
A Two-Level Load Balancing Method With Dynamic
Strategy for Cloud Computing

Yan-Wun Qiu, Jen-Ing G. Hwang
Dept. of Computer Science and Information Engineering

Fu Jen Catholic University
New Taipei City, Taiwan

Abstract—By providing computing resources to users on
demand, cloud computing has brought convenient services to
people’s lives. However, there remain some challenging problems
such as load balancing. This paper presents a dynamic two-level
scheduling method for cloud balancing. The proposed method not
only focuses on task scheduling, but also considers resource
utilization. At Level 1, virtual machines (VMs) are added or
deleted dynamically according to the workload. At Level 2, an
appropriate mapping between the requested tasks and the VMs is
determined. This two-level scheduling method was implemented
using a simulation software package, CloudSim. Several possible
scenarios were planned and simulated. The results showed that the
proposed method attained acceptable performance on the
measures of response time and resource utilization. This
confirmed the efficiency and effectiveness of the proposed method.

Keywords—Cloud computing; load balancing; resource
utilization; task scheduling

I. INTRODUCTION

Over the past decade, cloud computing has emerged as a
crucial type of information technology. Not only does cloud
computing integrate network services, but it enables users to
access those network services conveniently. Before cloud
computing, enterprises invested money on hardware upgrades
and time on software installation. By contrast, cloud computing
requires no large investment in hardware, and software can be
used immediately without installation delays.

Cloud computing helps both enterprises and individual users.
Enterprises can lower their expenses by using cloud computing,
and they may even increase their profits. For individual users,
cloud services enable convenient access to critical services. A
typical individual’s routine computer use frequently relies on
cloud services for tasks such as e-mail, Google searches, and e-
commerce transactions. Therefore, cloud services are necessary,
even indispensable, for many people.

A cloud’s physical layer consists of numerous physical
servers that connect each other to provide large-scale distributed
computing. Cloud computing marshals vast amounts of
computing resources so that cloud applications can process user
requests immediately. A cloud’s virtualization layer defines
virtual machines (VMs) that can process users’ requests. A cloud
service is offered on a pay-per-use basis. Cloud services include
software as a service (SaaS), platform as a service (PaaS), and
infrastructure as a service (IaaS). Users choose the services that
they need. For example, an e-banking service that enables
transactions over the Internet is classified as SaaS; a service that
leases an OS platform to software engineers is classified as PaaS;

and a service that provides cloud infrastructure is classified as
IaaS.

Cloud computing adds value in all the aforementioned ways,
and has some additional advantages; however, some problems
must still be solved. For example, load balancing is a
challenging problem associated with cloud systems [1]. A cloud
environment must handle unpredictable requests in a timely
manner, even though traffic fluctuates between peak times and
off-peak times. The cloud is a large-scale and complex
environment that includes numerous enterprise services. The
challenges of unpredictable user requests and the complexities
of the cloud environment may imbalance the load. Hence, an
appropriate mapping between resources and user requests is
critical. Task scheduling is vital for resource allocation and load
balancing in dynamic cloud environments; therefore, this paper
presents a two-level scheduling method to solve the cloud load-
balancing problem.

Most previous articles on task scheduling for load balancing
have discussed effective strategies for task scheduling, but few
have considered how to improve resource utilization. Therefore,
the load balancing method proposed in the present study not only
addresses task scheduling, but also considers how to increase
resource utilization. The dynamic load balancing method was
implemented using a cloud simulator, CloudSim [2]–[5].

The subsequent sections are as follows. Section II reviews
related works and introduces CloudSim. Section III presents the
proposed method. The experimental environment, configuration
settings, and simulation results are presented in Section IV.
Finally, Section V concludes the paper and describes future
work.

II. RELATED WORK AND CLOUDSIM
This section reviews the literature on load-balancing

methods and briefly describes CloudSim.

