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Abstract: Optimization problems often require the use of optimization methods that permit the minimization or 

maximization of certain objective functions. Occasionally, the problems that must be optimized are not linear or 

polynomial; they cannot be precisely resolved, and they must be approximated. In these cases, it is necessary to 

apply heuristics, which are able to resolve these kinds of problems. Some algorithms linearize the restrictions and 

objective functions at a specific point of the space by applying derivatives and partial derivatives for some cases, 

while in other cases evolutionary algorithms are used to approximate the solution. This work proposes the use of 

artificial neural networks to approximate the objective function in optimization problems to make it possible to ap-

ply other techniques to resolve the problem. The objective function is approximated by a non-linear regression that 

can be used to resolve an optimization problem. The derivate of the new objective function should be polynomial so 

that the solution of the optimization problem can be calculated.  

Keywords: neural networks, optimization problems, non-linear optimization. 

1 Introduction 

Optimization problems are an important part of soft computing, and have been applied to differ-

ent fields such as smart grids [1], logistics [2] [3], resources [4] or sensor networks [5]. Such 

problems are characterized by the presence of one or more objective maximizing or minimizing 
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functions [5] and various restrictions that must be met so that the solution is valid. The problems 

are easy to resolve when we are working with linear restrictions and objective functions because 

there are methods to obtain the optimal solution. However, in the case of non-linear restrictions 

or objective functions, it may be necessary to use heuristics [2] [5] to obtain a pseudo-optimal 

solution. The management of heuristic solutions is continually evolving, which is precisely why 

we are looking for alternatives to problems in which it is not feasible to find an optimal solution.  

When working with linear restrictions and objective functions, optimization problems can be 

resolved with algorithms such as the Simplex [6], which limits the study of this type of problem. 

Certain non-linear problems can be optimally resolved by using algorithms such as Lagrange 

multipliers or Kuhn–Tucker conditions [7]. In many cases, it is not possible to resolve a problem 

with Lagrange multipliers because the generated system of equations cannot be resolved without 

resorting to numerical methods, which would prevent a direct approach to resolving the problem.  

In other cases, the Kuhn-Tucker conditions are not met. There is a broad range of opportunities 

to study optimization problems that cannot be solved with an exact algorithm.  These problems 

are usually solved by applying a heuristics and metaheuristics solution such as genetic algo-

rithms [8], particle swarm optimization [9], Simulated annealing [10], ant colony optimization 

[12] etc. 

This work proposes the use of neural networks such as heuristics to resolve optimization prob-

lems in those cases where the use of linear programming or Lagrange multipliers is not feasible. 

To resolve these problems a multilayer perceptron is applied to approximate the objective func-

tions; the same process could be followed in the restrictions. The proposal establishes the activa-

tion function to be used and the criteria to conduct the training using a dataset according to the 
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defined domain of the variables. This process makes it possible to transform objective functions 

into other functions, which can then be applied to resolve optimization problems that can be re-

solved without metaheuristics. The objective function is approximated with a non-linear regres-

sion with the objective to obtain a new function that facilitates the solution of the optimization 

problem. The activation function of the neural network must be selected so that the derivate of 

the transformed objective functions should be polynomial. Once the new objective functions has 

been calculated the problem can be resolved with other techniques. The same process can be 

applied to non-equality restrictions, but it is necessary to introduce gaps to satisfy the re-

strictions. 

This paper is organized as follows: Section 2 revises related works, Section 3 describes the pro-

posal, and finally Section 4 shows the results and conclusions obtained. 

 

2 Heuristics applied to optimization 

On certain occasions, optimization problems cannot be solved by applying methods such as Sim-

plex or Lagrange. Methods such as Simplex are applicable only when problems are linear, so the 

algorithm cannot be properly applied when the objective function or constraints are nonlinear. 

Lagrange makes it possible to resolve optimization problems even when problems are not linear, 

but it is not always possible to resolve the equations after applying Lagrange. When exact algo-

rithms do not allow obtaining an optimal solution, it is necessary to apply heuristics and me-

taheuristics algorithms. Some heuristics, such as ant colony optimization, are oriented to resolve 

optimization problems in graphs [13], although they can be applied in other optimization fields 
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such as control processes [14]. The authors in this study [14] applied fuzzy logic in a nonlinear 

process to improve the efficiency in the learning process with regard to execution time. Other 

alternatives such as Simulated annealing or PSO (Particle Swarm Optimization) are commonly 

applied in optimization functions. In general, several evolutional algorithms can be applied to 

resolve optimization problems, as seen in various studies [9][14]. 

In mathematics, there are heuristics methods that work with approximation functions. Approxi-

mation functions are usually defined around a point, which would make it possible to use poly-

nomials to approximate functions by applying the Taylor theorem. Based on this idea, it would 

be possible to solve non-linear optimization problems by applying Taylor nonlinear functions. 

