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� Accurate single trial detection of the intention of step initiation from scalp EEG.
� Independent component analysis (ICA) preprocessing helps to automatically remove EEG artifacts and

enhances detection performance.
� All participating subjects were BCI/EEG naïve subjects, implying general applicability of the proposed

approach.

a b s t r a c t

Objective: Applications of brain–computer interfacing (BCI) in neurorehabilitation have received increas-
ing attention. The intention to perform a motor task can be detected from scalp EEG and used to control
rehabilitation devices, resulting in a patient-driven rehabilitation paradigm. In this study, we present and
validate a BCI system for detection of gait initiation using movement related cortical potentials (MRCP).
Methods: The templates of MRCP were extracted from 9-channel scalp EEG during gait initiation in 9
healthy subjects. Independent component analysis (ICA) was used to remove artifacts, and the Laplacian
spatial filter was applied to enhance the signal-to-noise ratio of MRCP. Following these pre-processing
steps, a matched filter was used to perform single-trial detection of gait initiation.
Results: ICA preprocessing was shown to significantly improve the detection performance. With ICA pre-
processing, across all subjects, the true positive rate (TPR) of the detection was 76.9 ± 8.97%, and the false
positive rate was 2.93 ± 1.09 per minute.
Conclusion: The results demonstrate the feasibility of detecting the intention of gait initiation from EEG
signals, on a single trial basis.
Significance: The results are important for the development of new gait rehabilitation strategies, either
for recovery/replacement of function or for neuromodulation.

� 2014 Published by Elsevier Ireland Ltd. on behalf of International Federation of Clinical Neurophy-
siology.
1. Introduction

Neurological conditions, such as stroke, spinal cord injury or
Parkinson’s disease, often result in impaired motor control and
consequent difficulty of the patient to perform activities of daily
living. One of the goals of rehabilitation is to promote the patient’s
independency with the aim of restoring the loss of movement
ability.

Conventional approaches of rehabilitation promote motor
recovery through a ‘‘bottom-up’’ approach, focused on peripheral
training, often with robotic trainers. Robotic training has several
advantages (a reduction of the effort of physical therapists per
patient, the possibility to objectively quantify rehabilitation
parameters and training output) (Pennycott et al., 2012) and allows
for peripheral activity compatible with unconstrained tasks (Gizzi
cortical
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et al., 2012). However its effectiveness may also be reduced by the
autonomous ability of the robot to complete the movement with-
out the need for patient involvement. Active participation of the
patient has been demonstrated to be crucial in improving the out-
come of rehabilitation (Pennycott et al., 2012; Duff et al., 2013).

As a complementary and promising branch within motor reha-
bilitation and assistance are brain–computer interfaces (BCI). BCI
technologies provide the means for conveying control commands
directly from the brain and can be used either for directly control-
ling rehabilitation devices (function recovery or replacement) or to
provide feedback to the patient based on his/her brain activity
(neuromodulation). In the latter case, the patient is actively
involved in the rehabilitation process. The feedback is provided
by the action of rehabilitation devices (e.g., the movement of an
orthotics system) triggered by the brain activity (brain switch).

When the brain activation related to motor intention is mea-
sured using non-invasive EEG, the information carried in different
frequency bands may be extracted, interpreted and used as the
command signal to external devices. These strategies include sen-
sory motor rhythms (SMR), on which most past studies on BCI for
neuromodulation have focused (Neuper et al., 2006; Kaiser et al.,
2011; Ramos-Murguialday et al., 2013). A disadvantage of this
approach, however, is the need for numerous training sessions
until the user is able to control the signal adequately. Alternatively,
movement related cortical potentials (MRCP) have also been pro-
posed for detecting motor intention from EEG. MRCP is a slow cor-
tical potential that occurs naturally as a person commences or
imagines the start of a movement (Gangadhar et al., 2009; Niazi
et al., 2011; Garipelli et al., 2013; Xu et al., 2014). The advantage
of this approach is that no extensive prior training of the user is
required. Moreover, MRCPs can also be used to discriminate
between different types of tasks as well as the way a task is exe-
cuted (Do Nascimento et al., 2008; Gu et al., 2009). One potential
confounding factor is that the size of the MRCP is relatively small
(�10 lV) and is prone to many movement artifacts that influence
the EEG measures.