A. Related Research
A cloud system provides substantial computing capacity for

users, but the challenging problem of load balancing remains to
be solved. An imbalanced load causes some processing units to
be overloaded while other processing units stand idle. The
efficiency of the processing units decreases when resources are
inefficiently utilized. Previous studies have proposed various
methods to overcome this problem. Some artificial intelligence
techniques for task scheduling include genetic algorithms [6],
ant colony optimization [7,8], and honey bee methods [9]. Other
useful methods include random sampling [10] to achieve faster

2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence

and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress

978-1-5090-4065-0/16 $31.00 © 2016 IEEE

DOI 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.107

563

2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence

and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress

978-1-5090-4065-0/16 $31.00 © 2016 IEEE

DOI 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.107

565

2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence

and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress

978-1-5090-4065-0/16 $31.00 © 2016 IEEE

DOI 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.107

565

2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence

and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress

978-1-5090-4065-0/16 $31.00 © 2016 IEEE

DOI 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.107

565

2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence

and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress

978-1-5090-4065-0/16 $31.00 © 2016 IEEE

DOI 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.107

565

computing time. Studies such as [11]–[13] have focused on
improving CPU efficiency, whereas [14] considered the
coordination of multiple resources such as CPU, memory, and
bandwidth.

Most load-balancing methods focus on allocating resources
according to the loading of processing units, but they rarely
consider how to enhance resource utilization. Therefore, this
paper presents a two-level load-balancing method to improve
processing efficiency and resource utilization. Level 1 of the
proposed method handles the addition and deletion of VMs;
Level 2 determines an appropriate mapping between tasks and
VMs to increase processing efficiency. The details of the
proposed method are discussed in Section III.

B. CloudSim
CloudSim is a toolkit for simulations in cloud computing

environments. CloudSim provides several critical classes for
representing data centers, VMs, applications, users, cloud
computing resources, and policies for scheduling tasks and
allocating resources.

Fig. 1 shows a work style of CloudSim [7] and illustrates the
relationships between entities (e.g., Datacenter, Host, VM, Task,
etc.). In general, there are m relatively independent users, n
independent tasks, k VMs, and p datacenters.

Fig. 2 illustrates a simulated data flow among the entities of
a CloudSim model [4]. At the beginning, each datacenter must
register with the cloud information service (CIS) Registry (see
Figs. 1 and 2), which records the information of that datacenter.

A DatacenterBroker (see Figs. 1 and 2) represents a broker
who acts on behalf of the user to request an available cloud
resource from the CIS Registry. The DatacenterBroker first
negotiates with the CIS Registry, and then a Datacenter is
mapped to the user to serve the request.

Fig. 1. CloudSim work style, adapted from [7].

Fig. 2. Simulation data flow [4].

After obtaining characteristics from the Datacenter, the
DatacenterBroker creates a VM and schedules the task. When
the task is completed, the Datacenter reports the results to the
DatacenterBroker, and then updates its information with the
DatacenterBroker to facilitate the next task mapping. After all
the user requests have been completed, the datacenter destroys
all the VMs.

III. PROPOSED METHOD
This paper focuses on allocating resources and scheduling

tasks for load balancing. In a cloud environment, the number of
tasks fluctuates between peak times and off-peak times, and task
requirements are diverse. Hence, we present a two-level strategy
for improving response time and resource utilization. The
remainder of this section introduces the concept of the two-level
strategy and details the proposed algorithm.

A. Two-Level Schedule Strategy
The proposed method uses Host, VM, and Task objects to

construct a two-level schedule strategy. As shown in Fig. 3, the
Datacenter records the information and implements a strategy
specified by the superuser, the physical servers provide
computing capacity, and the VMs manage user requests. In the
present CloudSim environment, the physical servers are
represented by Host objects and the client requests are
represented by Cloudlet objects.

Level 1 of the scheduler operates between Host and VM
objects, and Level 2 operates between VM and Task objects.
Level 1 handles adding and deleting VMs according to the task
loading ratio; that is, the ratio of the number of utilized VMs to
the total number of VMs. When the number of tasks grows
rapidly and the workload increases, VMs are created
dynamically to avoid overload. When the number of task
requests declines, VMs are deleted dynamically to avoid wasting
resources.

564566566566566

Fig. 3. Construct of two-level strategy.

Level 2 defines a mapping between Tasks and VMs. The
following example, which is depicted in Fig. 4, illustrates how
crucial a mapping can be. There are two VMs and two Tasks.
The capacities of VMs 1 and 2 are 1000 and 100 MIPS,
respectively. The lengths of Tasks 1 and 2 are 10 000 and 500
MI, respectively.

There are two mappings between the sets of VMs and Tasks.
The first mapping is that Task 1 is assigned to VM 1 and Task
2 is assigned to VM 2. In this case, the makespan will be 10 s
and the average response time will be 7.5 s. The second
mapping is that Task 1 is assigned to VM 2 and Task 2 is
assigned to VM 1. In this case, the makespan will be 100 s and
the average response time will be 50.25 s. The makespan and
average response time in the first mapping are shorter than those
in the second mapping.

