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Adaptive motion control of wheeled mobile robot with unknown slippage
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As a major representative nonholonomic system, wheeled mobile robot (WMR) is often used to travel across off-road
environments that could be unstructured environments. Slippage often occurs when WMR moves in slopes or uneven terrain,
and the slippage generates large accumulated position errors in the vehicle, compared with conventional wheeled mobile
robots. An estimation of the wheel slip ratio is essential to improve the accuracy of locomotion control. In this paper, we
propose an improved adaptive controller to allow WMR to track the desired trajectory under unknown longitudinal slip,
where the stabilisation of the closed-loop tracking system is guaranteed by the Lyapunov theory. All system states use
neural network online weight tuning algorithms, which ensure small tracking errors and no loss of stability in robot motion
with bounded input signals. We demonstrate superior tracking results using the proposed control method in various Matlab
simulations.

Keywords: nonholonomic systems; wheeled mobile robot (WMR); radial basis function (RBF); neural networks (NN); slip
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1. Introduction

In the past decades, several researchers have investigated
the problem of controlling nonholonomic systems. As a
major representative nonholonomic system, the wheeled
mobile robot (WMR) has attracted considerable attention.
Most control methods for WMR are based on this assump-
tion that the wheels roll without slipping.

Under this assumption, many modern control theories
and algorithms have been proposed for the motion control
of WMR. A classical stable control scheme was proposed
(Kanayama, Kimura, Miyazaki, & Noguchi, 1990) to com-
pute the vehicle control inputs for an autonomous mobile
robot under the assumption of perfect velocity tracking.
This kind of control method solved the nonholonomic track-
ing problems based on over-simplified models in the initial
periods of their development by neglecting the vehicle dy-
namics and thus considering only the steering system, or
considering a known mathematical model of dynamical sys-
tems. Thereby, many robust nonlinear and adaptive control
methods (Ge, Wang, Lee, & Zhou, 2001; Li & Xu, 2009;
Li, Li, & Kang, 2010) were designed to control the motion
of mobile robots, these control performances are often de-
graded by modelling errors, information feedback errors,
and external disturbances. However, there still exist some
sorts of uncertainties in the dynamics of nonholonomic sys-
tems or environmental information, and their influences are
very important in practice. This means that we need a more
intelligent controller to solve these problems.
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Fully autonomous WMR control systems need to cope
with dynamical robot uncertainties, unmodelled or unstruc-
tured disturbances, and nonlinear friction. But, it is difficult
to obtain an accurate mathematical model for applying com-
puted torque controllers or other model-based controllers in
practice. Following the neural network (NN) development,
the neural network-based control of mobile robots has been
the subject of intense research in recent years (Fierro &
Lewis, 1998; Jolly, Kumar, & Vijayakumar, 2009; Sun, Pei,
Pan, & Zhang, 2013; Wang, Ge, Lee, & Lai, 2006). These
researches had produced new methods for solving the main
difficulties. A neural network-based model that combined
the backstepping technique with a torque controller was
presented by Fierro and Lewis (1998), and this algorithm
was based on the application of multi-layered BP neural net-
works. The tracking control using an adaptive smart neural
network for WMR was investigated (Wang et al. 2006), and
it produced fine motion control based on partially unknown
dynamics. Sun et al. (2013) proposed a robust adaptive
NN control for the nonholonomic mobile robot to track
the desired environmental boundary. These control meth-
ods stated above are designed under the constraint of pure
roll and no slip.

However, we know the applications of WMR usually
require them to travel across off-road environments in task,
such that some phenomena as slippage or sliding always
exists between the wheels and ground, which cause rolling
of wheels, are not perfect (Wong, 2001). When a WMR
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moves on uneven terrain or slopes, the slippage will gen-
erate large numbers of accumulate position errors in the
vehicle compared with conventional WMR (Ding et al.,
2011). Therefore, the tracking control of mobile robot will
be considerably influenced by the condition of terrain (Ray,
Brande, & Lever, 2009). In order to solve this problem,
we propose an approach based on the estimation of each
wheel’s quantitative slip, and incorporate the slip ratio pa-
rameters into the kinematic model of the WMR. Many re-
searches have addressed the slip phenomenon in the WMR
(Endo, Okada, Nagatani, & Yoshida, 2007; Moosavian &
Kalantari, 2008). The slip ratios of all wheels could be esti-
mated by an experimental study (Ding, Gao, Deng, & Liu,
2010; Iossaqui, Camino, & Zampieri, 2010). These meth-
ods proved useful for estimating the slip ratios of wheels.

