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Abstract—By providing computing resources to users on 
demand, cloud computing has brought convenient services to 
people’s lives. However, there remain some challenging problems 
such as load balancing. This paper presents a dynamic two-level 
scheduling method for cloud balancing. The proposed method not 
only focuses on task scheduling, but also considers resource 
utilization. At Level 1, virtual machines (VMs) are added or 
deleted dynamically according to the workload. At Level 2, an 
appropriate mapping between the requested tasks and the VMs is 
determined. This two-level scheduling method was implemented 
using a simulation software package, CloudSim. Several possible 
scenarios were planned and simulated. The results showed that the 
proposed method attained acceptable performance on the 
measures of response time and resource utilization. This 
confirmed the efficiency and effectiveness of the proposed method.  

Keywords—Cloud computing; load balancing; resource 
utilization; task scheduling  

I. INTRODUCTION 

Over the past decade, cloud computing has emerged as a 
crucial type of information technology. Not only does cloud 
computing integrate network services, but it enables users to 
access those network services conveniently. Before cloud 
computing, enterprises invested money on hardware upgrades 
and time on software installation. By contrast, cloud computing 
requires no large investment in hardware, and software can be 
used immediately without installation delays. 

Cloud computing helps both enterprises and individual users. 
Enterprises can lower their expenses by using cloud computing, 
and they may even increase their profits. For individual users, 
cloud services enable convenient access to critical services. A 
typical individual’s routine computer use frequently relies on 
cloud services for tasks such as e-mail, Google searches, and e-
commerce transactions. Therefore, cloud services are necessary, 
even indispensable, for many people.  

A cloud’s physical layer consists of numerous physical 
servers that connect each other to provide large-scale distributed 
computing. Cloud computing marshals vast amounts of 
computing resources so that cloud applications can process user 
requests immediately. A cloud’s virtualization layer defines 
virtual machines (VMs) that can process users’ requests. A cloud 
service is offered on a pay-per-use basis. Cloud services include 
software as a service (SaaS), platform as a service (PaaS), and 
infrastructure as a service (IaaS). Users choose the services that 
they need. For example, an e-banking service that enables 
transactions over the Internet is classified as SaaS; a service that 
leases an OS platform to software engineers is classified as PaaS; 

and a service that provides cloud infrastructure is classified as 
IaaS.

Cloud computing adds value in all the aforementioned ways, 
and has some additional advantages; however, some problems 
must still be solved. For example, load balancing is a 
challenging problem associated with cloud systems [1]. A cloud 
environment must handle unpredictable requests in a timely 
manner, even though traffic fluctuates between peak times and 
off-peak times. The cloud is a large-scale and complex 
environment that includes numerous enterprise services. The 
challenges of unpredictable user requests and the complexities 
of the cloud environment may imbalance the load. Hence, an 
appropriate mapping between resources and user requests is 
critical. Task scheduling is vital for resource allocation and load 
balancing in dynamic cloud environments; therefore, this paper 
presents a two-level scheduling method to solve the cloud load-
balancing problem.  

Most previous articles on task scheduling for load balancing 
have discussed effective strategies for task scheduling, but few 
have considered how to improve resource utilization. Therefore, 
the load balancing method proposed in the present study not only 
addresses task scheduling, but also considers how to increase 
resource utilization. The dynamic load balancing method was 
implemented using a cloud simulator, CloudSim [2]–[5].  

The subsequent sections are as follows. Section II reviews 
related works and introduces CloudSim. Section III presents the 
proposed method. The experimental environment, configuration 
settings, and simulation results are presented in Section IV. 
Finally, Section V concludes the paper and describes future 
work. 

II. RELATED WORK AND CLOUDSIM 
This section reviews the literature on load-balancing 

methods and briefly describes CloudSim. 

A. Related Research 
A cloud system provides substantial computing capacity for 

users, but the challenging problem of load balancing remains to 
be solved. An imbalanced load causes some processing units to 
be overloaded while other processing units stand idle. The 
efficiency of the processing units decreases when resources are 
inefficiently utilized. Previous studies have proposed various 
methods to overcome this problem. Some artificial intelligence 
techniques for task scheduling include genetic algorithms [6], 
ant colony optimization [7,8], and honey bee methods [9]. Other 
useful methods include random sampling [10] to achieve faster 
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computing time. Studies such as [11]–[13] have focused on 
improving CPU efficiency, whereas [14] considered the 
coordination of multiple resources such as CPU, memory, and 
bandwidth.  