This idea has been applied in algorithms such as Frank-Wolfe[15], which allows linearizing ob-

jective functions by applying derivatives in a point to calculate the straight line, plane or hyper-

plane crosses through that point. The solutions are calculated iteratively with a new hyperplane 

for each iteration. MAP (Method of Approximation Programming) is a generalization of the 

Frank-Wolfe algorithm, which permits linearizing the restrictions.  

This work proposes carrying out this approximation in a more generic manner, making it possi-

ble to solve the problem without needing to calculate a new approximation for each tentative 

solution. We propose to do so by applying neural networks.  

 

3 Proposal 

Komogorov’s theorem says that a multilayer perceptron with 3 layers makes it possible to pre-

cisely define any continuous function. However, for the approximation to be exact, it is neces-
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sary to define an activation function and parameters for which there are no calculation proce-

dures. It is not possible to apply just any activation function, because we must take into account 

the objective of the functions to simplify the problem.  

The proposal to solve an optimization problem is explained in figure 1. The system generates a 

dataset in the domain of the variables to train a neural network. The objective function of the 

optimization problem is redefined with the multilayer perceptron that transforms the function, 

making it possible to generate a polynomial equation to resolve the optimization problem. Final-

ly, when the new objective function is calculated another solution can be applied to resolve the 

problem. 

 

Fig. 1 Workflow optimization problem 

 

To define a neural network, it is necessary to establish parameters, such as the connections, 

number of layers, activation functions, propagation rules etc. In the case of the multilayer per-
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ceptron, we need to consider its two different stages: the learning stage, and the prediction pro-

cess. In both stages, the number of layers and activation functions have to be the same. In the 

prediction stage, other parameters such as the learning rate or the momentum are not relevant.  

In the case of the multilayer perceptron, the propagation rule is the weighted sum, and it is de-

fined according to (1). 




n

i

iij txw
1

)(  
(1)   

Where wij is the weight that connects neuron i in the input layer with neuron j in the hidden layer, 

xi is the output from neuron i in the input layer, n is the number of neurons in the input layers, 

and t is the pattern. 

In case of having bias in the neuron, the result would be what is shown in (2). 





n

i

jiij txw
1

)(   
(2)   

After calculating the propagation rules, we should apply the activation function. If the activation 

function is linear, we would have an output of neuron j that would be a linear combination of the 

neurons in the input layer and, consequently, yj would be a linear function. Therefore, if the acti-

vation function is the identity, the net output would correspond to the output of the neuron. 

So, if neuron k in the output layer also has the activation function f, the output would be defined 

as  (3). 

))(()(
1





n

i

jiijj txwfty   
(3)   
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Bearing in mind that the multilayer perceptron has three layers, it is necessary to apply the prop-

agation rule on two occasions in order to transmit the value in the input layer to the neuros in the 

output layer (4). 





m

j

kijkk tywty
1

)()(   
(4)   

Where k represents neuron k in the output layer, and m is the number of neurons in the hidden 

layer. 

Replacing (4) with (3)  we would have the output in neuron k defined according to the equation 

represented in (5). 

 
 


m

j

k

n

i

jiijjkk txwfwty
1 1

))(()(   
(5)   

In the function defined in (5), if f is the identity, the output in neuron k from the ouput layer is 

calculated as a linear combination of the inputs, so the function is linear.  

As a result, if we train the multilayer perceptron with an identity activation function, it would be 

possible to make an approximation of the trained function. Given an optimization problem in 

which the objective function is not linear, it would then be possible to redefine the function ac-

cording to the expression (5) so that it would be linear. Although we have defined approximation 

functions, we were not able to prevent them from becoming hyperplane, so the activation func-

tion f cannot be linear. In this case, we have selected the arctan activation function because its 

derivative is simple and makes it possible to simply functions. For example, a trigonometric or 

exponential objective function to polynomial objective function can be solved with Lagrange. 
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The arctan activation function is shown in figure 2a. We can see that it is similar to the sigmoidal 

function in figure 2b; as such, the training of the neuronal network should be similar with both 

activation functions.  

   

Fig. 2 a) arctan activation function, b) sigmoidal 

The sigmoidal function is commonly used in neural networks; however, we used arctan because 

the equation of the derivative is simpler than the expression of the sigmoidal. Although the func-

tions are similar, as we can see in figure 3a and 3b, the equation of the derivative of arctan is 

shown in equation (6), and the equation of the derivative of sigmoidal is shown in (7). 

21

'
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
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(6)   
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Fig. 3 Derivate of a) arctan activation function, b) sigmoidal 

Then, if we have to solve an optimization problem defined (in) (8)  
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Where ri is the constraint and f the objective function.  

We could approximate the objective function with the neural network defined in (5) 
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 (9)   

Therefore, the following optimization problem could be solved with Kuhn-Tucker, applying the 

equation 
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With Lagrange the idea would be similar, given the optimization problem defined by (11) 
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 The optimization problem would be solved according to  
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(12)   

According to expression (10) and (12), we can see that it is very important to use an activation 

function to simplify its derivative and calculate the solution more easily.  