In this paper, we propose an effective adaptive mo-
tion tracking control method based on NN and slip-
compensation for WMR systems. The control objective is
to track a specified motion trajectory under the slip oc-
currence. We calculate the wheel-slips, and develop the
proposed control method using NN to model the system dy-
namics and nonlinearities. The radial basis function (RBF)
of neural networks is well suited to uncertain or nonlinear
functions because of its rapid online learning ability and
nonlinear characteristics. We use the control approach to
overcome unknown system parameters and slippage in the
WMR system, and to find a suitable control input that sta-
bilises the closed-loop system. This controller guarantees
perfect velocity tracking and the posture error converges
to minimum. The proposed control method facilitates pre-
cise motion tracking performance, which was demonstrated
using the Matlab simulation.

The remainder of this paper is organised as follows.
The basics of nonholonomic system and slip ratios, and
RBF neural networks are introduced in Section 2. Section 3
discusses the adaptive control method combined with neural
networks and slip-compensation, and Section 4 covers the
stability analysis. The Matlab simulation is presented in
Section 5. Finally, Section 6 concludes the paper.

2. Problem formulation

2.1 A nonholonomic WMR model

A mobile robot system in an n-dimensional configuration
space C with the generalised coordinates (q1, . . . ,qn) that
is subject to m constraints can be described by Fierro and
Lewis (1998):

M(q)q̈ + V (q, q̇)q̇ + F(q̇) + G(q) + τ d

= B(q)τ − AT(q)λ, (1)

where M ∈ Rn×n is a symmetric, positive definite iner-
tia matrix, V ∈ Rn×n denotes the centripetal and coriolis
forces, F ∈ Rn×1 denotes the surface friction, G ∈ Rn×1

Figure 1. A nonholonomic wheeled mobile robot.

is gravitational torques (or forces), τ d ∈ Rn×1 denotes
bounded unknown disturbances, including unstructured un-
modelled dynamics, B ∈ Rn×r is the input transformation
matrix, τ d ∈ Rr×1 is the input vector of forces and torques
supplied by actuators, A ∈ Rm×n is the matrix associated
with the constraints, and λ ∈ Rm×1 is the vector of con-
straint forces.

In this paper, we use four-wheeled mobile robot as an
example. The mobile robot shown in Figure 1 is a typical
example of a nonholonomic mechanical system, and skid-
steered autonomous WMR. The motion and orientation are
controlled by independent actuators, i.e., DC motors pro-
vide the necessary torque to the wheels. The position of the
robot in an inertial Cartesian frame {O, X, Y} is completely
specified by the vector, where xc, yc are the coordinates of
the centre C of the mass and {C, Xc, Yc} is the local coor-
dinate with an origin of (xc, yc) with respect to the inertial
basis. Due to the symmetrical property of the platform, we
assume C is also the geometrical centre.

The nonholonomic constraint states that the robot can
only move in a direction normal to the axis of the driving
wheels. Previous studies always assumed that the system
is subject to a ‘pure rolling without slipping’ constraint
(Fierro & Lewis, 1998):

ẏc cos θ − ẋc sin θ = 0.

We consider that all kinematics equality constraints are
independent of time and they can be expressed as follows:

A(q)q̇ = 0. (2)

Let S(q) be a full rank matrix, formed by a set of smooth
and linear independent vector fields spanning the null space
of A(q):

A(q)S(q) = 0. (3)
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According to (2) and (3), it is possible to find an auxiliary
vector time function v(t) ∈ R2 such that for all t

q̇ = S(q)v(t). (4)

It follows that S(q) can be given by:

S(q) =

⎡
⎢⎣

cos θ 0

sin θ 0

0 1

⎤
⎥⎦ . (5)

Under such a constraint condition, the vehicle is described
by the following kinematic model:

q̇ =

⎡
⎢⎣

ẋc

ẏc

θ

⎤
⎥⎦ =

⎡
⎢⎣

cos θ 0

sin θ 0

0 1

⎤
⎥⎦

[
v

ω

]
, (6)

where v = [v ω]T, v and ω are the displacement/linear
and the angular velocities of the mass centre of the vehicle
body, respectively. In addition, |v| ≤ vmax and |ω| ≤ ωmax,
vmax and ωmax are the maximum linear and angular veloci-
ties of the mobile robot.