This example shows how an appropriate mapping between
Tasks and VMs can improve processing efficiency. A larger
task should be assigned to a more powerful VM, and a smaller
task should be assigned to a less powerful VM. This leads our
proposed method to use a greedy strategy for determining a
mapping. In other words, tasks are generally stored in a queue
with a first-come-first-served (FCFS) service discipline and
then, based on their computational requirements, they are
assigned to some available VM with minimum capacity.

Fig. 4. Mapped strategy between tasks and virtual machines.

However, when none of the existing VMs satisfies the
request for a certain task and then creating a new VM may be
impossible due to overloaded servers, this certain task must wait
in the queue. The details of the proposed approach is described
in the following subsection.

B. Proposed Algorithm
This subsection describes how the proposed two-level

scheduling method maps a task to an appropriate VM and how
it dynamically adds or deletes VMs for unpredictable task
requests.

Assume that C is an ordered list that stores the requested
Tasks based on their arrival times. Let V be a set that contains
all of the existing VMs, and let H be a set that contains all of the
Hosts. A host is called Predicted-Underloaded-Host if its
loading is less than a user-defined parameter threshold, q, after
adding a VM. In our experiments, the threshold q was set to 80%.
The details of the algorithm are as follows:

Step 1 is to initialize the parameters and build the
Datacenters, Hosts, VMs, and Cloudlets. Because both
Datacenters and Hosts are at the physical tier, both numbers of
Datacenters and Hosts are assumed to be fixed and unchanged
for the entire process.

Steps 2–7 involve performing request tasks stored in the
ordered list C. The data structure of C is a queue with a FCFS
service discipline.

Step 3 performs the second level of the schedule algorithm,
an appropriate mapping between a requested task and some
available VM with minimum capacity is determined. This step
can be described in more detail as follows. Whenever a Task is
requested, the second level of the scheduler assigns this Task to
the available VM with the lowest capacity that can satisfy the
Task. If no such VM exists, then the scheduler creates a new
VM that has the capacity to execute this Task. However, if all
the Hosts are overloaded, then the VM will not be created, and
the Task will stay and wait at the front of the ordered list C. In
summary, the second level of the scheduler operates between
VM and Task objects, and the proposed method determines an
appropriate mapping between Tasks and VMs to increase
processing efficiency.

565567567567567

Steps 4 and 5 perform the first level of the schedule
algorithm, VMs are added or deleted dynamically according to
the workload. In Step 4, if all of the VMs are occupied, then to
avoid the possibility that a future Task may not find an available
VM, the first level of the scheduler creates a VM. In Step 5, the
first level of the scheduler deletes any VMs with idle times
larger than an idle threshold Y whose value is determined by the
superuser. In our experiments, the idle threshold Y was set to
100 s. In summary, the first level of the scheduler operates
between Host and VM objects, and the proposed method
provides the mechanism to increase resource utilization by
adjusting the number of VMs dynamically.

In Step 6, all the information in the Datacenter is updated,
such as remaining tasks in C and current VMs in V.

Fig. 5. Two-Level scheduler algorithm.

Steps 2–7 are repeated if any Task exists in C. Otherwise
execute Step 8 to output results and destroy all VMs.

Fig. 5 depicts the proposed algorithm.

IV. EXPERIMENT
This section presents the experimental results. The proposed

method was implemented using CloudSim, the basic concepts
and architecture of which are introduced in Section II.

A. Simulation Setting in CloudSim
This subsection presents the simulation coded in CloudSim.

Several VMs were initialized to process tasks at the beginning
of each simulation. The proposed method involved adjusting the
number of VMs dynamically. The dynamic mechanism added
or deleted the VMs when user requests were growing or
decreasing.

Table I presents the parameter settings of entities
(Datacenter, Host, VM, and Task) in the CloudSim simulations.
Both the number of Datacenters and number of Hosts were fixed
in each simulation. One Datacenter and five Hosts were used in
the entire process of each simulation. The parameters of each
Host were as follows: 12 CPU cores within each Host; 1024
MIPS capacity for each CPU; 24 576 MB of memory for each
Host; and 20 Mbits of bandwidth for each Host. There were two
groups of VM entities. One group contained more powerful
VMs with two CPU cores that shared 4096 MB of memory;
each core had 1024 MIPS of CPU capacity. The other group had
less powerful VMs, each of which had only one CPU core, 512
MIPS of CPU capacity, and 2048 MB of memory. All the VMs
had 1 Mbit of bandwidth. Three more powerful and two less
powerful VMs were created at the beginning of each simulation.
The operation style was SpaceShared and the threshold of idle
time was 100 s for each VM. The SpaceShared policy allocated
specific CPU cores to specific VMs.

