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Abstract—Process mining refers to the discovery, conformance, and enhancement of process models from event logs currently

produced by several information systems (e.g. workflow management systems). By tightly coupling event logs and process models,

process mining makes it possible to detect deviations, predict delays, support decision making, and recommend process redesigns.

Event logs are data sets containing the executions (called traces) of a business process. Several process mining algorithms have been

defined to mine event logs and deliver valuable models (e.g. Petri nets) of how logged processes are being executed. However, they

often generate spaghetti-like process models, which can be hard to understand. This is caused by the inherent complexity of real-life

processes, which tend to be less structured and more flexible than what the stakeholders typically expect. In particular, spaghetti-like

process models are discovered when all possible behaviors are shown in a single model as a result of considering the set of traces in

the event log all at once.To minimize this problem, trace clustering can be used as a preprocessing step. It splits up an event log into

clusters of similar traces, so as to handle variability in the recorded behavior and facilitate process model discovery. In this paper,

we investigate a multiple view aware approach to trace clustering, based on a co-training strategy. In an assessment, using

benchmark event logs, we show that the presented algorithm is able to discover a clustering pattern of the log, such that related traces

result appropriately clustered. We evaluate the significance of the formed clusters using established machine learning and process

mining metrics.

Index Terms—Clustering, co-training, multiple view learning, process mining

Ç

1 INTRODUCTION

INFORMATION systems are becoming more and more inter-
twined with the operational processes they support. As a

result, a huge volume of events is recorded by several of
today’s enterprise systems. Nevertheless, organizations still
have problems extracting useful information on process
executions, by analyzing this abundance of event data. The
goal of process mining is to extract process-related informa-
tion by observing events recorded in event logs [1]. An
event log is a bag of process executions of a business pro-
cess. A process execution is recorded as a trace. A trace is
defined as an ordered list of activities invoked by a process
execution from the beginning of its execution to the end.
Process mining can be used to measure the conformance of
traces to a prescribed process model or to enhance a known
process model with additional information extracted from
event logs. However, the crucial role of process mining is
discovering abstract process models (e.g. Petri nets) from
event logs. These models, which may also be extracted
incrementally [2], can then be used for a variety of reasons,
when redesigning processes and introducing new informa-
tion systems. In particular, they can be used for discussion,
documentation, performance analysis, as well as the enact-
ment of the actual process executions.

Discovering the actual process that is being executed may
be particularly difficult in several real-life environments,

due to the highly flexible, complex nature of processes,
which tend to be less structured than the stakeholders
typically expect. Healthcare, product development and cus-
tomer support are some of the examples of these flexible
environments. Process mining algorithms may have prob-
lems dealing with such unstructured processes and generate
spaghetti-like process models [3], which are hard to under-
stand. This is caused by the inherent complexity of pro-
cesses, while all possible behaviors are shown in a single
diagram. An approach to overcome this limit is to cluster
the traces, such that each of the resulting clusters corre-
sponds to coherent sets of related process executions, which
can each be significantly represented by a process model.

Traditional studies on trace clustering can be classified
in two categories: (1) Studies that operate on the traces
transformed into a vector space model [3], [4], [5]. Here clus-
tering is done using distance-based machine learning algo-
rithms with different metrics (e.g. euclidean distance and
Jaccard distance) in the vector space. (2) Studies that operate
on the traces as-is, by applying clustering algorithms with
sequence distance metrics (e.g. Levensthein distance) [6],
[7], [8]. In this paper, we account for considerations repor-
ted in [9] and resort to a vector space approach to address
the trace clustering problem. Log traces are mapped into a
feature space, where computationally efficient vector-based
algorithms can be used.