MRCPs have been studied during gait initiation, with focus on
Parkinsonian patients (Vidailhet et al., 1995; Shoushtarian et al.,
2011). Moreover, the study by Do Nascimento et al. (2005) on
healthy subjects demonstrated that MRCPs contain rich informa-
tion regarding gait initiation, which made a strong case for utiliz-
ing MRCPs for detecting the intention of gait initiation. However,
the ability to detect MRCPs depends on the signal quality and the
presence of artifacts, such as due to eye movements or to facial
muscle contractions that can significantly affect the performance
and robustness of a BCI detection system. This study aims at inves-
tigating the possibility of detecting the intention of gait initiation
from MRCPs after artifacts were removed in a semi-automatic
way. We focused on the step initiation in the forward direction,
as it is most relevant for the targeted application. The main objec-
tive is to develop and test a brain switch based on the intention to
initiate locomotion and, in future developments, to integrate this
brain switch into non-ambulatory robotic systems for rehabilita-
tion of walking to promote plasticity in stroke patients
(Belda-Lois et al., 2011).
2. Methods

2.1. Subjects

Nine subjects (M6, F3, 21–38 yrs), denoted by SUB1–SUB9, par-
ticipated in the experiment. No subject had any known neurologi-
cal disorders. Except for SUB5, all other subjects had no prior
experience with BCI systems before the experiment, and were thus
considered as naïve BCI subjects. The experiment protocol was
Please cite this article in press as: Jiang N et al. A brain–computer interface f
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approved by the research ethics committee of the University Med-
ical Center Göttingen.

2.2. Experimental protocol

An active EEG electrode system (activCap, Brainproducts
GmbH) was used in all the experiments. The EEG electrodes were
placed at the International 10–20 system locations Fz, FC1, FC2,
C3, Cz, C4, CP1, CP2, Pz, T7, T8 and Fp2. The right ear lobe was used
as the reference, and the nasion was used as the ground. The activ-
Cap system was connected to a 16-channel gUSBamp EEG amplifier
(Guger Technologies OG). The EEG was sampled at 1200 Hz with
50 Hz notch filter enabled. The acquired EEG was then sent to a
custom-built Matlab program on a PC through the gUSBamp Mat-
lab API. This Matlab program would display the raw EEG data for
the experimenter and store the data for offline processing. Two
6-axial force plates, connected to a Qualisys motion capture sys-
tem, were also used. The two plates were placed on the ground
such that the subjects would be able to step from one plate to
the other at their normal strides. The ground reaction forces during
the experimental session of the two force plates were recorded by
the Qualisys system. To synchronize the EEG recordings and the
force recordings, one of the force channels was also connected to
the last channel of the gUSBamp system, via a custom-made opti-
cal isolator.

During an experimental session, the subjects were asked to per-
form three recording runs. At the beginning of each recording run,
the subject stood on the force plate A. Following a vocal prompt
‘BEGIN’ by the experimenter, the subjects would step from the
force plate A to the second plate (force plate B), and remain stand-
ing on plate B until stepping back to plate A. The pace at which the
steps were taken was completely controlled by the subjects, with-
out any external cues. The only external command the subject
received was the ‘BEGIN’ prompt at the beginning of the run. This
protocol is a completely self-paced BCI protocol. The only restric-
tion was that the standing time on each plate between the forward
and backward steps should exceed 4 s. Each run finished when the
subjects completed 20 forward steps. The duration for each run
usually lasted 6–7 min. This means that the average forward–back-
ward trial interval was approximately 20 s. The subjects took a rest
(3–5 min) between the runs.

2.3. Data analysis

The data from the three runs was used for a three-fold cross-
validation. For each fold, the MRCP template was first extracted
from one of the runs (training run), and the matched filter detec-
tion was done using the template on the other two runs (testing
runs). The detailed processing procedure is described below.

2.4. Artifact rejection

In previous studies on MRCPs, the data contaminated by arti-
facts, such as motion artifacts, eye movements etc., was discarded
during off-line processing. In this study, the fixed-point indepen-
dent component analysis (ICA) (Hyvärinen, 1999) was used for
semi-automatic artifact rejection for multi-channel EEG. The inde-
pendent components (ICs) and the mixing matrix were estimated
from the training run, and the ICs with artifacts were identified
by visual inspection based on both the time course and the scalp
maps of the ICs. Subsequently, the raw EEG data were transformed
using the ICA mixing matrix, and the identified artifact ICs were
rejected automatically, without further inspection. The remaining
ICs were then projected back onto the original scalp channels,
resulting in ‘cleaned’ EEG for further processing.
or single-trial detection of gait initiation from movement related cortical
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Fig. 1. Illustration of the detection of initiation of movement from the postural
sway. The absolute values of antero-posterior and medio-lateral components of the
stance force plate are summed and normalized to the local maximum. A 10%
threshold with respect to local maximum ensures to be above the baseline noise
level (due to the physiological postural adjustments of the quite stance). The lower
level of intrinsic noise from the force plate is visible comparing the left and the right
parts of the figure (before and after the subject left the force plate).
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2.5. MRCP template extraction

The ‘cleaned’ EEG of the training run was used for MRCP tem-
plate extraction. A Laplacian spatial filter (LSF) was applied to
channel Cz and the 8 channels around it (Fz, FC1, FC2, C3, Cz, C4,
CP1, CP2, and Pz). The surrogate ‘Cz’ channel after LSF was used
to extract the MRCP template.