Likewise, we could continue with the constraints; however, when working with equal con-

straints, it would be more complicated to apply this heuristic. For restrictions with inequality, it 

is possible to introduce a threshold based on the training carried out in the neural network. For 

the threshold to be lower, it would be best to have previously trained the neural network with 
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values in the variables around their definition. In other words, in a problem with restrictions sim-

ilar to (13) we should generate a dataset for the training phase that matches the restrictions for 

the variable xi. The lower the difference among consecutives values, the lower the error to define 

the threshold. 

ii

ii

iii

bx
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bxa







 

(13)   

Therefore the restrictions defined according to (14) through the inclusion of threshold and based 

on the expression (5) , will be defined as (15) 
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Finally, the optimization problem defined as (8) would be defined according the expression (16) 
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As an alternative to the use of neural networks, it would also be possible to use other techniques 

to aproximate functions, such as applying Support Vector Regression (SVR). SVR can 

aproximate functions as a linear combination in a space with higher dimesions than the original.  

5. Results and conclusions 

In order to analyze the performance of the proposal, we analyzed different optimization problems 

and compared the predicted and optimal values in the system. The tests were made with a neural 

networks tool developed by our research group and the Mathematica program. Mathematica was 

used to solve the equations after defining the approximation with a multilayer perceptron. The 

dataset used to train the neural network is generated according to the domain of the variables. It 

contains the input variables in the objective function and the output in the objective function ob-

tained for these values. The domain of the variables is defined in the constraints of the optimiza-

tion problem.  

The first test was to analyze the performance of the system with a simple optimization problem. 

It was a linear function that was approximated with a multilayer perceptron, which activates 

functions in the hidden and output linear layers.  
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The result is x=30, y=0 and the value of the objective function is 450 when we replace the objec-

tive function yx 1015   by the approximated function with the neural network shown in figure 

4a. The result of the objective function is 444.406 and the value of x=30 and y=0. This result was 

obtained in a quick training of the neural network; therefore, it could be easily improved. If we 

applied PSO to resolve the optimization problem the results for the variable x=29.98 and y=0. 

The objective function was 449.84, a better result than that provided by the proposal; however, 

as we said, it was only to test the system with a fast training of the neural network.  

The second test was to analyze the prediction with two variables and with non-linear objective 

functions.  
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 (18)   

The optimal value of the objective function with Nelder Mead was 0.039936, and the values of 

the variables are x1=0.8, x2=0.200009, the constraint 1 is not valid with this solutions. The opti-

mal value of the objective function with Differential Evolution was 0.0015949, and the values of 

the variables are x1=0.64, x2=0.200008; the constraint 1 is not valid with this solutions. The solu-
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tion obtained with the neural network shown in figure 4b is 0.039936, x1=0.8, x2=0.2. The neural 

network had two input layers, 11 neuros in the hidden layer an arctan activation function, and 

one output with the value of the objective function. The learning rate was defined as 0.01, and 

momentum as 0.001. The neural network was trained manually and the training was stopped 

when the error remained constant. The result obtained with PSO was 0.035, x1= 0.46 and x2= 

0.3. In this case, the better result was obtained by the proposal.  

 

Fig. 4 Neural network a) linear approximation b) non-linear approximation 

In this example, we selected a trigonometric objective function, similar to that in (19). The result 

with Nelder Mead was 0.998673, x1=0.249963, x2=-0.250028, the solution did not match with 

the first constraints. The result with Differential Evolution was 0.998673, x1=0.249963, x2=-

0.250028, the solution did not match with the first constraints. We have obtained the RNA the 

result was 0.998569, x1= 0.255127, x2=-0.244873. We can see the original function in figure 5a 
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and the approximation in figure 5b. It is evident that the approximation is quite good. The neural 

network had two input layers, 17 neurons in the hidden layer, an arctan activation function, and 

one output with the value of the objective function. The learning rate was defined as 0.01, and 

momentum as 0.001. The neural network was trained manually and the training was stopped 

when the error remained constant. The result obtained with PSO was 1.00004 and the variables 

were x1=0.100, x2=-0.100.  In this case the better result was obtained by the PSO algorithm. 
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Fig. 5 a) Original function b) approximated function. 
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As we can see in the results, the system is able to approximate objective functions with a multi-

layer perceptron and use these approximations to solve optimization problems. In some cases, 

metaheuristics are not able to provide a solution that matches the restriction, although the solu-

tion calculated with the new objective function did match. The main disadvantage of the pro-

posal is that it is necessary to train the neural network and it is necessary to use Lagrange or 

Kuhn-Tucker with the neural network; this makes it impossible to use any activation function, 

such as a sigmoidal. The proposal uses an arctan activation function because its derivative is pol-

ynomial, which makes it possible to solve the generated equation system with Lagrange or 

Kuhn-Tucker. The main problem of the proposal is that when we approximate equality con-

straints we will have to deal with small errors and the solution will not be valid; in other kinds of 

restrictions we can introduce a threshold in order to obtain valid solutions. 
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