Themain issue of a vector space approach is the definition
of the vector space model. As discussed by van der Aalst [1],
event logs contain a wealth of information related to several
perspectives, such as the control-flow perspective (ordering
of activities), the organizational perspective (organization of
resources), the trace perspective (frequency of activities)
and the performance perspective (time performances).While
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the main focus of the control-flow data is on modeling con-
structs that can be identified during process modeling, the
organizational data can be used to gain insight into typical
work patterns and organizational structures, the activity
data can be used to better understand decision making and
analyze differences between traces, timestamps can be used
to diagnoze performance-related problems (e.g. bottlenecks).
It is noteworthy that these different perspectives may gener-
ate distinct vector space models of traces. These are called
trace profiles (or views). Song et al. [5] have defined features
associated to these trace profiles and considered these fea-
tures to address the trace clustering problem. However, they
have used each trace profile independently, in order to com-
pute a profile-specific clustering pattern of the traces proc-
essed. More recently, van der Aalst [1] has promoted the
idea that these different perspectives can also bemerged into
a single model, providing an integrated view of the process,
in order to perform “what if” analysis using simulation. We
decided to follow this idea and address the trace clustering
problem by exploring and exploiting these multiple profiles
simultaneously. However, it is improper to concatenate fea-
tures of several profiles into one long vector, because they
have different properties, and simply concatenating them
into a high-dimensional feature vector will suffer from the
so-called curse of dimensionality [10]. The multiple view
clustering approach is investigated here, in order to improve
process discovery by a better cluster partition of the traces
than single view clustering.

Multiple view clustering [11], [12], [13] has become pop-
ular in recent years. It is considered a viable solution to the
curse of dimensionality problem in classification when mul-
tiple views of data are available [10]. However, to the best
of our knowledge, it has never been applied to process
tasks. Thus, we have decided to investigate multiple view
clustering in process mining, in order to bridge the gap
between the clustering bias and the choice of the process
mining perspective bias from which traditional clustering
approaches may suffer. We discover a consensus clustering
pattern of the processed traces, so to deal with possible
curse of dimensionality issue, when processing multiple
perspectives (profiles) of data simultaneously. We work on
the assumption that the truth underlying the clustering pat-
tern would assign a trace to the same cluster independently
of the trace profile. Therefore, we decide to use simulta-
neously all trace profiles by bootstrapping the clusterings of
different profiles using information from one another. This
is done with a co-training strategy [14], in order to constrain
the search for the clusterings that agree across the profiles.

Co-training was originally introduced (and is still mostly
used) in the setting of semi-supervised learning [15], [16],
[17] to process datasets, whose features are separated into
two (or more) disjoint sets, which are regarded as indepen-
dent data profiles. In this paper, we take the co-training
approach to an unsupervised learning setting. Unsuper-
vised co-training was already investigated in [18], for gen-
eral-purpose multiple view spectral clustering, but here it is
adapted to the event log context. At each iteration of the
unsupervised co-training process, multiple trace clusterings
are trained independently from multiple trace profiles. The
clustering from one profile is used to constrain the similari-
ties used for the other profiles. By iteratively applying

this approach, clusterings of considered profiles converge
towards a unique clustering pattern.

The specific contributions of this paper are in: (1) The use
of several trace profiles in multiple view learning. (2) The
development of a multiple trace profile aware clustering
algorithm, which adapts the iterative co-training strategy,
originally defined in [18], to the process mining setting.
We formulate a general co-training strategy that can be run
with any distance-based partitioning algorithm. We use
multiple (more than two) trace profiles, in order to compute
clustered traces. We use the Silhouette width to formulate
a stopping criterion of the iterative procedure. (3) An exten-
sive evaluation of the effectiveness of the proposed
approach on trace clustering problems in several bench-
mark event logs. The paper is organized as follows. Section 2
reports preliminary concepts. Section 3 describes related
work. Section 4 illustrates the proposed algorithm, while
Section 5 reports the analysis of its time complexity.
Section 6 describes the datasets, the experimental setup and
discusses the relevant results. Finally, Section 7 draws some
conclusions and outlines some future work.

2 PRELIMINARY CONCEPTS

In this section, we report the basic concepts of event, trace,
event log, profile and feature, as well as introduce the ideas
behind multiple view clustering and trace clustering.