However, when tangential slippage occurs between the
wheels and the ground we can rewrite v and ω to reflect the
effects of the slippage:

v = vR(1 − s1) + vL(1 − s2)

2
, (7)

ω = vR(1 − s1) − vL(1 − s2)

2L
, (8)

[
v

ω

]
= 1

2

⎡
⎣1 − s1 1 − s2

1 − s1

L

1 − s2

−L

⎤
⎦[

vR

vL

]
, (9)

where vector υ = [vRvL]T, vR and vL are the driving veloc-
ities of the right and left wheels, respectively, which can be
measured by encoders. 2L is the right- and left-wheel tread,
and s1 and s2 denote the slip ratios defined as follows:

s1 = vR − v′
R

vR

, s2 = vL − v′
L

vL

, (10)

where v′
R and v′

L are the factual/current velocity of the
right and left wheels, respectively, while s1 and s2 are the
slip ratios of the right and left wheels, respectively. If no
slippage occurs, the current velocity is equal to the driving
velocity (v′

R = vR, v′
L = vL), and slip ratios s1 = s2 = 0.

Substituting (9) into (6), we can rewrite the kinematic
equation by

q̇ =

⎡
⎢⎣

ẋc

ẏc

θ̇

⎤
⎥⎦ = 1

2

⎡
⎢⎣

(1 − s1)cθ

(1 − s1)sθ

1 − s1/L

(1 − s2)cθ

(1 − s2)sθ

1 − s2/L

⎤
⎥⎦

[
vR

vL

]
,

(11)
where cθ = cos θ , sθ = sin θ ,

S̄ = 1

2

⎡
⎣ (1 − s1)cθ

(1 − s1)sθ
1 − s1/L

(1 − s2)cθ
(1 − s2)sθ
1 − s2/L

⎤
⎦ . (12)

According to (11), we can obtain the slip ratios of the right
and left wheels as follows:

s1 = 1 − ẋc + θ̇Lcθ

vRcθ
, s2 = 1 − ẋc − θ̇Lcθ

vLcθ
. (13)

Slip ratios are determined by physical interactions between
the wheels and the ground; however, in general, the aspects
of wheel-terrain interaction that are needed for accurate
models are neither well known nor easily measurable in
realistic situations. Therefore, we assume that the current
angular velocity of the vehicle body, ω, can be directly mea-
sured by a gyro-sensor. The driving velocities of wheels, vR

and vL can be detected by using encoders. Then, odometry
can be implemented with consideration of the slip, to detect
slip ratios of both wheels using model (13), quantitatively.

2.2 Structural properties of a mobile robot

The dynamics of system (1) is now transformed into a
more appropriate representation for control purposes. Using
Equation (12), the dynamics Equation (1) can be rewritten
by (Fierro & Lewis, 1998):

q̇ = S̄(q)υ(t)

M̄(q)υ̇ + V̄ (q, q̇)υ + F̄(υ) + Ḡ(υ) + τ̄ d = τ̄ ,

(14)

where M̄ = S̄
T

M S̄, V̄ = S̄
T
(M ˙̄S + V S̄), F̄ = S̄

T
F, Ḡ =

S̄
T

G, τ̄ d = S̄
T
τ d , τ̄ = S̄

T
Bτand ‖τ̄ d‖ ≤ bd with bd as an

upper bound of system disturbances.

Property 1: M̄ is a symmetric positive definite, and the

matrix ˙̄M − 2V̄ is skew-symmetric (Fierro & Lewis, 1998):
i.e.,

xT( ˙̄M − 2V̄ )x = 0,∀x 	= 0.
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1516 H. Gao et al.