Most load-balancing methods focus on allocating resources 
according to the loading of processing units, but they rarely 
consider how to enhance resource utilization. Therefore, this 
paper presents a two-level load-balancing method to improve 
processing efficiency and resource utilization. Level 1 of the 
proposed method handles the addition and deletion of VMs; 
Level 2 determines an appropriate mapping between tasks and 
VMs to increase processing efficiency. The details of the 
proposed method are discussed in Section III. 

B. CloudSim 
CloudSim is a toolkit for simulations in cloud computing 

environments. CloudSim provides several critical classes for 
representing data centers, VMs, applications, users, cloud 
computing resources, and policies for scheduling tasks and 
allocating resources.  

Fig. 1 shows a work style of CloudSim [7] and illustrates the 
relationships between entities (e.g., Datacenter, Host, VM, Task, 
etc.). In general, there are m relatively independent users, n
independent tasks, k VMs, and p datacenters.

Fig. 2 illustrates a simulated data flow among the entities of 
a CloudSim model [4]. At the beginning, each datacenter must 
register with the cloud information service (CIS) Registry (see 
Figs. 1 and 2), which records the information of that datacenter.  

A DatacenterBroker (see Figs. 1 and 2) represents a broker 
who acts on behalf of the user to request an available cloud 
resource from the CIS Registry. The DatacenterBroker first 
negotiates with the CIS Registry, and then a Datacenter is 
mapped to the user to serve the request. 

Fig. 1. CloudSim work style, adapted from [7]. 

Fig. 2. Simulation data flow [4]. 

After obtaining characteristics from the Datacenter, the 
DatacenterBroker creates a VM and schedules the task. When 
the task is completed, the Datacenter reports the results to the 
DatacenterBroker, and then updates its information with the 
DatacenterBroker to facilitate the next task mapping. After all 
the user requests have been completed, the datacenter destroys 
all the VMs. 

III. PROPOSED METHOD
This paper focuses on allocating resources and scheduling 

tasks for load balancing. In a cloud environment, the number of 
tasks fluctuates between peak times and off-peak times, and task 
requirements are diverse. Hence, we present a two-level strategy 
for improving response time and resource utilization. The 
remainder of this section introduces the concept of the two-level 
strategy and details the proposed algorithm. 

A. Two-Level Schedule Strategy 
The proposed method uses Host, VM, and Task objects to 

construct a two-level schedule strategy. As shown in Fig. 3, the 
Datacenter records the information and implements a strategy 
specified by the superuser, the physical servers provide 
computing capacity, and the VMs manage user requests. In the 
present CloudSim environment, the physical servers are 
represented by Host objects and the client requests are 
represented by Cloudlet objects.  

Level 1 of the scheduler operates between Host and VM 
objects, and Level 2 operates between VM and Task objects. 
Level 1 handles adding and deleting VMs according to the task 
loading ratio; that is, the ratio of the number of utilized VMs to 
the total number of VMs. When the number of tasks grows 
rapidly and the workload increases, VMs are created 
dynamically to avoid overload. When the number of task 
requests declines, VMs are deleted dynamically to avoid wasting 
resources.
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Fig. 3. Construct of two-level strategy. 

Level 2 defines a mapping between Tasks and VMs. The 
following example, which is depicted in Fig. 4, illustrates how 
crucial a mapping can be. There are two VMs and two Tasks. 
The capacities of VMs 1 and 2 are 1000 and 100 MIPS, 
respectively. The lengths of Tasks 1 and 2 are 10 000 and 500 
MI, respectively.  

There are two mappings between the sets of VMs and Tasks. 
The first mapping is that Task 1 is assigned to VM 1 and Task 
2 is assigned to VM 2. In this case, the makespan will be 10 s 
and the average response time will be 7.5 s. The second 
mapping is that Task 1 is assigned to VM 2 and Task 2 is 
assigned to VM 1. In this case, the makespan will be 100 s and 
the average response time will be 50.25 s. The makespan and 
average response time in the first mapping are shorter than those 
in the second mapping.  

This example shows how an appropriate mapping between 
Tasks and VMs can improve processing efficiency. A larger 
task should be assigned to a more powerful VM, and a smaller 
task should be assigned to a less powerful VM. This leads our 
proposed method to use a greedy strategy for determining a 
mapping. In other words, tasks are generally stored in a queue 
with a first-come-first-served (FCFS) service discipline and 
then, based on their computational requirements, they are 
assigned to some available VM with minimum capacity. 