The basic assumption is that the event log contains infor-
mation on activities executed for specific traces of a certain
process type, as well as their resources and durations. An
event � is characterized by a set of mandatory characteristics,
that is, the event corresponds to an activity, has a timestamp
which represents date and time of occurrence and is
triggered by a resource. An event log is a set of events.
Each event in the log is linked to a particular trace and is
globally unique. A trace T represents the execution of a busi-
ness process instance. It is a finite sequence of distinct
events, such that time is non-decreasing in the trace (i.e.
for 1 � i < j � lengthðT Þ : timestampð�iÞ � timestampð�jÞ).
An event log L is a bag of traces. An example reporting a
fragment of an event log is reported in Table 1.

The traces of an event log can be characterized by pro-
files, where a profile is a vector of features (vector space
model) that describe the traces from a specific perspective.

TABLE 1
A Fragment of an Example Event Log

TraceId Activity Timestamp Resource

1 Register request (R) 2010-12-30:11:02 Pete
1 Examine throughly (ET) 2010-12-31:10:06 Sue
1 Check ticket (CT) 2011-01-05:15:12 Mike
1 Decide (D) 2011-01-06:11:18 Sara
1 Reject request (RR) 2011-01-07:14:24 Pete

2 Register request (R) 2010-12-30:11:32 Mike
2 Check ticket (CT) 2010-12-30:12:12 Mike
2 Examine causally (EC) 2010-12-30:14:16 Pete
2 Decide (D) 2011-01-05:11:22 Sara
2 Pay compensation (PC) 2011-01-08:12:05 Ellen

3 . . . . . . . . .

Each event is linked to a specific trace. It corresponds to an activity, has a time-
stamp and is triggered by a resource.
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Every feature corresponds to a metric that assigns a numeric
value to each trace. Thus, profiling an event log corresponds
to defining a function that assigns each trace of the event log
with a vector of values, measured one for each profile fea-
ture. The resulting vectors can be used to calculate the simi-
larity between any couple of traces, using a vector space
distance metric.

Multiple view learning is a direction in machine learning
with good theoretical underpinnings and great practical
success [19]. The main challenge of multiple view learning
is to develop algorithms that use multiple data views (i.e.
profiles) simultaneously, given the diversity of the feature
set in each view. In clustering, it exploits multiple views,
which could also have very different statistical properties,
in order to find groups of examples that conform to similar
behavior with respect to the several data views considered.

Trace clustering is used to separate traces into different
groups, for which a more accurate and comprehensible pro-
cess model can be discovered. Trace clustering is not differ-
ent from regular clustering, aside from the input: an event
log which is a collection of traces.

3 RELATED WORKS

Several studies in recent literature concern either multiple
view clustering or trace clustering.

3.1 Multiple View Clustering

Long et al. [20] identify two directions for seeking solutions
to multiple view clustering: centralized and distributed.
Centralized algorithms make use of multiple representa-
tions simultaneously, in order to mine directly a single par-
titioning of the data. Distributed algorithms make use of
multiple representations separately, in order to learn indi-
vidual clustering patterns from each separate representation
and, subsequently, combine the individual clusterings to
produce a final single partitioning.

In the centralized framework, studies in multiple view
clustering mainly extend well-known clustering algorithms,
in order to use multiple independent feature sets simulta-
neously. Bickel and Scheffer [11] develop both a two-view
EM and a two-view k-means algorithm under the assump-
tion that the views are independent. de Sa [21] defines a
two-view spectral clustering algorithm that, based on the
minimizing-disagreement idea, creates a bipartite graph of
the views. This algorithm also assumes that the two views
are independent. Long et al. [22] propose a general model
for multiple view clustering, which handles more than two
views and representations from both vector and graph
spaces. Zhou and Burges [23] define an algorithm that gen-
eralizes the single view normalized cut to the multiple view
case. Tzortzis and Likas [24] present a multiple view cluster-
ing algorithm based on the convex mixture model. Cleuziou
et al. [25] propose a collaborative approach, based on fuzzy
k-means, which aims at minimizing the inertia of the fuzzy
clusters in each view and penalizing the disagreement
between any pairs of views. Kumar and Daum�e [18] formu-
late a multiple view clustering algorithm in the co-training
learning style. They use co-training, in order to fit two views
through a spectral clustering algorithm. Kumar and Daum�e
[18] use the spectral information from one view to constrain

the similarity graph used for the other view. They show
that, by iteratively applying this approach an a-priori
defined number of times, the clusterings of the two views
tend towards each other. Tao et al. [26] investigate a variant
of the co-training algorithm described in [18], which inte-
grates spectral embedded clustering.