Figure 2. Structure of RBF neural network

2.3 RBF neural networks

Many different models of neural networks have been estab-
lished (Er & Gao, 2003; Jung & Yum, 2011; Li & Yang,
2012; Liaw, Farrell, & Schaal, 2009; Theodoridis, Boutalis,
& Christodoulou, 2011) for specific objectives. Of these
models, we find the RBF neural network is well suited to
modelling uncertain or nonlinear functions. A typical RBF
neural network is shown in Figure 2. It is a two-layer net-
work composed of a hidden layer and an output layer. Using
this simple structure, the RBF neural network facilitates a
more effective weight updating procedure compared with
other, more complex multilayer networks.

A schematic for the RBF network is illustrated in
Figure 2. In this paper, the Gaussian type function is con-
sidered as

φi(θ) = exp

[
− 1

2σ 2
i

‖θ − μi‖2

]
, (15)

where μi , σi are the centre and width of the ith neuron, i =
1, . . . , L in (15). The activation of a neuron in the output
layer is determined by a linear combination of the fixed
nonlinear basis functions, i.e.

g(θ ) =
m∑

i=1

wiφi(θ ),

where wi are the adjustable weights that link the output
nodes with the appropriate hidden neurons. These weights
in the output layer can be learnt using the least-squares
method.

In this study, the RBF neural network is employed for
nonlinear function approximation. We assume a special case
of the linear regression model as follows:

g(θ) = Wφ(θ ) + ε(θ ), (16)

W = [w0, w1, . . . , wL] ,

φ(θ) = [1, φ1(θ), . . . , φL(θ)]T , (17)

where θ ∈ Rp is the input vector, W ∈ RL+1 contains the
ideal threshold w0, and weights w1 · · · wL of the neural net-
work, φ(θ) ∈ R(L+1) is the activation vector comprising the
RBF, and ε(θ ) ∈ R is the neural network function approxi-
mation error, which is assumed to be uncorrelated with the
regressor φ(θ).

Using the neural network shown in Figure 2 with a
sufficiently large number (L) of RBF in the hidden layer
to approximate the smooth function g(θ ) described by (9),
there exists a positive number bf, such that |ε(θ )| ≤ bf ,∀θ .
Then, an approximation of g(θ ) can be given by

ĝ(θ ) = ŴTφ(θ), (18)

where Ŵ is an estimate of W.
Here, the NN is trained to match specified exemplar

pairs (θ , g(θ )), with θ the ideal training system states. The
corresponding actual output is ĝ(θ ), while the target output
is g(θ ). For RBF neural networks, a common weight tuning
algorithm is the gradient algorithm based on the backprop-
agated error (Haykin, 2009).

3. Adaptive tracking controller design

3.1 Motion tracking problem

In this control system, we use two postures: a reference
posture qr = (xr, yr , θr )T that is a goal posture of the vehi-
cle, and a current posture q = (xc, yc, θ )T that is its ‘real’
posture at any given moment. The tracking position error
vector is expressed on the basis of a frame linked to the
mobile robot (Kanayama et al., 1990) as:

em = [
xe ye θe

]T = T ee, (19)

where

T e =
⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦ , e =

⎡
⎣xr − xc

yr − yc

θr − θ

⎤
⎦ .

An auxiliary velocity control law input that achieves track-
ing for (3) is given by (Kanayama et al., 1990):

vc =
[

vr cos θe + k1xe

ωr + k2vrye + k3vr sin θe

]
(20)

where (k1, k2, k2) > 0 are the feedback gains of xe, ye, and
θ e, respectively.

However, we need to compensate for the loss of velocity
caused by wheel slippage while maintaining the desired
velocity of the WMR when we design the controller.