The antero-posterior and medio-lateral components of the sig-
nal of the standing force plate were rectified and used to detect
the postural sway prior to the actual gait initiation. A threshold
of 10% on the local maximum (i.e. for each trial) was set to detect
Fig. 2. A representative sample of the artifact rejection procedure using ICA. (A) The 12-c
components are clearly presented. At 95 s and 140 s, the artifacts were present across all c
present in FC2; (B) ICA components of the signals in A. The two artifacts in A were isola
components (ICs). The spatial pattern of the artifact ICs also confirmed the observation in
component in FC2. Both B and C were used to identify components to be used for fu
components were rejected. The resulting signals are presented in D. The grey vertical d
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the sway and used to establish the time from which MRCP tem-
plates would be extracted. In order to prevent false detections of
the sway, it was detected within a window of 2 s whose last sam-
ple was aligned with the weight acceptance sample on the receiv-
ing force plate. For each trial (i.e. before the subject stepped on the
receiving plate) the local maximum of the medio-lateral sway of
the standing plate was determined and its 10% was used to deter-
mine the latest time instant during which the subject was not
moving. It is clear that since the threshold was >0%, the subject
was actually moving when the crossing of the threshold occurs,
but we considered this value as the minimum we could confidently
distinguish from the baseline noise. This procedure is illustrated in
Fig. 1.

Three seconds before and three seconds after these reference
points was chosen as the time range for the full MRCPs and the
ensemble average of all MRCP segments from the surrogate ‘Cz’
channel of the training run were used as the full MRCP template.
Because it is not practical to use to 4-s long full MRCP for detection,
only part of the first negative phase of the full MRCP template was
used for subsequent detection. This part was [�1.5 s,�0.5 s] from
the peak negativity of the full MRCP template, and was called the
detection MRCP template. This portion of the MRCP included the
readiness potential (RP) (Gilden et al., 1966) and the first portion
of the motor potential (MP) (Deecke et al., 1976). This choice had
the purpose of obtaining a balance between the detection accuracy
and the detection latency.

2.6. MRCP detection

Once the detection MRCP template was extracted from the
training run, the classic matched filter detection was performed
on the surrogate ‘Cz’ channel of the testing runs, which was
obtained by exactly the same preprocessing as the training run,
i.e. ICA followed by LSF. To evaluate the performance of the detec-
tion, three performance measures were calculated: true positive
rate (TPR), false positive rate (FPR), and detection latency (DL).
TPR was defined as the number of true detections divided by the
hannel raw EEG, where very strong artifacts exists. Two types of artifacts unwanted
hannels with different magnitude. At 120–125 s, an unwanted component was only

ted as distinct ICA components (IC1 and IC3); (C) the scalp map of the independent
the raw signals: IC1 is likely due to eye movements and IC3 is a localized unwanted
rther processing. In this example, IC8, IC10, and IC11 were kept, while all other

ashed lines in A, B, and D indicate the detected step initializations.

or single-trial detection of gait initiation from movement related cortical
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total number of true events. FPR was defined as the number of false
detection divided by the total number of events. DL is time differ-
ence between the peak negativity of the MRPC template and the
detection time obtained by the detection algorithm, as defined in
Niazi et al. (2011, 2012). The receiver operating characteristics
(ROC) curves of the detection were obtained from the training
run. The working point was selected on the midpoint of the turning
phase of the ROC curve, which allowed a balance between TPR and
FPR. The detection performance indices, TPR, FPR and DL, were cal-
culated based on the detection threshold of the working point. The
initiations of both forward steps and backward steps generate
MRCP (Do Nascimento et al., 2005). As such, the detections made
within [�1,1] s around both forward and backward step initiation
time were considered as positive detections in the subsequent
analysis.