Fig. 4. Mapped strategy between tasks and virtual machines. 

However, when none of the existing VMs satisfies the 
request for a certain task and then creating a new VM may be 
impossible due to overloaded servers, this certain task must wait 
in the queue. The details of the proposed approach is described 
in the following subsection. 

B. Proposed Algorithm 
This subsection describes how the proposed two-level 

scheduling method maps a task to an appropriate VM and how 
it dynamically adds or deletes VMs for unpredictable task 
requests.

Assume that C is an ordered list that stores the requested 
Tasks based on their arrival times. Let V be a set that contains 
all of the existing VMs, and let H be a set that contains all of the 
Hosts. A host is called Predicted-Underloaded-Host if its 
loading is less than a user-defined parameter threshold, q, after 
adding a VM. In our experiments, the threshold q was set to 80%. 
The details of the algorithm are as follows: 

Step 1 is to initialize the parameters and build the 
Datacenters, Hosts, VMs, and Cloudlets. Because both 
Datacenters and Hosts are at the physical tier, both numbers of 
Datacenters and Hosts are assumed to be fixed and unchanged 
for the entire process. 

Steps 2–7 involve performing request tasks stored in the 
ordered list C. The data structure of C is a queue with a FCFS 
service discipline. 

Step 3 performs the second level of the schedule algorithm, 
an appropriate mapping between a requested task and some 
available VM with minimum capacity is determined. This step 
can be described in more detail as follows. Whenever a Task is 
requested, the second level of the scheduler assigns this Task to 
the available VM with the lowest capacity that can satisfy the 
Task. If no such VM exists, then the scheduler creates a new 
VM that has the capacity to execute this Task. However, if all 
the Hosts are overloaded, then the VM will not be created, and 
the Task will stay and wait at the front of the ordered list C. In 
summary, the second level of the scheduler operates between 
VM and Task objects, and the proposed method determines an 
appropriate mapping between Tasks and VMs to increase 
processing efficiency. 
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Steps 4 and 5 perform the first level of the schedule 
algorithm, VMs are added or deleted dynamically according to 
the workload. In Step 4, if all of the VMs are occupied, then to 
avoid the possibility that a future Task may not find an available 
VM, the first level of the scheduler creates a VM. In Step 5, the 
first level of the scheduler deletes any VMs with idle times 
larger than an idle threshold Y whose value is determined by the 
superuser. In our experiments, the idle threshold Y was set to 
100 s. In summary, the first level of the scheduler operates 
between Host and VM objects, and the proposed method 
provides the mechanism to increase resource utilization by 
adjusting the number of VMs dynamically. 

In Step 6, all the information in the Datacenter is updated, 
such as remaining tasks in C and current VMs in V. 

Fig. 5. Two-Level scheduler algorithm. 

Steps 2–7 are repeated if any Task exists in C. Otherwise 
execute Step 8 to output results and destroy all VMs. 

Fig. 5 depicts the proposed algorithm. 

IV. EXPERIMENT 
This section presents the experimental results. The proposed 

method was implemented using CloudSim, the basic concepts 
and architecture of which are introduced in Section II. 

A. Simulation Setting in CloudSim 
This subsection presents the simulation coded in CloudSim. 

Several VMs were initialized to process tasks at the beginning 
of each simulation. The proposed method involved adjusting the 
number of VMs dynamically. The dynamic mechanism added 
or deleted the VMs when user requests were growing or 
decreasing.

Table I presents the parameter settings of entities 
(Datacenter, Host, VM, and Task) in the CloudSim simulations. 
Both the number of Datacenters and number of Hosts were fixed 
in each simulation. One Datacenter and five Hosts were used in 
the entire process of each simulation. The parameters of each 
Host were as follows: 12 CPU cores within each Host; 1024 
MIPS capacity for each CPU; 24 576 MB of memory for each 
Host; and 20 Mbits of bandwidth for each Host. There were two 
groups of VM entities. One group contained more powerful 
VMs with two CPU cores that shared 4096 MB of memory; 
each core had 1024 MIPS of CPU capacity. The other group had 
less powerful VMs, each of which had only one CPU core, 512 
MIPS of CPU capacity, and 2048 MB of memory. All the VMs 
had 1 Mbit of bandwidth. Three more powerful and two less 
powerful VMs were created at the beginning of each simulation. 
The operation style was SpaceShared and the threshold of idle 
time was 100 s for each VM. The SpaceShared policy allocated 
specific CPU cores to specific VMs. 