Therefore, according to (7), (8) and (20), based on
the estimation of slip ratios, we can recover an auxiliary
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velocity control law input υc = [v1, v2]T by

υc =
[

v1

v2

]
=

[
vc+ωcL

1−ŝ1

vc−ωcL
1−ŝ2

]
, (21)

where v1 and v2 are the auxiliary velocity control law input
of the right and left wheels, respectively; ŝ1 and ŝ2 are the
estimated slip ratios of the right and left wheels, which can
be detected by equality (13). From literature (Ding et al.,
2010), we know slip ratio is defined by s ∈ [−1, 1], when
wheels are slipping on original location and not able to
move forward/backward, in this case, slip ratio s = 1 or −1.
Therefore, for tracking object, we should assume ŝ 	= ±1.

After slip-compensation, the velocity tracking errors of
the wheels are defined as follows:

ec =
[

e1

e2

]
= υc − υ. (22)

Differentiating (22), using (14), the mobile robot dynamics
may be written in terms of the tracking errors as

M̄(q)ėc = −V̄ (q, q̇)ec − τ̄ + g(x) + τ̄ d , (23)

where the important nonlinear mobile robot function is de-
fined as

g(x) = M̄υ̇c + V̄ (q, q̇)υc + F̄(υ) + Ḡ(υ). (24)

Here, the vector x required to compute g(x) can be defined
as

x ≡ [
υT

c υ̇T
c υT

]T
. (25)

Function g(x) contains all the mobile robot parameters, such
as mass, moments of inertia, and friction coefficients. How-
ever, nonlinear function g(x) is often imperfectly known in
applications and it is difficult to determine. In this paper,
RBFNN is used to approximate it.

3.2 Adaptive NN control scheme

In this paper, the unknown system function g(x) is approx-
imated using the RBF neural network described by (15). A
major advantage is that this can always be accomplished,
due to the RBF neural network approximation property. To
consider the function g(x) given by (24), the vector in (15)
is defined as:

θ ≡ [
υT

c υ̇T
c υT

]T
. (26)

The neural network (15) for (24) is redefined as g(θ ): R6 →
R2, which is rewritten as:

g(θ ) = wTφ(θ) + ε(θ ), (27)

where w ∈ R(L+1)×2 is the vector of the ideal threshold and
their weights. The bounds for w and ε(θ ) are expressed as

‖w‖ ≤ bw and |ε(θ )| ≤ bε∀θ . (28)

Then, an estimate of g(θ ) can be given by

ĝ(θ) = ŵ
Tφ(θ ) (29)

where ŵ ∈ R(L+1)×2 is the vector of the estimated threshold
and weights.

The control law is given by

τ̄ = ĝ + K ec + lsgn(ec), (30)

where ĝ is regarded as the output torque of NN controller;
Kec is the torque controller, and, K = diag[k4, k5] is a
positive definite matrix; lsgn(ec) is a robust term to suppress
the effect of disturbance and approximate errors.

Let the NN weights be further adjusted to minimise the
velocity tracking error. The adaptive law of ŵ is designated
as:

˙̂wi = φeT
c − κ ‖ec‖ ŵi, i = 1, 2, . . . , L, (31)

where ŵ = [ŵ1 . . . ŵL], L is the number of NN hidden
layer, and learning law κ is a positive constant. The simul-
taneous updates of the adaptive law may be suitable for
non-stationary conditions or online settings.

The control law (30) can be rewritten as:

τ̄ = ŵ
Tφ(θ) + K ec + lsgn(ec) (32)

and the parameter l is defined as

l ≥ bε + bd + 1

4
κb2

w + ε, (33)

which is related to the bounds described by (28), the pa-
rameter κ in (31), and a strictly positive constant ε.

4. Stability analysis

In this section, we perform system stability analysis of
the closed-loop behaviour in the proposed control method.
Thus, we derive and analyse the closed-loop dynamics.
Substituting the control input (32) into the mobile robot
dynamics system described by (23) yields:

M̄ ėc= − (K + V̄ )ec+g̃+τ̄ d − lsgn(ec), (34)

where g̃ = g − ĝ is the function estimation error. This es-
timation error is expressed according to (27) and (29) as

g̃(θ) = w̃Tφ(θ ) + ε(θ ), (35)
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1518 H. Gao et al.

Figure 3. Structure of the proposed motion control method.

where w̃ is the vector of the threshold and weight estimation
errors, defined as

w̃ = w − ŵ.

