
A Method for System
Interface Reduction Using
N2 Charts
Ofri Becker,1* Joseph Ben-Asher,2 and Ilya Ackerman1

1WALES Ltd., 11 Tuval Street, Ramat-Gan 52522, Israel

2Department of Aerospace Engineering, Technion IIT, Haifa 32000, Israel

A METHOD FOR SYSTEM INTERFACE REDUCTION USING N
2

 CHARTS

Received July 28, 1999; accepted November 16, 1999

ABSTRACT

This work focuses on system interface reduction using N2 charts. The N2 charts method, which

has been first introduced by NASA, and the tools it provides for the systems engineer are

explained and demonstrated here in detail. The system interface reduction problem is

defined and introduced as finding a reduced order partitioning of the system elements that

satisfies either of three different criteria. In order to apply optimization techniques to the

problem of system interface reduction, it is first needed to translate it into a quantitative form.

A transformation method of the problem is developed after which the problem can be solved

by a suitable algorithm. An interesting and useful equivalent approach of the problem in terms

of graph theory is provided. A computerized algorithm is used to demonstrate the solutions

of two different examples. An analysis of this algorithm�s computation complexity and its

runtime as a function of the N2 chart�s order is presented. This tool is planned to assist the

designer of the system in the partitioning and representation of the tasks to be performed.

© 2000 John Wiley & Sons, Inc. Syst Eng 3: 27�37, 2000

1. INTRODUCTION

The method of N2 charts is a modern tool that offers the

systems engineer a useful and efficient mapping of a

system and its interfaces. When using this method, one

defines an N-by-N square matrix, namely a N2 chart, in

which the N different system elements are on the main

diagonal and the interfaces between these elements are

outside the main diagonal and flow clockwise, i.e., first

horizontally in the row and then vertically in the column

as demonstrated in Figure 1. In many cases it is conven-

ient to expand this method and characterize a system

by a hierarchy of N2 charts, dividing the system into

different levels of resolution needed by the designer,

where every element of the higher levels is also a

system and hence may be described by its own N2 chart.

For example, an aircraft (as a system) may consist of

Regular Paper

*Author to whom all correspondence should be addressed (e-amil:

wales@isdn.net.il)

© 2000 John Wiley & Sons, Inc.

27

the following elements: the fuselage, the engine, the

navigation and control, the landing gear, and the fuel

systems, each one of which may be referred to as a

standalone system consisting of its own elements; e.g.,

the fuel system may consist of the tank, the pumps, the

pipes and the fuel etc.

The latest trends of modern design and manufactur-

ing such as modularity, COTS (Commercial off the

Shelf), and outsourcing emphasize the need for efficient

interface design and development. A design process

well planned ahead is a main cause of success, as is said:

�The last of days, for which the first was made� (in the

Jewish Sidur in �Lecha Dodi� by Alkabetz). In a mul-

tielement system design there are usually a number of

vendors involved with many interfaces between differ-

ent elements and vendors. System interface reduction,

i.e., the minimization of the number of interfaces and

sometimes the number of vendors given designer de-

fined constraints, can make the design process more

efficient and cost-effective. Interface reduction is valu-

able also to the reliability of a system. Suppose the

system elements are of much higher reliability and

maturity than its interfaces, such as in situations where

COTS is emphasized, it follows usually that the fewer

interfaces that exist in the operating system, the lower

the probability for its failure. A good example for the

efficiency of interface minimization has been given by

NASA�s APOLLO space project. In Shishko [1995] it

is noted that only 100 wires were needed to link the

APOLLO spacecraft to the Saturn launch vehicle, and

it is emphasized that a single person could fully under-

stand the interface and cope with all the effects of a

change on either side of the interface, this fact being one

of the main reasons for the success of the whole project.

A method for system interface reduction using N2

charts has been developed and is explained in this paper.

2. THE METHOD OF N2 CHARTS

The method of N2 charts is used in order to map the

different elements and interfaces that exist in a system.

This is done by:

1. Defining the different elements and placing them

on the main diagonal of an N-by-N matrix, where

N is the number of elements defined. The base-

line matrix should separate the different elements

up to the highest possible resolution in order to

 Figure 1 A general N
2
 chart.

28 BECKER, BEN-ASHER, AND ACKERMAN

enable the mapping of all the interfaces between

them.

2. Defining the interfaces that flow from each ele-

ment to another, and placing them in the other

cells of the matrix so that they flow clockwise,

i.e., first horizontally in the row and then verti-

cally in the column.