TABLE I.
VALUES OF ENTITIES IN EACH SIMULATION

Entities Parameters Values

Datacenters Number of Datacenters 1

Hosts

Number of Hosts 5

CPU Capacity 1024 MIPS

Memory 24 576 MB

Bandwidth 20 Mbits

Number of Cores 12

VMs

CPU capacity 512 / 1024 MIPS

Memory 2048 / 4096 MB

Bandwidth 1Mbit

Operation Style SpaceShared

Number of Cores 1 or 2

Idle Time Threshold (= Y) 100 s

Tasks

Total Number of Tasks 100 / 400 / 700

Length of Task 10 000 / 20 000 /
30 000 MI

Number of Cores Requirement 1 or 2

Two-Level Scheduler Algorithm

Step1. Initialize the parameters and build the Datacenters,
Hosts, VMs, and Cloudlets.

Step2. While (C is not empty) DO Steps 3-7

// Step 3 performs the second level of the schedule
algorithm, an appropriate mapping between a
requested task (Cloudlet) and some available VM
with minimum capacity is determined.

Step3. If (There is any available VM in V)
Allocate the first Cloudlet to the VM with
minimum capacity.
Remove the first Cloudlet from C.

 Else if (There exists a Predicted-Underloaded-Host
in H)

 Create a proper type of VM.
 Allocate the first Cloudlet to the VM.
 Remove the first Cloudlet from C.
 // The first Cloudlet waits at the beginning of C, if

none of the Hosts is Predicted-Underloaded-Host.

// Steps 4 and 5 perform the first level of the schedule
algorithm, VMs are added or deleted dynamically
according to the workload.

Step4. // Check the status of Cloudlets and VMs.
If (The No. of currently executed Cloudlets

= The No. of the existing VMs) and
 (There exists a Predicted-Underloaded-Host in H)
 Create a new VM.

Step5. //Check idle VMs.
 Destroy and remove any VMs from V if these VMs

are idle.

Step6. //Update the information.
 Update set V, set H and ordered list C.

Step7. Go to Step 2.

Step8. Output results and destroy all VMs.

566568568568568

Each experiment involved three test runs with a different
number of Tasks (Cloudlets): 100, 400, and 700. Each test
contained a uniform distribution of three different lengths of
tasks: 10 000, 20 000, and 30 000 MI. For example, the first test
of each experiment involved 100 tasks, of which 34 tasks had a
length of 10 000 MI, 33 tasks had a length of 20 000 MI, and 33
tasks had a length of 30 000 MI. In addition, the three task types
required a distinct number of CPU cores. The tasks with a length
of 10 000 and 20 000 MI requested only one core; that with a
length of 30 000 MI requested two cores.

B. Experimental Results
This subsection presents the experimental results to verify

the effectiveness of the proposed method. The experiments were
divided into the following two categories:

1) Compare the proposed scheme with various round-robin
methods

2) Investigate the number of VMs used in the proposed
method

Because the number and distribution of user requests are not
predictable in cloud computing, each category of experiments
involved simulating three cases to represent three unique
situations:

Case 1: User requests are distributed periodically. In this
simulation, the server receives a request every 5 s.
This case simulates a server that receives user
requests regularly.

Case 2: User requests are distributed randomly. In this
simulation, the server randomly receives a request
every 1–10 s. This simulates a server that receives
user requests unpredictably.

Case 3: The distribution of user requests is divided into three
stages and the server receives the same amount of
requests in each stage. The server receives a
request every 5 s in Stage 1, every 1 s in Stage 2,
and every 50 s in Stage 3. Note that the number of
user requests increases rapidly in Stage 2 and
declines rapidly in Stage 3.

The first group of experiments involved evaluating the
performance of the proposed method and three round-robin
schemes (RR-5VM, RR-15VM, and RR-25VM) in terms of
response time and resource utilization. RR-5VM, RR-15VM,
and RR-25VM had 5, 15, and 25 VMs, respectively. Each
round-robin technique was a static method with a fixed number
of VMs.