3. Results

All subjects successfully completed the experimental session. A
representative example of the ICA artifact rejection procedure is
presented for one of the subjects in Fig. 2. By properly selecting
Fig. 3. (A) The full MRCP templates and the detection templates for all subjects.
Time zero is the time of initial sway detected at the standing force plate. The thick
part is the detection template ([�1.5,�0.5]) s prior to the peak negativity of the full
MRCP template. In the figure, the magnitudes of all MRCPs are normalized with
respect to their magnitude ranges. The original range of amplitudes of the MRCPs is
between �5 lV and �25 lV. (B) The ROC curves for all subjects, averaged over all
folds. The operational points selected for each subject are indicated by the stars.
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independent components both from the time course and the scalp
map, the artifacts within the EEG were effectively removed. The
ICA algorithm (FastICA) converged for all but one subject (SUB6),
in which case the original raw EEG was used for subsequent
processing.

The MRCP templates of all subjects, obtained through ICA pre-
processing, are presented in Fig. 3A. The full MRCP templates are
presented, and the detection template used for subsequent
matched filtering was taken from [�1.5,�0.5] s of the full MRCP
template. Note that the MRCPs presented in the figure were the
average of all runs. Fig. 4 shows a representative example of
the matched filter procedure, including the detection template,
the surrogate channel at Cz after ICA and LSF operation, and the
output of the matched filter, using the data segments shown in
Fig. 2. The segments of the matched filter output corresponding
to the detections are highlighted along with the events marked
by force plate signals.

The ROC curves for all subjects are reported in Fig. 3B. The
detection results of all subjects are presented in Table 1. Across
all subjects (including SUB6 for which ICA did not converge), the
TPR was 76.9 ± 8.97%. The FP was 2.93 ± 1.09 per min. The average
detection latency with respect to peak negativity of the MRCP tem-
plate was �180 ± 354 ms. The within-subject variability of these
indices, characterized by the coefficient of variation, was 13%,
34% and 170% for TPR, FP and latency, respectively (average value
for all subjects). In order to quantify the effect of the ICA prepro-
cessing on the detection performance, we also calculated the
detection performance without the ICA preprocessing step
(Table 1). The TPR and FP in this case was 63.3 ± 14.3% and
3.37 ± 1.16%, respectively. Repeated measure t-test showed that
ICA preprocessing significantly improved the TPR (N = 8,
p = 0.005). However, no statistical significance was found for FP
(N = 8, p = 0.09).
4. Discussion

We demonstrated the possibility of single trial detection of the
intention of gait initiation from scalp EEG of healthy individuals
during normal gait. Across subjects, the best performance corre-
sponded to TPR 83% and FPR 1.64 per min. The average detection
performance was similar to prior studies on isometric dorsiflexion
detection when subjects were in seated position (Niazi et al.,
2011). The experimental condition (standing and gait) in the cur-
rent study was more challenging than the seating condition of
the previous studies, since standing corresponds to tonic muscular
activations at the lower extremities for posture balance that man-
ifest at the cortical level with similar EEG activities as MRCPs
(Slobounov et al., 2005). The relatively high FPR presented was
likely due to these postural related activities.

We also demonstrated the capability of using ICA as a prepro-
cessing step to remove various artifacts for the ultimate online
BCI applications. Artifacts in EEG, such as those caused by eye
movements or facial muscle contractions, are usually several
orders of magnitude larger than EEG. In many cases, they overlap
with targeted components of EEG, both in the time and frequency
domain. For example, the eye movement artifact is similar in shape
to an MRCP and has greater amplitude. The ICA preprocessing step
proposed in the current study effectively removed these artifacts,
either present as common mode or spatially located in certain
channels (Fig. 2). Further, we showed that the ICA preprocessing
step significantly improved the performance of the subsequent
MRCP detection, particularly in relation to TPR. This effect is espe-
cially significant on any data set with very poor performance with-
out the ICA preprocessing (low baseline performance), such as the
data sets from SUB1, SUB3 and SUB8. For data sets with higher
or single-trial detection of gait initiation from movement related cortical
5.003
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Fig. 4. A representative example of the matched filtering procedure. (A) The surrogate Cz channel after ICA denoising and LLSP spatial filtering. The step initiation events are
marked by the square markers. (B) The MRCP template used. The thin solid line is the full MRCP template, and the thick segment was the template used for match filtering. (C)
The output of the match filter. The highlighted segments with thick (green) lines are the true positive detections, with square marker (green) indicating the corresponding
actual events. The highlighted segments with thick lines (black) are the false detections, and star (red) markers indicated the false negatives (events not detected). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Summary of the detection results from all subjects.