In the distributed framework, studies in multiple view
clustering mainly investigate the idea of defining a function,
in order to make the clusterings computed from different
model spaces comparable. Long et al. [20] define several clus-
ter mapping functions that look for the optimal clustering
pattern from multiple models of multiple representations. It
is noteworthy that this idea of looking for mapping multiple
clusterings into a singemodel is actually investigated in clus-
tering ensemble learning. In particular, ensembles combine
different component clusterings, in order to compute a better
final partition, via a consensus function. Strehl and Ghosh
[27] define three different consensus functions: the cluster-
based similarity function, the hyper-graph partitioning algo-
rithm and meta-clustering. Cheng and Zhao [28] apply clus-
tering ensembles to multiple view learning problems. Fred
and Jain [29] define a split-and-merge ensemble strategy for
multiple view clustering. They compute single-view cluster-
ing patterns (split) and use them to generate view-aware
cluster features (i.e. whether an example belongs to a cluster
or not) of a new consensus clustering problem (merge). In
particular, the single-view clusterings are combined in a con-
sensus pattern by clustering data described by the cluster-
based features originating from the multiple views proc-
essed. Chaudhuri et al. [12] describe a subspace learning
algorithm based on Canonical Correlation Analysis, in order
to generate a cluster pattern from uncorrelated data views.
Cai et al. [13] derive a large-scalemultiple view k-means clus-
tering algorithm, which can be parallelized and performed
onmulti-core processors for large data analysis.

3.2 Trace Clustering

Several approaches to compute clustered traces are investi-
gated in the process mining literature. Many studies apply a
kind of translation of the event log into a vector space
model, such that existing vector space distance metrics can
be computed between each couple of traces and existing dis-
tance-based clustering algorithms can be performed. Alter-
natively, algorithms exist that define the distance between
two traces without translation into a vector space context.
Finally, there are model-based clustering algorithms that are
formulated for trace clustering problems as well.

Trace clustering problems are investigated in [4], where
Greco et al. formulate an iterative hierarchical algorithm to
refine the process model. They use a vector space model
considering both the activities and their transitions, in order
to cluster the traces of an event log. They adopt the k-means
algorithm as a base clustering algorithm. Song et al. [5] for-
mulate a multitude of so-called trace profiles, each one can
be selected, in order to determine a vector space model asso-
ciated with the traces of an event log. Although they define
many trace profiles, they use each profile independently for
computing profile-specific clustered traces. Bose and Aalst
[3] extend sequence-based learning approaches, in order
to improve the way the control-flow context information is
taken into account to construct the vector space model. They
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find sub-sequences of activities, also of different lengths,
which are conserved across traces and use these conserved
models for constructing a vector space model for the traces
of the event log. Then they use agglomerative clustering as
the underlying clustering algorithm. It is noteworthy that
context-aware refers to control-flow properties of the traces
of the event log, while it neglects contextual information
referring to recourses, trace performances, and so on.

Model-based approaches are investigated in [6], where
Bose and van der Aalst propose a trace-defined edit distance
that is founded on the Levenshtein distance. They rely on
deriving specific substitution, insertion and deletion costs,
so as to take into account the transition behavior of the traces
without any translation of the event log. They evaluate the
edit distance with agglomerative clustering. Ferreira et al. [7]
formulate a trace clustering algorithm that learns a mixture
of first-order Markov chains using the expectation-maximi-
zation algorithm. The probability that a trace belongs to a
cluster is estimated as the probability that the observed trace
is produced by the Markov chain associated with that clus-
ter. De Weerdt et al. [8] show how this approach may suffer
from scalability problems. They present a trace clustering
algorithm that is explicitly defined for finding an optimal
distribution of traces, so as to maximize the combined
accuracy of the underlying models. They employ an active
learning inspired approach that centers on optimizing
the process model accuracy. However, in their approach,
clusters strongly depend on the conformance measures used
for evaluating the accuracy of process models, as well as the
algorithms considered for the processmodel discovery.