Each case was tested by three runs with a different number
of Tasks: 100, 400, and 700; the corresponding response times
are shown in Figs. 6, 7, and 8. All experimental observations in
these figures demonstrate that the response times were reduced
as the number of VMs increased for the round-robin techniques.
For example, the response time of RR-VM25 was 44 s, RR-
VM15 was 57 s, and RR-VM5 was 257 s for the 100-task test
run for Case 1 (Fig. 6). This phenomenon occurred for each test
run with different numbers of Tasks in all three experimental
cases (Figs. 6–8).

Fig. 6. Average Response time for Case 1.

Fig. 7. Average response time for Case 2.

Fig. 8. Average response time for Case 3.

Obviously, a limited number of VMs cannot handle an
extremely high load of Tasks. Some Tasks must wait in a queue
for available VMs, hence the increase in the response times.
Among all the round-robin methods, only RR-VM25 performed
satisfactorily. However, the proposed method was superior to
RR-VM25 for each test run within each case.

Figs. 9–11 present the resource utilization performance for
the three cases, with the results of the three test runs (100, 400,
and 700 Tasks) shown in the respective figures.

In Fig. 9, RR-VM5 attained the optimal resource utilization
rate, because the VMs were too busy to be idle in Case 1. RR-
VM15 and RR-VM25 had more computational capacity for
handling the tasks, but both of their resource utilization rates
were less than that of RR-VM5 in Case 1. However, the
response time of RR-VM5 was the worst (see Fig. 6). Although
the resource utilization rate of the proposed method was ranked

567569569569569

second, the response time of the proposed method was the
shortest (see Fig. 6).

Fig. 10 presents the experimental results for Case 2, showing
that the resource utilization in this case is similar to that in Case
1. Thus, RR-VM5 attained the optimal performance, followed
by the proposed method, RR-VM15, and RR-VM25. Notably,
the response time of RR-VM5 was again the worst (see Fig. 7).
In summary, the response time performance of the proposed
method was superior to that of the other methods, and the
resource utilization was ranked second for both Cases 1 and 2.

Fig. 11 presents the experimental results for Case 3. The
proposed method attained the optimal performance for all tests;
all Task loads and resource utilization rates were higher than
75%. The reason is that the proposed method adds or deletes
VMs dynamically according to the number of Tasks; however,
round-robin techniques, which involve a fixed number of VMs,
are a static method. The results confirmed the effectiveness of
the proposed method for Case 3.

The second category of experiments tested the dynamic
allocation of the proposed method. Each case used 700 tasks and
utilized a number of VMs confined to a fixed range. Fig. 12
presents the results of three cases representative of the three
situations. The number of VMs ranged between 5 and 13 in
Case 1 (periodically distributed task requests). The number of
VMs ranged between 5 and 30 in Case 2, because the random
distribution of sending requests increased the maximum number
of VMs to 30. In Case 3, the number of VMs ranged between 2
and 47. Recall that there are three stages to send tasks in Case 3;
the number of VMs had to be increased to 47 when the number
of user requests increased rapidly; the number of VMs was
reduced to two when the number of user requests dropped
markedly.

According to these experimental results, the proposed two-
level scheduling method performed satisfactorily and was able
to handle various situations, even a complex scenario such as
Case 3.

Fig. 9. Resource utilization for Case 1.

Fig. 10. Resource utilization for Case 2.

Fig. 11. Resource utilization for Case 3.

Fig. 12. Number of VMs with 700 cloudlets in each case.

RR�
VM5

RR�
VM15

RR�
VM25

Our
method

100 0.983 0.69 0.613 0.95
400 0.995 0.69 0.609 0.96
700 0.997 0.69 0.609 0.96

0
0.2
0.4
0.6
0.8
1

1.2

Pe
rc
en

t

Cloudlet�
number

100
400
700

RR�
VM5

RR�
VM15

RR�
VM25

Our
method

100 0.91 0.64 0.56 0.84
400 0.95 0.66 0.58 0.85
700 0.95 0.74 0.62 0.85

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Pe
rc
en

t

Cloudlet�
number

100
400
700

RR�
VM5

RR�
VM15

RR�
VM25

Our
method

100 0.681 0.555 0.538 0.782
400 0.67 0.545 0.527 0.767
700 0.669 0.544 0.526 0.751

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pe
rc
en

t

Cloudlet�
number

100
400
700

Period�5�s Random�1�
10s 5�1�50

Minimum 5 5 2
Maximum 13 30 47

0
5

10
15
20
25
30
35
40
45
50

N
um

be
r�o

f�V
M
s

568570570570570

V. CONCLUSIONS
This paper presents an efficient and effective two-level

scheduling method for cloud balancing. The proposed method
focuses on improving response time and increasing resource
utilization. The two-level method assigns each request to some
available VM that has the minimum capacity to satisfy the
requirement; more powerful VMs are held in reserve until
requests with more demanding requirements arrive. This
strategy attempts to reduce the average response time. The
proposed method also provides a dynamic mechanism for
adding or deleting VMs to increase the resource utilization.