TABLE I. 
VALUES OF ENTITIES IN EACH SIMULATION

Entities Parameters Values 

Datacenters Number of Datacenters 1 

Hosts 

Number of Hosts 5 

CPU Capacity 1024 MIPS 

Memory 24 576 MB 

Bandwidth 20 Mbits

Number of Cores 12 

VMs 

CPU capacity 512 / 1024 MIPS 

Memory 2048 / 4096 MB 

Bandwidth 1Mbit 

Operation Style SpaceShared 

Number of Cores 1 or 2 

Idle Time Threshold (= Y) 100 s 

Tasks 

Total Number of Tasks 100 / 400 / 700 

Length of Task 10 000 / 20 000 /  
30 000 MI 

Number of Cores Requirement 1 or 2 

Two-Level Scheduler Algorithm 

Step1. Initialize the parameters and build the Datacenters, 
Hosts, VMs, and Cloudlets. 

Step2. While (C is not empty) DO Steps 3-7 

// Step 3 performs the second level of the schedule 
algorithm, an appropriate mapping between a 
requested task (Cloudlet) and some available VM 
with minimum capacity is determined. 

Step3.        If (There is any available VM in V) 
Allocate the first Cloudlet to the VM with 
minimum capacity. 
Remove the first Cloudlet from C. 

                  Else if (There exists a Predicted-Underloaded-Host 
in H) 

                          Create a proper type of VM. 
                          Allocate the first Cloudlet to the VM. 
                          Remove the first Cloudlet from C. 
                 // The first Cloudlet waits at the beginning of C, if 

none of the Hosts is Predicted-Underloaded-Host. 

// Steps 4 and 5 perform the first level of the schedule 
algorithm, VMs are added or deleted dynamically 
according to the workload. 

Step4. // Check the status of Cloudlets and VMs. 
If (The No. of currently executed Cloudlets  

= The No. of the existing VMs) and 
                     (There exists a Predicted-Underloaded-Host in H)
                          Create a new VM. 

Step5.  //Check idle VMs. 
                 Destroy and remove any VMs from V if these VMs 

are idle.  

Step6.  //Update the information. 
                 Update set V, set H and ordered list C. 

Step7.       Go to Step 2. 

Step8. Output results and destroy all VMs. 
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Each experiment involved three test runs with a different 
number of Tasks (Cloudlets): 100, 400, and 700. Each test 
contained a uniform distribution of three different lengths of 
tasks: 10 000, 20 000, and 30 000 MI. For example, the first test 
of each experiment involved 100 tasks, of which 34 tasks had a 
length of 10 000 MI, 33 tasks had a length of 20 000 MI, and 33 
tasks had a length of 30 000 MI. In addition, the three task types 
required a distinct number of CPU cores. The tasks with a length 
of 10 000 and 20 000 MI requested only one core; that with a 
length of 30 000 MI requested two cores. 

B. Experimental Results 
This subsection presents the experimental results to verify 

the effectiveness of the proposed method. The experiments were 
divided into the following two categories: 

1) Compare the proposed scheme with various round-robin            
methods 

2) Investigate the number of VMs used in the proposed 
method 

Because the number and distribution of user requests are not 
predictable in cloud computing, each category of experiments 
involved simulating three cases to represent three unique 
situations: 

Case 1: User requests are distributed periodically. In this 
simulation, the server receives a request every 5 s. 
This case simulates a server that receives user 
requests regularly. 

Case 2: User requests are distributed randomly. In this 
simulation, the server randomly receives a request 
every 1–10 s. This simulates a server that receives 
user requests unpredictably. 

Case 3: The distribution of user requests is divided into three 
stages and the server receives the same amount of 
requests in each stage. The server receives a 
request every 5 s in Stage 1, every 1 s in Stage 2, 
and every 50 s in Stage 3. Note that the number of 
user requests increases rapidly in Stage 2 and 
declines rapidly in Stage 3. 

The first group of experiments involved evaluating the 
performance of the proposed method and three round-robin 
schemes (RR-5VM, RR-15VM, and RR-25VM) in terms of 
response time and resource utilization. RR-5VM, RR-15VM, 
and RR-25VM had 5, 15, and 25 VMs, respectively. Each 
round-robin technique was a static method with a fixed number 
of VMs.  