Therefore, (33) can be written as follows:

M̄ėc= − (K + V̄ )ec+w̃Tφ(θ )
+ε(θ )+τ̄ d − lsgn(ec).

(36)

It is necessary to develop the adaptive NN control (NNC)
given in Equation (32) by considering the system stability,
so that both the position and the velocity tracking errors
converge to zero. Consider the following Lyapunov func-
tional candidate for the proposed controller:

V = V1(ec, t) + V2(em, t)

and

V1(ec, t) = 1

2
eT
c M̄ec + 1

2
[(w − ŵ)T(w − ŵ)], (37)

where matrix M̄ is a symmetric positive definite, so that
V1 ≥ 0. Differentiating Equation (37) with respect to time
as

V̇1(ec, t)

= eT
c M̄ ėc + 1

2
eT
c

˙̄Mec+tr[(w − ŵ)T ˙̂w]

= eT
c (−V̄ ec + w̃Tφ − Kec − lsgn(ec) + ε + τ̄ d )

+ 1

2
eT
c

˙̄Mec − tr
[
w̃T

(
φeT

c − κ ‖ec‖ ŵ
)]

= 1

2
eT
c ( ˙̄M − 2V̄ )ec + eT

c w̃Tφ − eT
c Kec

− leT
c sgn(ec) + eT

c (ε + τ̄ d )

− tr(w̃TφeT
c − κw̃T ‖ec‖ ‖ŵ‖)

= eT
c w̃Tφ − K ‖ec‖2 − l ‖ec‖ + eT

c (ε + τ̄ d )

− tr(eT
c w̃Tφ) + tr[κw̃ ‖ec‖ (w − w̃)]

≤ −K ‖ec‖2 − l ‖ec‖ + ‖ec‖ (ε + τ̄ d)

− κ ‖ec‖ ‖w̃‖2 + κ ‖ec‖ ‖w̃‖ bw

= −K ‖ec‖2 − l ‖ec‖ + ‖ec‖ (bε + bd )

− κ ‖ec‖ (‖w̃‖2 − ‖w̃‖ bw)

− 1

4
κb2

w ‖ec‖ + 1

4
κb2

w ‖ec‖
= −K ‖ec‖2 − l ‖ec‖ + ‖ec‖ (bε + bd )

− κ ‖ec‖ (‖w̃‖2 − ‖w̃‖ bw + 1

4
b2

w) + 1

4
κb2

w ‖ec‖

= −K ‖ec‖2 − ‖ec‖
{

l − bε − bd

+ κ

[(
‖w̃‖ − 1

2
bw

)2

− 1

4
b2

w

]}

≤ −K ‖ec‖2 − ‖ec‖
[
ε+κ

(
‖w̃‖ − 1

2
bw)2

)]
, (38)

where inequality (33) and property 2, xT( ˙̄M − 2V̄ )x = 0,

∀x 	= 0 are used, and tr[] denotes the trace of matrix (Horn
& Johnson, 1985).

With (38), V̇1 ≤ 0 is guaranteed to be negative. This
shows V1→0 and implies ec(t) → 0 and ėc(t) → 0 as
t → ∞. The tracking velocity convergence is guaranteed by
the control law (32), which implies υ → υc and υ̇ → υ̇c

as t → ∞.
We consider the other positive definite Lyapunov func-

tional candidate:

V2(em, t) = 1

2
(x2

e + y2
e ) + (1 − cos θe)/k2. (39)

Figure 4. Reference circle trajectory.
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Differentiation yields (Kanayama et al., 1990):

V̇2 (em, t) = −k1x
2
e − k3 sin2 θe/k2 ≤ 0. (40)

This shows that the tracking position convergence is guar-
anteed by the control law (32). According to (38) and (40),
we can obtain V̇ = V̇1 + V̇2 ≤ 0, so that V→0 as t → ∞.
According to the standard Lyapunov theory (Slotine & Li,

1991), both the system stability and tracking convergence
are guaranteed by the control law (32) driving the system
(14), which closely tracks the desired motion trajectories.