The experiments were implemented using CloudSim.
According to the results, the proposed algorithm attained very
satisfactory results for two measures (i.e., response time and
resource utilization rate) in several simulated scenarios. In the
future, the proposed method will be extended to improve
handling resources other than CPUs (e.g., memory or
bandwidth).

REFERENCES

[1] K.A. Nuaimi, N. Mohamed, M.A. Nuaimi, and J. Al-Jaroodi, “A survey
of load balancing in cloud computing: Challenges and algorithms,” in
Second Symposium on Network Cloud Computing and Applications
(NCCA), IEEE, pp. 137-142, 2012.

[2] R.N. Calheiros, R. Ranjan, C.A.F. De Rose, and R. Buyya, “CloudSim:
A novel framework for modeling and simulation of cloud computing
infrastructures and services,” in Technical Report, GRIDS-TR-2009-1,
Grid Computing and Distributed Systems Laboratory, The University of
Melbourne, Australia, 2009.

[3] B. Wickremasinghe, R.N. Calheiros, and R. Buyya, “CloudAnalyst: A
CloudSim based visual modeller for analysing cloud computing
environments and applications,” in 24th IEEE International Conference
on Advanced Information Networking and Applications, pp. 446-452,
2010.

[4] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F De Rose and R. Buyya,
“CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms.”
Software: Practice and Experience, vol. 41, pp. 23-50, 2011.

[5] B. Ghalem, F.Z. Tayeb, and W. Zaoui, “Approaches to improve the
resources management in the simulator CloudSim,” in ICICA 2010,
LNCS 6377, pp. 189–196, 2010.

[6] Jinhua Hu, Jianhua Gu, Guofei Sun, Tianhai Zhao, “A scheduling
strategy on load balancing of virtual machine resources in cloud
computing environment,” in Third International Symposium on Parallel
Architectures, Algorithms and Programming, IEEE, pp. 89-96, 2010.

[7] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, “Cloud task scheduling
based on load balancing ant colony optimization,” in Sixth Annual
Chinagrid Conference (ChinaGrid), IEEE, pp. 3-9, 2011.

[8] S.H. Li, and J.I.G. Hwang. “Bidirectional ant colony optimization
algorithm for cloud load balancing,” in Proceedings of the 2nd
International Conference on Intelligent Technologies and Engineering
Systems (ICITES2013), LNEE 293, pp. 907-913, 2014.

[9] S. Nakrani, and C. Tovey, “On honey bees and dynamic server allocation
in internet hosting centers.” Adaptive Behavior, Vol. 12(3-4), pp. 223-
240, 2004.

[10] O.A. Rahmeh, P. Johnson, and A. Taleb-Bendiab, “A dynamic biased
random sampling scheme for scalable and reliable grid networks.”
INFOCOMP Journal of Computer Science, Vol. 7(4), pp. 1-10, 2008.

[11] Y. Fang, F. Wang, and J. Ge, “A task scheduling algorithm based on load
balancing in cloud computing,” in Web Information Systems and Mining,
LNCS 6318, pp. 271–277, 2010.

[12] S.C. Wang, K.Q. Yan, W.P. Liao and S.S. Wang, “Towards a load
balancing in a three-level cloud computing network,” in 3rd IEEE
International Conference on Computer Science and Information
Technology (ICCSIT), Vol. 1, pp. 108-113, 2010.

[13] S. Sadhasivam, N. Nagaveni, R. Jayarani, and R.V. Ram, “Design and
implementation of an efficient two-level scheduler for cloud computing
environment,” in 2009 IEEE International Conference on Advances in
Recent Technologies in Communication and Computing, pp. 884-886,
2009.

[14] W. Tian, Y. Zhao, Y. Zhong, M.Xu, and C. Jing, “A dynamic and
integrated load-balancing scheduling algorithm for Cloud datacenters,”
in 2011 IEEE International Conference on Cloud Computing and
Intelligence Systems (CCIS), pp. 311-315, 2011.

569571571571571