Sub. ID With ICA Without ICA

TPR (%) FP (per min) Mean latency (ms) TPR (%) FP (per min) Mean latency (ms)

Sub1 81 1.55 �924 62 2.80 �998
Sub2 74 4.45 78 65 4.91 �48
Sub3 87 3.84 �176 53 3.23 �93
Sub4 68 2.97 421 64 3.40 443
Sub5 83 1.64 �374 83 1.12 �280
Sub6 N/A N/A N/A 82 2.71 �256
Sub7 88 1.74 �336 75 3.28 �350
Sub8 61 3.8 �166 40 4.46 �462
Sub9 68 3.67 106 46 4.49 �82
Mean ± STD 76.9 ± 8.97 2.93 ± 1.09 �156 ± 369 63.3 ± 14.3 3.37 ± 1.16 �236 ± 363
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baseline performance (for example from SUB5), the effect of ICA
preprocessing is limited. This is likely due to the better signal qual-
ity for these data sets. Visual inspection confirmed that there were
less artifacts in the data set from SUB5 than those from SUB1, SUB3
and SUB8. In future online applications, the IC components can be
obtained from a short calibration recording, during which the sub-
jects are instructed to actively produce possible artifacts by blink-
ing their eyes or clinching the jaws or turning their heads. In
subsequent recordings, the IC components corresponding to the
artifacts can be conveniently rejected online with minimal compu-
tational cost since only linear operations would be necessary
(matrix multiplication).

The amount of user training is one of the main limiting factors
in BCI applications. Even after extensive training, a non-negligible
portion of individuals (20–25%) cannot use classic BCI systems
based on motor related EEG potentials, such as sensory-motor
rhythms (SMR) (Vidaurre et al., 2011). Conversely, the MRCP can
be easily produced even by naïve BCI users. Indeed, in the current
experiment, all but one subject (SUB6) were naïve BCI subjects,
who never experienced any EEG recording prior to the experiment.
Yet the detection performance (after ICA preprocessing) of 4 naïve
subjects was better than that of the experienced subject (higher
Please cite this article in press as: Jiang N et al. A brain–computer interface f
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TPR and lower FPR). Further, it has been shown that the MRCPs
from different subjects have high similarity (Niazi et al., 2013).
These characteristic makes it possible to develop a BCI system with
minimal subject training. In addition, MRCP is known to have ses-
sion-to-session and day-to-day repeatability and stability (Kropp
et al., 2000). Therefore, BCI systems based on MRCP should require
less frequent recalibration and retraining.

An even more important characteristic of the MRCP-based
motor intention detector is its limited detection latency. For
SMR-based studies, the latency of detection was not a topic of
interest (Pfurtscheller and Solis-Escalante, 2009), and usually not
reported. In studies that did report it, the detection latency was
least 1 s (Blankertz et al., 2010; Hashimoto and Ushiba, 2013). To
our best knowledge, there is no BCI technique based on SMR with
a detection latency smaller than 1 s. This is in sharp contrast with
the detection studies using MRCP, in which the detection latency is
usually in the order of hundreds milliseconds (Niazi et al., 2011; Xu
et al., 2014). Since detection latency is a critical factor in effective
induction of cortical plasticity (Mrachacz-Kersting et al., 2012), we
believe that MRCP-based BCI holds great potential as a neuromod-
ulation tool for neurorehabilitation. However, it has to be noted
that in this study we show detection and not prediction of gait
or single-trial detection of gait initiation from movement related cortical
.003
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initiation. The delay reported in this study refers to the first reli-
ably detectable physical measurement of gait initiation, i.e. the ini-
tial sway, which takes place after complex physiological processes.

In long-term perspective, the aim is to develop a BCI-based
assistive system for patients with difficulty in voluntarily initialize
gait, such as many Parkinson patients. The system should have the
capability of detecting the intention of gait initiation directly from
the EEG activity for these patients. It has been shown that deep
brain structures, such as basal ganglia, cerebellum, and thalamus
play important roles in gait initiation (Rektor et al., 2001a,b,c).
Recently, the pathological changes of these deep brain structures
have been shown to have manifestation in the scalp EEG (Heida
et al., 2014; Toledo et al., 2014). Therefore, it is likely that these
pathological changes will also change the MRCP morphology in
Parkinson patients. However, it is reasonable to anticipate that
the morphology of the MRCP would remain relatively stable at
the individual patient basis. As such, the proposed method should
still be applicable for these patients. Subsequent studies on
patients are required to investigate this possibility.

In conclusion, we showed that it is possible to detect the inten-
tion of step initiation from scalp EEG on a single trial basis of
healthy subjects. The ICA preprocessing step can significantly
improve the online detection performance by removing various
artifacts during online experiments. The presented detection
performance is suitable for online application of triggering a gait
rehabilitation exoskeleton device for stroke patients both for the
purposes of function restoration/replacement and for
neuromodulation.
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