4 CO-TRAINING BASED CLUSTERING

In this section, we describe a vector space trace clustering
algorithm, called CoTraDiC (CO-training based TRAce DIs-
tance-based Clustering), which is formulated in centralized
multiple view learning by resorting to the co-training strat-
egy. It allows us to draw a consensus trace clustering pat-
tern that integrates the trace profiles of the multiple process
mining perspectives of an event log. The considered profiles
are those related to the data perspectives mainly investi-
gated in process mining. These are the control-flow perspec-
tive, the organizational perspective, the trace perspective
and the performance perspective [1]. As these perspectives
convey information related to different entities (control-
flow, resource, activity and timestamps), we can reasonably
assume that they produce trace profiles that are compatible
with the assumption of view independence, that is generally
done in co-training [14]. We formulate the co-training strat-
egy for distance-based clustering algorithms. This category
of algorithms, which determine clusters by optimizing a dis-
tance-based criterion function, is frequently employed in
process mining [3], [4], [5], [6], [7], [8], as the distance is, in
general, easily defined and computed. Additionally, dis-
tance-based clustering algorithms usually need just one
parameter, that is, either the number of final clusters or the
minimum distance to separate two clusters [30]. The cluster-
ing algorithm is run simultaneously on the multitude of
trace profiles of the event log, while the co-training is used
to bootstrap the computation of the (dis-)similarity matrix
of a profile, using clustering information from every other

profile. It is noteworthy that the defined co-training strategy
is independent of the number of profiles processed, the
distance measure computed, as well as the distance-based
clustering algorithm performed. Trace profiles, the co-train-
ing strategy, as well as clustering patterns discovered by co-
training are described in the following sections.

4.1 Trace Profiles

Based on the data perspectives investigated in process min-
ing, Song et al. [5] define a set of features to describe the
event logs in each perspective. These features populate
the trace profiles used in this work.

The Activity profile is defined from the trace perspective,
that focuses on the activities of a trace [1]. It constructs one
feature per type of activity found in the event log. Each
activity feature is measured by counting the number of
events of the trace having the specified activity’s name.

Example 4.1 (Activity profile). Let us consider the event log
in Table 1. It collects events for seven distinct types of
activity, namely Register request (R), Examine thoroughly
(ET), Check ticket (CT), Decide (D), Reject Request (RR),
Examine casually (EC) and Pay compensation (PC). Each
trace will be translated into a vector of seven feature val-
ues, one for each distinct type of activity. These features
measure the number of times a specific type of activity is
repeated in the trace. They are defined as follows:

TraceId R ET CT D RR EC PC

1 1 1 1 1 1 0 0
2 1 0 1 1 0 1 1

The Resource profile is defined from the organizational
perspective, that focuses on the resources of a trace [1]. It
defines one feature per resource found in the event log.
Each resource feature is measured by counting the number
of events of the trace triggered by the specified resource.

Example 4.2 (Resource profile). Let us consider the event
log in Table 1. It collects events for five distinct resources,
namely Pete, Sue, Mike, Sara and Ellen. Each trace will
be translated into a vector of five feature values, one for
each distinct resource. These features measure the num-
ber of times a specific resource participate in an event of
the trace. They are defined as follows:

TraceId Pete Sue Mike Sara Ellen

1 2 1 1 1 0
2 1 0 2 1 1

The Performance profile is defined from the performance
perspective, that focuses on the timestamps of a trace [1]. It
has a predefined set of features, that is, the size of the trace
(i.e. the number of events in the trace), the time duration of
the trace (i.e. the time difference computed between the last
event in the trace and the first event in the trace), as well as
the minimum, maximum, mean and median time difference
computed between consecutive events in the trace.