This matrix is the N2 chart of the system. A general N2

chart is demonstrated in Figure 1.

It should be noted that N2 gives a pairwise-only

interrelationship prospective of the system elements

and fails to recognize relations between three and more

components (e.g., modern aircraft data-bus with multi-

ple terminals).

There are several different ways of mapping a sys-

tem as an N2 chart, noting that sometimes some ele-

ments can be grouped into one from the designer�s or

the systems engineer�s point of view. For example, let

the elements be the different components of a system to

be designed, and let the interfaces be the hardware,

software, and information needed to be transported

between the different teams or vendors that design and

manufacture different elements; thus grouping the ele-

ments into one could mean that these two or more

components of the system are to be designed and manu-

factured by the same vendor, hence removing the need

for hardware, software, and information transport be-

tween the design and manufacturing processes of these

grouped elements. Moreover, if grouped elements have

a same kind of interface with another element of the

system, then it is usually practical to consider only one

interface of that kind between the group and the other

element. For example, if the control system (e.g., ele-

ment #1) and the internal electricity system (element #2)

of an aircraft (the system) are manufactured by the same

vendor (grouped elements), then the information about

the aircraft power distribution (an interface) has not to

be transported between vendors, and the company (an-

other group of elements) that manufactures electrical

cables for the aircraft has to send only one truck (an

interface) containing cables to one vendor instead of

two different trucks to different vendors. Grouping

elements creates a partitioning of the system into

Blocks such that the N2 chart is changed and its order

is reduced. The new order is the number of Blocks of

grouped elements defined. Note that if an element is not

grouped with others, then it is considered as a single

element Block. The interfaces that appear in the new

chart are only the ones that flow between the Blocks.

For example, let us suppose that elements #2 and #3 are

grouped into one block and elements #4 and #5, up to

#N are grouped into another block, while element #1 is

left as a single element block; then the N2 chart of order

N from Figure 1 collapses into a new chart of order 3 as

shown in Figure 2.

Were grouping all elements into one block possible,

such that they can be designed and/or manufactured by

the same vendor, then the N2 chart could collapse into

a single block matrix; but in most real cases the possi-

bility of designing or manufacturing elements by the

same vendor is subject to constraints. Some combina-

tions of elements can be under the same vendor�s re-

sponsibility while some others cannot, due to various

considerations such as vendors� expertise, manpower

availability, schedule, cost, etc. As an immediate result,

not all the grouping manipulations of the N2 chart are

valid, and thus the interface reduction problem is not

one of a trivial solution.

3. THE PROBLEM OF SYSTEM INTERFACE
REDUCTION

3.1. Problem Definition

Suppose one has defined a baseline N2 chart of a system

including all elements as separated items, all interfaces

between them, and all grouping constraints considering

whether each pair of elements can or cannot be grouped

together. Let us search for an optimal valid partitioning

of the system by means of interface reduction. Three

optimization criteria can be formulated:

1. Lowest order partitioning (disregarding the num-

ber of interfaces).

2. Minimal number of interfaces for a given order

of partitioning.

3. Overall minimal number of interfaces.

Figure 2 A reduced N
2
 chart.

A METHOD FOR SYSTEM INTERFACE REDUCTION USING N
2
 CHARTS 29

3.2. Transformation of the Problem into a
Quantitative Form

The nature of optimization is to find a minimum or

a maximum value of a function calculated over a field

of variables, which may reflect to constraints. In order

to apply optimization techniques to the problem of

system interface reduction, it is first necessary to trans-

late the problem into a quantitative form. This is done

as follows:

1. First define serial numbers 1, 2, …, N for each

element, where N is the baseline order of the

system dealt with.

2. Define one binary bit for each one of the different

interfaces existing in the system; thus a binary

word can describe a checklist of the existing

interfaces flowing from one element to another.

The order of the different bits within the binary

word is arbitrary but must be used consistently.

Let R be the number of different interfaces exist-

ing in the system; then the interface binary word

is of length R.

3. Given the N2 chart and the partitioning con-

straints, define two numerical matrices, namely,

the Interface Binary Matrix (IBM), describing

the interfaces by the binary representation, and

the Grouping Constraints Matrix (GCM), de-

scribing the partitioning constraints. In the Inter-

face Binary Matrix the diagonal elements are

zeros, while the general element in row i and

column j for i ≠ j is a binary word of length R

containing a one�zero checklist of the different

interfaces that flow from element i to element j,

namely, 1�s at all bits that represent the existing

interfaces and 0�s at bits representing those that

do not exist there.