Each case was tested by three runs with a different number 
of Tasks: 100, 400, and 700; the corresponding response times 
are shown in Figs. 6, 7, and 8. All experimental observations in 
these figures demonstrate that the response times were reduced 
as the number of VMs increased for the round-robin techniques. 
For example, the response time of RR-VM25 was 44 s, RR-
VM15 was 57 s, and RR-VM5 was 257 s for the 100-task test 
run for Case 1 (Fig. 6). This phenomenon occurred for each test 
run with different numbers of Tasks in all three experimental 
cases (Figs. 6–8). 

Fig. 6. Average Response time for Case 1. 

Fig. 7. Average response time for Case 2. 

Fig. 8. Average response time for Case 3. 

Obviously, a limited number of VMs cannot handle an 
extremely high load of Tasks. Some Tasks must wait in a queue 
for available VMs, hence the increase in the response times. 
Among all the round-robin methods, only RR-VM25 performed 
satisfactorily. However, the proposed method was superior to 
RR-VM25 for each test run within each case.  

Figs. 9–11 present the resource utilization performance for 
the three cases, with the results of the three test runs (100, 400, 
and 700 Tasks) shown in the respective figures.  

In Fig. 9, RR-VM5 attained the optimal resource utilization 
rate, because the VMs were too busy to be idle in Case 1. RR-
VM15 and RR-VM25 had more computational capacity for 
handling the tasks, but both of their resource utilization rates 
were less than that of RR-VM5 in Case 1. However, the 
response time of RR-VM5 was the worst (see Fig. 6). Although 
the resource utilization rate of the proposed method was ranked 
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second, the response time of the proposed method was the 
shortest (see Fig. 6). 

Fig. 10 presents the experimental results for Case 2, showing 
that the resource utilization in this case is similar to that in Case 
1. Thus, RR-VM5 attained the optimal performance, followed 
by the proposed method, RR-VM15, and RR-VM25. Notably, 
the response time of RR-VM5 was again the worst (see Fig. 7). 
In summary, the response time performance of the proposed 
method was superior to that of the other methods, and the 
resource utilization was ranked second for both Cases 1 and 2.  

Fig. 11 presents the experimental results for Case 3. The 
proposed method attained the optimal performance for all tests; 
all Task loads and resource utilization rates were higher than 
75%. The reason is that the proposed method adds or deletes 
VMs dynamically according to the number of Tasks; however, 
round-robin techniques, which involve a fixed number of VMs, 
are a static method. The results confirmed the effectiveness of 
the proposed method for Case 3.  

The second category of experiments tested the dynamic 
allocation of the proposed method. Each case used 700 tasks and 
utilized a number of VMs confined to a fixed range. Fig. 12 
presents the results of three cases representative of the three 
situations. The number of VMs ranged between 5 and 13 in 
Case 1 (periodically distributed task requests). The number of 
VMs ranged between 5 and 30 in Case 2, because the random 
distribution of sending requests increased the maximum number 
of VMs to 30. In Case 3, the number of VMs ranged between 2 
and 47. Recall that there are three stages to send tasks in Case 3; 
the number of VMs had to be increased to 47 when the number 
of user requests increased rapidly; the number of VMs was 
reduced to two when the number of user requests dropped 
markedly.  

According to these experimental results, the proposed two-
level scheduling method performed satisfactorily and was able 
to handle various situations, even a complex scenario such as 
Case 3. 

Fig. 9. Resource utilization for Case 1. 

Fig. 10. Resource utilization for Case 2. 

Fig. 11. Resource utilization for Case 3. 

Fig. 12. Number of VMs with 700 cloudlets in each case. 
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V. CONCLUSIONS 
This paper presents an efficient and effective two-level 

scheduling method for cloud balancing. The proposed method 
focuses on improving response time and increasing resource 
utilization. The two-level method assigns each request to some 
available VM that has the minimum capacity to satisfy the 
requirement; more powerful VMs are held in reserve until 
requests with more demanding requirements arrive. This 
strategy attempts to reduce the average response time. The 
proposed method also provides a dynamic mechanism for 
adding or deleting VMs to increase the resource utilization. 

The experiments were implemented using CloudSim. 
According to the results, the proposed algorithm attained very 
satisfactory results for two measures (i.e., response time and 
resource utilization rate) in several simulated scenarios. In the 
future, the proposed method will be extended to improve 
handling resources other than CPUs (e.g., memory or 
bandwidth). 
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