Example 4.3 (Performance profile). Let us consider the
event log in Table 1. By considering the timestamp infor-
mation of each event, each trace will be translated into a
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vector of six feature values, one for each performance,
defined as follows:

TraceId

in hours

Size Duration

Time Difference

Min Max Mean Median

1 5 195.3 20.10 125.1 48.84 23.07
2 5 216.5 0.67 141.1 54.14 2.07

The Transition profile is defined from the control-flow
perspective, that focuses on the ordering of activities in a
trace [1]. Features represent the direct following relations
between the activities of the trace. For any combination of
two activity names, e.g. (A, B), a transition feature is defined
(A ! B) that counts how many times an event with the
activity named A has been directly followed by another
event with the activity named B in the trace.

Example 4.4 (Transition profile). Let us consider the event
log in Table 1. It contains eight distinct transition relations,
namely Register Request ! Examine thoroughly (R !
ET), Examine thoroughly ! Check ticket (ER ! CT),
Check ticket!Decide (CT!D), Decide! Reject request
(D ! RR), Register request ! Check ticket (R ! CT),
Check ticket ! Examine casually (CT ! EC), Examine
casually! Decide (EC! D) and Decide! Pay compen-
sation (D! PC). Each trace will be translated into a vector
of eight feature values, one for each distinct transition rela-
tion. These featuresmeasure the number of times a specific
transition occurs in the trace. They are defined as follows:

TraceId R! ET ET! CT CT! D . . . D! PC

1 1 1 1 . . . 0
2 0 0 0 . . . 1

4.2 Co-Training Strategy

In keeping with the co-training idea expressed in [18], we
illustrate an algorithm for iteratively modifying the similar-
ity matrix associated with a trace profile by using the trace
clustering models computed for every other profile. This is
done by resorting to a matrix representation of the trace
clustering pattern computed for every other profile and
using it to update the similarity matrix of the profile consid-
ered. Before presenting the algorithm, we introduce the con-
cepts of the similarity matrix and the clustering matrix.
Definitions reported in the followings are formulated by
assuming that L denotes an event log recording n traces of a
process model, P denotes a set of trace profiles and P 2 P
denotes a given trace profile.

Definition 4.1 (Similarity matrix). The similarity matrix SP ,
associated with event log L and profile P , is a matrix ðn� nÞ
having a row i (column j) for each trace Ti 2 L (Tj 2 L). It is
initialized so that sP ði; jÞ ¼ 1� distanceðP; Ti; TjÞ; where
distanceðP; Ti; TjÞ is the distance computed between the vec-
tors of standardized1 features that are computed for both Ti

and Tj in the profile P . The distance is computed in the range
[0, 1].

Definition 4.2 (Clustering matrix). Let SP be the similarity

matrix associated with event log L and profile P and CP be a
clustering pattern that groups the traces of L into k trace clus-

ters, according to the similarities loaded in SP . The clustering
matrix CP is a matrix ðn� kÞ having a row i for each trace

Ti 2 L and a column j for each cluster Cj 2 CP , such that:

cP ði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
sizeðCjÞ

q
if Ti 2 Cj;

0 otherwise;

(

(1)

where sizeðCjÞ is the number of traces of L, which are clus-

tered in Cj. According to this choice, CP � tranðCP Þ is a
matrix whose rows sum to the unit, where tranð�Þ determines
the transpose of a matrix.

The co-training strategy requires the similarity matrix of
a profile to be updated on the basis of the clustering matri-
ces of the other profiles.

