
native ability and do not capture these fine structural details or by
the fact that the mitotic figures with less intensive staining were
underrepresented in the training set. Examples of the most
commonly detected and missed mitotic figures are given in Fig. 5.

The results from the re-annotation experiment indicate that a
large portion of the ‘‘false positives’’ from the IDSIA method can
in fact be considered true mitotic figures (Fig. 3A). They may have
been missed during the ground truth annotation because of the
intricacy of the task and the observer variability. In addition, the
distribution of the assigned labels during the re-annotation of
the original ground truth set and of the set of detections from this
method was very similar (Fig. 3B).

Good correlation between the ground truth and estimated num-
ber of mitoses per HPF was achieved even for some proposed
methods that have lower overall and average F1-scores (Fig. 4). This
indicates that estimation of the mitotic activity index or the
mitotic activity grade might be possible with lower object-level
detection performance or even from global image features. This
represents an interesting subject for future research. It should be
also pointed out that the number of mitoses per HPF does not
correspond to the estimated MAI of the outlined regions in the
slides because empty HPFs were removed when forming the
challenge data set.

Experiments with combining the results from the different
methods by majority voting or intersection of the better perform-
ing methods did not show improved results over the best individ-
ual method. One of the conclusions of the discussion during the
challenge workshop was that the variation in the staining appear-
ance is one of the major obstacles for mitosis detection. After the
workshops, attempts to improve the IDSIA and DTU methods
were made by incorporating explicit staining normalizations that
showed promising results. However, due to the preliminary nature
of the experiments we chose not to include the results here.

This challenge was focused on evaluating the detection
performance; the running times of the algorithms were not evalu-
ated. However, that is a consideration that needs to be made for a
potential practical application of the proposed approaches. The
best performing method from IDSIA has training time of approxi-
mately 3 days per one deep convolutional neural network with
an optimized GPU implementation, or approximately 9 days in
total for the 3 neural networks that were used in combination.
The testing time for one HPF is approximately 31 s per variation,
which sums to less than 13 min. for all 24 variations (3 neural net-
works with 8 rotation/mirroring combinations). This implementa-
tion does not exploit parallel processing but uses the fast scanning
approach detailed in (Giusti et al. 2013). The authors of the DTU
method have reported that the training time of the detection algo-
rithm is 1.5 h on a standard desktop PC with using a naïve Python
implementation. The testing of one HPF takes approximately 30 s.

Considering that a single slide can consist of thousands of HPFs,
further improvement of the testing times for these methods is
needed. When evaluating whole slides, a considerable reduction
of the running time can potentially be made by using region of
interest detectors as a preprocessing step. This can help quickly
eliminate areas of the tissue where mitosis detection should
not be performed (for example, areas that do not contain tumor
tissue).
6.3. Performance on individual cases

The worst performance in terms of the F1-score was achieved
for cases #1 and #7. They both have very low mitotic activity,
and the few ground truth mitoses have atypical appearance (lack
of hyperchromacity). The methods that have good overall perfor-
mance produce a very low number of false positives for these
two subjects, suggesting that they would produce a low mitotic
activity estimate.

Another case for which very poor performance was achieved is
#2. Note that for this case there was large discrepancy between the
numbers of objects indicated as mitoses by the two independent
observers (Table 1). This indicates that there is an intrinsic diffi-
culty in identifying mitotic figures in this particular case. Case #9
contained many dark nuclei that are not mitotic figures, thus the
methods that extensively rely on the staining intensity as a feature
had very low performance for this case.

The best performance was achieved for case #6 that had very
high mitotic activity and most of the hyperchromatic objects
indeed represented mitotic figures.
6.4. Feasibility of mitosis counting on whole slide images

Digital slides are still not widely accepted as primary diagnostic
modality pending validation studies, with the main concern being
the image quality and lack of fine focusing ability (Al-Janabi et al.,
2012). In the context of breast cancer histopathology grading, the
image quality of whole slide images is principally sufficient for
the scoring of nuclear atypia and tubule formation, which together
with mitosis counting constitute the commonly used modified
Bloom–Richardson (Elston and Ellis, 1991) grading system. How-
ever, the task of mitosis counting is a more delicate one. Detailed
examination is required to distinguish mitoses from other mito-
sis-like objects, which requires the use of fine focusing on the con-
ventional microscope. This feature is missing in whole slide images
captured with a single focal plane. Although whole slide imaging
scanners that support slide digitization at multiple focal planes
are becoming increasingly available, the use of this feature is still
rather limited due to the increased scanning time and storage
requirements. Taking this into account, there is a possibility of dis-
crepancy between the mitotic activity as estimated by light
microscopy and on unifocal whole slide images.

This challenge compared the performance of human experts
and computer algorithms on digital slides. It should be emphasized
that both the automatic algorithms and the expert observers
worked with the same input. The patient and slide selection was
done in a way that captures the intra-laboratory variability of the
tissue preparation. However, it is likely that the inter-laboratory
variability is greater due to different suppliers of reagents, staining
protocols and scanners. One possible extension of this challenge is
inclusion of data from multiple centers.

At the time when we started the work on annotating the chal-
lenge data set, studies that examined the feasibility of mitosis
counting on digital slides were lacking. The qualitative impression
of pathologists that we interviewed was that the image quality of
digital slides imaged at 40� magnification and a single focal plane
is sufficient for mitosis counting in most cases, but for some
instances it can be difficult to make a firm decision if an object rep-
resents mitosis without the possibility to fine tune the focus. We
performed a small scale internal validation study and concluded
that there is generally a good correlation between the assessment
of the mitotic activity index by light microscopy and on whole slide
images (Stathonikos et al., 2013). In a recent larger study involving
multiple observers and a large number of subjects it was found
that the scoring of mitotic activity on whole slide images is as
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reliable as on conventional glass slides viewed under a microscope
(Al-Janabi et al., 2013).

As an alternative to expert annotation, we are currently investi-
gating the use of Phosphohistone H3 (PPH3) labeling of mitotic fig-
ures to produce ground truth mitotic figure locations in a more
objective manner. These ground truth locations can then be regis-
tered to conventionally stained H&E slides. The initial results look
promising, but we are still optimizing the procedure.

7. Conclusions

In this paper, we summarized the proposed methods and
results from a challenge workshop on mitosis detection in breast
cancer histopathology images. The challenge data set consisted of
12 subjects for training and 11 for testing, both with more than
500 annotated mitotic figures by multiple observers. In total 14
teams submitted methods for evaluation, 11 of which are
described in this paper. The best performing method achieved an
accuracy that is in the order of inter-observer variability.

Our intention is for this challenge to be ongoing with incremen-
tal extensions of the training and testing data sets. By keeping the
challenge website (http://amida13.isi.uu.nl) open for new submis-
sions, we hope to keep a record of the state of the art of mitosis
detection in breast cancer histopathology images.
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