 In the Grouping Constraints Matrix, the diago-

nal is zeros and the general element in row i and

column j is �1� if the designer determines that

elements i and j can be grouped together, and �0�

if they cannot. For example, if there is no vendor

that is able to design both the aircraft�s jet engine

(say element i), and the air inlet (say element j),

then these two elements cannot be grouped to-

gether and should provide a zero in the ij and ji

cells of GCM. Note that GCM is necessarily

symmetric while IBM is not. An example for

each one of the matrices is given in Figures 3(a)

and 3(b).

This transformation of the problem into a numerical

form is a major stage in the method, after which the final

solution is within reach by the operation of an optimi-

zation algorithm.

4. AN EQUIVALENT APPROACH OF THE
PROBLEM IN TERMS OF GRAPH THEORY

The Grouping Constraints Matrix is equivalent to the

Adjacency Matrix known in graph theory [Harary,

1972; Deo, 1974], indicating the existence of arcs be-

tween the different vertices of a graph with the vertices

representing the elements and the existing arcs repre-

senting the pairs of elements that can be grouped to-

gether. The graph that is represented by the GCM from

Figure 3(b) is shown in Figure 4.

Figure 3(b) An example for a Grouping Constraints Matrix

of order 5.

Figure 4 The graph represented by the GCM in Figure 3(b).

Figure 3(a) An example for an Interface Binary Matrix for

a system of order 5 with 4 different interfaces.

30 BECKER, BEN-ASHER, AND ACKERMAN

In the same manner most of the concepts of the

defined quantitative form have an equivalent in graph

theory, as is also for the optimization criteria.

• A group of elements is equivalent to the subgraph

including all vertices that represent this group�s

elements and all the existing arcs between them.

• A valid block is equivalent to a complete sub-

graph, i.e., a subgraph in which an arc exists

between each pair of vertices. (e.g., the triangle

formed by the vertices 2, 3, and 5 and by the arcs

connecting between them in Figure 4).

• The minimal order partitioning criterion is

equivalent to finding a minimal number of dis-

joint subgraphs that combine together all the ver-

tices of the GCM�s equivalent graph.

In Harary [1972] it is shown that the nondiagonal

entries of a matrix which is the power n of the Adja-

cency Matrix, where n is an integer, represent the num-

ber of paths of length n existing between each two

vertices. Using this theorem, one can indicate whether

a graph is connected or not by a look at the powers 1,

2, …, N-1 of the adjacency matrix. If a specified non-

diagonal entry (i, j) is zero in all of these matrices, then

there exists no path between vertices i and j, which

means that the graph is not connected. Obviously, when

this occurs, there will be more such entries, and the

graph can then be separated into its disconnected blocks

being subgraphs, each of which is a connected one. This

realization of separation of the problem, if it exists, is

valuable for the system interface reduction process. The

solution of one problem of a high order is much more

complicated and time-consuming than the solution of

the separate lower order problems all together as is

analyzed further in this work.

In order to realize the equivalence of the interfaces

minimization criteria to a graph theory problem, it is

necessary to define a new labeled and directed multi-

graph, i.e., a graph in which more than one arc may exist

between a pair of vertices and every arc is labeled and

directed. The problem is then to divide the GCM�s

graph into complete subgraphs (the number of which

being the order of partitioning) such that the same

partitioning of the IBM�s graph minimizes a suitable

functional that counts the number of interfaces. The

graph representing the IBM from Figure 3(a) is shown

in Figure 5. It should be remarked that for generality we

Figure 5 The labeled and directed multigraph represented

by the IBM from Figure 3(a).

Figure 6(a) The Grouping Constraints Matrix for problem

#1.

Figure 6(b) The Interface Binary Matrix for problem #1.

Figure 7(a) The Grouping Constraints Matrix for problem

#2.

A METHOD FOR SYSTEM INTERFACE REDUCTION USING N
2
 CHARTS 31

allow for the same interface to flow both ways (e.g., the

leftmost bit from vertex 1 to 2 and back) as happens

sometimes in real systems, e.g., a launch signal return-

ing from a smart bomb back to the communications and

control center.