Definition 4.3 (Similarity matrix co-training). Let SP be the
similarity matrix associated with an event log L and a profile

P , and }ðC;:P Þ the set of clustering matrices CQ associated
with L and yielded for every other profile Q 2 P with Q 6¼ P

(i.e. }ðC;:P Þ ¼ fCQjQ 2 P, Q 6¼ Pg). The similarity matrix

SPnew is computed by projecting SP onto the sum of the cluster-
ing matrices in }ðC; 6¼ P Þ. Formally:

SPnew ¼ sym SP �
X

CQ2}ðC; 6¼P Þ
CQ � tranðCQÞ� �

0

@

1

A; (2)

where symð�Þ computes a symmetrization of a matrix (with
symðSÞ ¼ ðS þ tranðSÞÞ=2). Since the projection matrix is
orthogonal, the inverse projection is done using its transpose.
Finally, the symmetrization step is performed here since the
projection operator may not yield a symmetric matrix.

It is noteworthy that, in Formula 2, new similarities for a
selected profile are obtained by averaging out the similari-
ties within clusterings associated with every other profile.
The across cluster similarities are also averaged out in the
new similarity matrix. This implies that the projection in
the space of clustering matrices makes similarities within a
cluster higher, throwing away the intra-cluster information
that is irrelevant for clustering. The projection operator
reported in Formula 2 is mainly inspired by the operator
that Kumar and Daum�e [18] defined for spectral clustering
with co-training. In particular, the original spectral projec-
tion operator makes a projection of a graph structure on the
eigenvectors of the other graph Laplacian space, while
our projection operator makes a projection of one similarity
matrix on the clustering matrices of every other trace
profile. Kumar and Daum�e [18] observe that, as the number
of iterations increases, the use of their spectral projection
operator in the subspace of discriminative eigenvectors
makes the edges within a spectral cluster closer to each
other. Similarly, we may expect that the similarities within a
cluster diffuse from one to the other when projecting
one similarity matrix on every other clustering matrix.

1. Each feature of a vector space model is normalized in the interval
[0,1] at the beginning of the matrix computation, in order to give equal
importance to all the features in the vector space.
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The across cluster similarities also diffuse to one another.
Finally, we point out that, according to Definition 4.2, all
traces in the same cluster are treated in a similar way to and
differently from traces in other clusters in Formula 2. There-
fore, iterating the projection process should fix the traces in
a cluster, such that they will tend to be clustered together
when the modified similarity matrix is used to recompute
the subsequent clustering pattern in the next iteration.

Algorithm 1. CoTraDiC(L;P) Return C
Require: L {Event log} P {Trace profile set} MaxIt {Maximum
number of iterations} u {Clustering parameters}
Ensure: C {Traces clustered}
1: it 0 PðCÞit  �
2: for P 2 P do
3: LP  profile(L; P )
4: SPit  similarityMatrix(LP )
5: CPit  clustering(SPit ; u)
6: PðCÞit  PðCÞit [ fCPitg
7: end for
8: repeat
9: it itþ 1
10: PðCÞit  �
11: for P 2 P do
12: SPit  SPit�1

X

Q2P;Q6¼P
ðCQit�1 � transposeðCQit�1ÞÞ

13: SPit  symmetrize(SPit )
14: CPit  clustering(SPit ; u)
15: PðCÞit  PðCÞit [ fCPitg
16: end for
17: until silhouette(consensus(PðCÞit; u)) < silhouette(consen-

sus(PðCÞit�1; u)) OR it �MaxIt

18: if silhouette(consensus(PðCÞit; u)) � silhouette(consensus
(PðCÞit�1; u)) then

19: C  consensus(PðCÞit; u)
20: else
21: C  consensus(PðCÞit�1; u)
22: end if

The learning algorithm, reported in Algorithm 1, is three-
stepped. It consists of an initialization step (lines 1-7, Algo-
rithm 1), an iterative co-training step (lines 8-17, Algorithm
1) and a consensus clustering step (lines 18-22, Algorithm
1). Input parameters of the algorithm are the event log L,
the set P of multiple trace profiles, the maximum number
of iterations MaxIt and the parameters u requested by the
clustering algorithm (e.g. number of clusters k with k-parti-
tioning algorithms). The output is a trace clustering pattern
C, yielded by clustering the traces of L across the multiple
profiles of P.