5. Simulation results

The slip ratio of wheel is an important state variable. When
slippage occurs between the wheels and the ground, the

Figure 5. Artificial NNC without compensation (left). Adaptive NNC with compensation (right).
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Figure 5. (Continued)

wheel velocities are influenced by the slippage, necessi-
tating the analysis using an estimated slip ratio for move-
ment control. According to the definition of the slip ratio
(Ding et al., 2010), we know that the range of slip ratios is
from −1 to 1, the change of slip ratios can resemble a sine
curve, and the slip ratios will increase with increasing slope.
Therefore, we can assume as follows.

Let the desired trajectory be a space circular ring, xr =
3 cos(t/3), yr = 3 sin(t/3), zr = −0.4 cos(2t/3), and t ∈
[0, 30]s and where the initial position is Q = (2, −1, −0.4)
(Figure 4).

The slip ratio could be considered as the time variable
function ‘0.2 sin (2t/3)’, which increases or decreases with
the slope angle of the reference trajectory.

We now demonstrate the adaptive NN control shown
in Figure 3. Here, we compare its performance with slip-
compensation and without slip-compensation when slip
exits between the wheels and the ground. Two control
performances were implemented and tested using Mat-
lab Simulink models: A. Artificial NN controller (Jolly,
Kumar, & Vijayakumar, 2009) under slippage; B. Adaptive

NN controller with slip-compensation under slippage. We
adopt vehicle parameters (Figure 1) as follows: m = 5 kg,
I = 4 kgm2, L = 0.2 m, r = 0.15 m, under the time varying
external disturbance τ d = (sin t, cos t, 1)TN, vr = 1 m/s,
ωr = 1/3rad/s. The objective is to track the trajectory such
that the errors in the position and velocity tend to zero. The
controller gains were selected so that the closed-loop sys-
tem exhibits a critical damping behaviour: k1 = 2, k2 =9,
k3 = 6, k4 = 20, k5 = 10. In the neural network, we selected
a radial basis function with Nh = 6 hidden-layer neurons
and κ = 0.35.

5.1 Artificial NN control under slippage

The response of artificial NN control (NNC) is described
under the tangential slip of the wheels, as shown (a1-g1)
in Figure 5. If we do not compensate the slippage or even
neglect the effect of slippage in velocity control, these re-
sults of the tracking trajectory present large position and
velocity error changes. Obviously, these results are not the
desired precision for tracking control.
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Figure 6. Adaptive NNC with compensation. (i1) Real slip ratio of left wheel. (i2) Real slip ratio of right wheel.

5.2 Adaptive NN control with slip-compensation
under slippage

The response of this controller is shown (a2–h2) in
Figure 5. Lost velocity has been compensated due to wheel
slippage. And it is obvious that both the posture and velocity
tracking errors converge to the smaller values. Thus, when
slippage occurred between the wheels and the ground, the
control method with slip-compensation and adaptive NNC
laws performed the better tracking effect during the motion
control. Through this comparison, we can know that slip-
compensation plays a significant role during the feedback
of estimated slip ratios. Figure 6 (i1, i2) showed that the
real slip ratios with slip-compensation is converging to
the smaller scopes than the prior designed ones based on
the terrain and trajectory.

6. Conclusion and future work

In this paper, an adaptive tracking control method has been
proposed and demonstrated via neural networks and slip-
compensation. This control scheme has been designed for
tracking the desired motion trajectory in a WMR system
under slip condition. In addition, we have developed a neu-
ral network learning procedure to enhance the performance
of the proposed control scheme, even when tracking on
uneven terrain. The stabilisation of the inner closed-loop
system has been analysed. It has been shown that the con-
vergence of the velocity and position tracking errors to
zero is guaranteed by the proposed adaptive NNC law (32)
based on slip-compensation. Even though there exist ex-
ternal disturbances or unknown system parameters, such
as friction and slippage, which are very difficult to model
using conventional techniques. Finally, it has demonstrated
the results of precise tracking performance using a Matlab
simulation.

This paper considers the compensation of calculating
slip ratios, but not the interaction forces between wheels
and ground. The future work is hoped to apply neural com-
puting methods to terramechanics theory for terrain param-
eter estimation. The experiments need to be performed to
compare with the system simulations under different tra-
jectories and terrain.
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