5. A COMPUTERIZED OPTIMIZATION
ALGORITHM

Having translated the problem into a numerical form, it

can be solved by a suitable algorithm. In simple cases,

e.g., when the baseline N2 chart is of very low order (up

to 3 or 4) or when there exist very few interfaces in the

system, the solution can be found intuitively without

using any software; but, as it appears in many cases, a

system may contain a much larger number of elements,

many interfaces, and a complicated combination of

grouping constraints. In the latter case, a computerized

algorithm is needed in order to solve the problem within

a reasonable time. The GCM and IBM of a relatively

simple case (problem #1) are demonstrated in Figures

6(a) and 6(b), while those of a much more complicated

case (problem #2) are shown in Figures 7(a) and 7(b).

In order to get the feeling of the different complexi-

ties of interface reduction problems, the reader is in-

vited to try and solve the problems of which numerical

matrices are presented. Obviously, problem #1, which

is of order 3, and involves only two different interfaces,

does not necessarily require the use of a computer in

order to be solved in a short time, while problem #2,

which is of order 9 and involves five different interfaces

(still a relatively small number for this order), could

surely be solved faster using a computer rather than the

human brain only.

A computer algorithm that solves the interface re-

duction problem, given the Grouping Constraints Ma-

trix, and the Interface Binary Matrix has been devel-

oped. It consists of the following steps:

1. Read the GCM and the IBM.

2. Input the type of optimization criterion (minimal

order/minimum interfaces for a given or-

der/global minimum interfaces).

3. According to the Grouping Constraints Matrix,

create a pool of all valid blocks, i.e., groups of

elements, which can be grouped together (pair-

wise), including all single element groups. For

efficiency purposes, it is recommended to sort

this pool by size (number of elements in a valid

block). An identification whether a group of two

or more elements is a valid block is made by

looking at the minor that refers to all of its ele-

ments in the Grouping Constraints Matrix. Only

if apart from its main diagonal (which is all

zeros), this minor contains 1�s only (equivalently

equal to 1k � k-Ik � k, where k is the number of

elements in the group and 1k � k is a k-by-k matrix

of 1�s), then the group it refers to is a valid block.

The pool of valid blocks for the Grouping Con-

straints Matrix presented in problem #1 is shown

in Figure 8.

4. Find the largest independent group, namely, the

group containing a maximum number of ele-

ments possible in which no pair can be grouped

together; this group is obviously not a valid

block. A group of elements is identified as inde-

pendent by its minor being all zeros. It is easily

understood that the size of the largest inde-

pendent group is a lower bound for the possible

partitioning order of the system, although it is not

necessary that this order of partitioning is achiev-

able. In the example of problem #1, the largest

independent group is {1,2} the size of which is

 Figure 7(b) The Interface Binary Matrix for problem #2.

32 BECKER, BEN-ASHER, AND ACKERMAN

2, and thus there does not exist in this case a

partitioning of an order less than 2.

5. Define Omin as the lower bound order found in step

4, and let ORDER = Omin.

6. Begin a search throughout the pool created in step

3, for ORDER different valid blocks that include

exactly all the different elements (i.e., with a

single representation of each and every element).

The first combination found will represent a

minimal order partitioning of the system. If all

the combinations of ORDER valid blocks do not

meet the mentioned criteria for a partitioning,

increase ORDER by 1 and search again. Two

different partitionings of order 2 are found in the

example problem, {{1,3}, {2}} and {{2,3},

{1}}, the first of which is found depending on the

sequence of the search.

7. After the minimal order partitioning is found, it

matters whether the optimization is to be made

by means of minimal order or by means of inter-

face reduction. If the former is the case, then

output the partitioning that was found and stop.

Otherwise, it is necessary to count the number of

interfaces in this partitioning and continue to

search throughout all the relevant values of OR-

DER, for all valid partitionings. Note that only

interfaces that flow between different blocks of

the partitioning are counted, with attention to the

fact that if between two blocks of a partitioning

flows the same interface more than once in the

same direction, then it is counted only once; thus

the new binary word flowing from new block i to

new block j is the output of a logical inclusive

OR, operating on all the old binary words from

elements in block i to those in block j according

to the partitioning. This is the main justification

for using the binary system to represent the inter-

faces. In the example problem #1 the number of

interfaces for the partitioning {{1,3}, {2}} is

two, one of which flows from element #1 (in new

block #1) to element #2 (in block #2 as a single

element) and the other flows from element #2 to

element #3 (in new block #1).

8. Continue the search up to the maximal order of

partitioning needed by the designer (obviously, if

the order was given then the search is restricted

to it).

The optimization algorithm is described by the flow-

chart given in Figure 9.

6. AN ANALYSIS OF THE OPTIMIZATION
ALGORITHM COMPLEXITY

A practical question about the system interface reduc-

tion process is how long does it take by means of

computational operations. The elementary operation

that is the major time consumer is the check whether a

combination of valid blocks from the pool is a partition-

ing of the system. This check can be done by a check-

sum comparison or by elimination of disqualifying

criteria using IF statements. Either way the number of

combinations to be checked strongly depends on the

number of valid blocks in the pool and on the order of

partitioning searched for. Apparently CO
P which equals

to P!/(P � O)!O! different combinations of valid blocks

need to be checked, where P is the total number of valid

blocks in the pool and O is the order of partitioning.

Note that the maximal possible number of valid blocks

in the pool of a Grouping Constraints Matrix of order

K, Pmax(K) is CK
K + CK−1

K + ⋅⋅⋅ + C1
K = 2K − 1 (when all

pairs of elements can be grouped and thus all groups of

size K, K�1, K�2, …,1 are valid blocks). The efficiency

of the algorithm can be improved significantly by real-

izing disqualification of a combination as a partitioning

during its creation and jumping directly to the next

qualified partial combination. For example: During the

creation of the combination {{1,2,3}, {2,3,4}, {4,5}},

one can realize that its first two valid blocks {1,2,3} and

{2,3,4} can never sit together in a partitioning due to

duplication of elements. Moreover, if, for example, the

baseline system is of order 6, then the sum of the sizes

of these two mentioned valid blocks, being already 6,

is too large for two blocks of a partitioning of order 3,

regardless of the third valid block; therefore, it is rea-

sonable to seek for the next qualified second valid block

of the combination (instead of the valid block {2,3,4}),

skipping many disqualified combinations without fur-

ther checks. It is easily understood that, as the sum of

the sizes of valid blocks in a partial combination can be

too large, it can also be too small given that the pool is

sorted by size. Determination of the exact number of

Figure 8 The pool of valid blocks for problem #1.

A METHOD FOR SYSTEM INTERFACE REDUCTION USING N
2
 CHARTS 33

 Figure 9 The optimization algorithm.

34 BECKER, BEN-ASHER, AND ACKERMAN

checks that are saved due to the disqualification of

combinations during their creation is not within the

scope of this work. A time consumption evaluation of

the optimization algorithm operation as a function of

the baseline order of the system has been investigated

by running the optimization algorithm (written in MAT-

LAB) many times for different random GCMs. The

results of this evaluation shown in Figures 10 and 11

show a nearly exponential dependence of the runtime

on the baseline N2 chart�s order. For minimal order

partitioning criterion only, the runtime is multiplied by

a factor of about 2 for every increase of the baseline N2

chart�s order by 1, while, for minimum interfaces par-

titioning for all possible orders, the nearly exponential

behavior remains but the runtime growth factor with the

baseline order is about 5.

7. RESULTS

An output of the solutions of problems #1 and #2 by the

computerized optimization algorithm is shown below:

Problem #1
Grouping constraints matrix =
 0 0 1
 0 0 1
 1 1 0

Interface matrix (in decimal values) =
 0 2 0
 0 0 1
 0 0 0

Run #1: Minimal order partitioning

Solution:

Order =
 2

Partitioning (blocks in rows):
 1 3

 2

Run #2: Minimum interfaces for all
possible orders

Solution:

Order =
 2

Partitioning (blocks in rows):
 2 3

 1

Number of interfaces:
 1

Problem #2

Figure 11 Optimization algorithm average runtime for

minimum interfaces partitioning for all possible partitioning

orders vs. baseline order

Figure 10 Optimization algorithm average runtime for

minimal order partitioning vs. baseline order.

A METHOD FOR SYSTEM INTERFACE REDUCTION USING N
2
 CHARTS 35

Grouping constraints matrix =
 0 0 1 0 1 1 1 0 1
 0 0 1 1 0 0 1 1 0
 1 1 0 0 1 0 1 0 0
 0 1 0 0 0 0 0 1 1
 1 0 1 0 0 1 1 0 1
 1 0 0 0 1 0 1 1 0
 1 1 1 0 1 1 0 1 0
 0 1 0 1 0 1 1 0 1
 1 0 0 1 1 0 0 1 0

Interface matrix (in decimal values) =
 0 0 21 28 0 0 8 0 0
 1 0 16 28 0 8 0 0 4
 1 0 0 8 16 16 0 0 24
 0 0 10 0 20 0 12 10 17
 4 11 29 11 0 22 25 8 0
 0 0 10 12 17 0 12 13 21
 8 16 16 17 0 0 0 16 28
 15 13 8 0 1 16 0 0 15
 16 0 0 0 12 0 14 0 0

Run #1: Minimal order partitioning

Solution:

Order =
 3

Partitioning (blocks in rows):
 1 5 6 7

 4 8 9

 2 3

Run #2: Minimum interfaces for orders
3 and 4

Solution:

Order =
 3

Partitioning (blocks in rows):
 1 5 6 7

 4 8 9

 2 3

Number of interfaces:

 25

Order =
 4

Partitioning (blocks in rows):
 1 5 6 7

 4 8 9

 2

 3

Number of interfaces:
 34

8. CONCLUSIONS

The different elements and interfaces of a system can

be mapped efficiently using the method of N2 charts.

The system interface reduction problem is to find a

reduced order partitioning of the system elements such

that it satisfies any of the optimization criteria that have

been formulated, subject to designer defined grouping

constraints. This problem is translated into a quantita-

tive form by defining two numerical matrices, the GCM

(Grouping Constraints Matrix) and the IBM (Interface

Binary Matrix) and solved by a suitable computer algo-

rithm which creates a pool of all valid grouping blocks

of elements and searches throughout it for the optimal

partitioning(s). In order for the algorithm to be as effi-

cient as possible, a great deal of attention must be paid

to the avoidance of redundant operations. This is impor-

tant especially during the creation of combinations of

valid blocks, where a partial combination can be indi-

cated as disqualified from being a part of a partitioning

regardless of its remaining valid blocks. An analysis

shows an approximately exponential growth of the al-

gorithm�s runtime with the increase of the baseline

order.

The solutions of the problem by means of each one

of the three different optimization criteria has a practi-

cal use in system design. The minimal order partition-

ing, for which only the GCM is needed, can determine

the minimal number of vendors that should take part in

a process. The minimum interfaces partitioning for a

36 BECKER, BEN-ASHER, AND ACKERMAN

given order, and the global minimum interface parti-

tioning can be used:

1. In outsourcing the system elements among ven-

dors in cases where interfaces between vendors

are costly.

2. For efficient representation of the system during

its development.

3. For improving the reliability of a system espe-

cially in cases where the maturity and reliability

of the system elements is much higher than the

maturity and reliability of its interfaces, such as

situations where COTS is emphasized.

REFERENCES

B.S. Blanchard and W.J. Fabrycky, Systems engineering and

analysis, 3rd ed., Prentice Hall, Englewood Cliffs, NJ,

1998.

N. Deo, Graph theory with applications to engineering and

computer science, Prentice Hall, Englewood Cliffs, NJ,

1974.

F. Harary, Graph theory, Addison-Wesley Series in Mathe-

matics, Addison-Wesley, Reading, MA, October 1972.

T.C. Robertson (Editor), INCOSE systems engineering hand-

book, January 1998.

R.S. Shishko (Editor), NASA systems engineering handbook,

SP-6105, June 1995.

Ofri Becker has been an aerospace engineer at WALES Ltd. in Ramat-Gan, Israel since 1999. He earned

his B.Sc. and M.Sc. at Technion IIT in Haifa, Israel in 1997 and 1999, respectively.

Joseph Ben-Asher has been an associate professor at Technion IIT in Haifa, Israel since 1998. He earned

his B.Sc. at Technion ITT in 1978 and his M.Sc. and Ph.D. at Virginia Polytechnic Institute and State

University in 1986 and 1988, respectively. He was formerly employed at IAF (1978�1984) and IMI

(1984�1997).

Ilya Ackerman has been a Senior Consultant in Systems Engineering and Marketing at WALES Ltd. in

Ramat-Gan, Israel since 1997. He earned his B.Sc. at Technion IIT in Haifa, Israel in 1977 and his MBA

at Ben-Gurion University in Israel in 1997. He was employed with IAF from 1977 to 1994. He was the

Assistant to the R&D Attaché at the Embassy of Israel in Washington, DC in 1994�1996.

A METHOD FOR SYSTEM INTERFACE REDUCTION USING N
2
 CHARTS 37