We begin by describing the initialization step that starts
by assigning zero to the iterator it of the iterative co-training
step. For each profile P 2 P, we determine: (a) the initial

similarity matrix (i.e. SPit at line 4 of Algorithm 1) of the
traces in L, computed with the vector space model of
the traces, which is associated with selected profile P
(see Definition 4.1) and (b) the initial clustering matrix (i.e.

CPit at line 5 of Algorithm 1) of the traces in L, computed by
applying a distance-based clustering algorithmwith the sim-
ilarity matrix associatedwith profile P (see Definition 4.2).

For each trace profile, we initialize the similarity values
for the traces of the event log by computing a vector space
distance (e.g. the euclidean distance) between each pair of
traces (line 4, Algorithm 1). The distance metric is computed
by comparing the feature values of the traces, which are
built for the profile considered. In the iterative co-training
step (lines 8-17, Algorithm 1), we use every clustering
matrix, within the iterative co-training strategy, in order to
determine both the new similarity matrix (lines 12-13, Algo-
rithm 1) and the new clustering matrix (line 14, Algorithm
1) of every other trace profile (see Definition 4.3). In particu-
lar, for a certain profile P 2 P, this iterative process bases
the computation of the new similarity matrix associated

with P , at the present iteration it (i.e. SPit at lines 12-13 Algo-
rithm 1), on the similarity matrix associated with P , at the

previous iteration it� 1 (i.e. SPit�1 at line 12 of Algorithm 1),
as well as on the clustering matrices associated with every
other profile Q 2 P with Q 6¼ P , at the previous iteration

it� 1 (i.e. CQit�1 at line 12 of Algorithm 1). The updated simi-

larity matrix of every profile (i.e. SPit at line 14, Algorithm 1)
is then used to recompute the clustering matrix associated

with the same profile (i.e. CPit at line 14, Algorithm 1). We
stop the iterative co-training process when the compactness
of the consensus clustering pattern (see Details in Section
4.3), computed from the clustering matrices yielded in the
last iteration it, is less than the compactness of the consen-
sus clustering pattern yielded in the penultimate iteration
it� 1 (line 17, Algorithm 1). The underlying motive for this
stopping criterion is to favor clusters that are compact.
Compact clusters have a lot of significance in pattern classi-
fication, where the objective is to enable the discovery of
decision boundaries. We use the Silhouette width [31] to
measure the compactness of each consensus clustering pat-
tern. It is a succinct representation of how well each trace
lies within its cluster. It assumes values in the range ½�1; 1�.
A value of the Silhouette width closer to one means that the
trace is appropriately clustered. We calculate the Silhouette
width of the consensus clustering pattern with respect to
each trace profile considered and determine the mean of the
Silhouette widths computed for all the profiles. As a further
stopping criterion, we stop the iterative process when the
co-training updates are performed for a fixed number
(MaxIt) of iterations (line 17, Algorithm 1).

Finally, in the consensus clustering step, we map the
multiple clustering matrices, which are iteratively com-
puted with the co-training strategy from the multiple pro-
files, to a single consensus clustering pattern. It is computed
by combining the clustering matrices that are updated with
the co-training step and have the highest average compact-
ness on the multiple profiles considered (lines 19, 21, Algo-
rithm 1). We describe the procedure to compute this
consensus clustering pattern in the next section.

4.3 Consensus Clustering Pattern

The consensus clustering pattern is computed by adapting
the merge strategy of the split-and-merge ensemble strategy
[29] to the task in hand (see Algorithm 2). Let PðCÞ be the
set of trace clustering patterns (or equivalently clustering
matrices) computedwith the co-training strategy for the trace
profiles of this study. We recall that each clustering matrix is
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ðn� kÞ with rows representing the traces of the event log
processed and columns representing the clusters computed
in the specific profile. Therefore, we can consider each row of
a clustering matrix as a vector space model of the associated
trace, compute the similarities between these rows and use
these similarity values to populate a consensus similarity
matrix of the event log L (lines 1-4, Alg. 2). Finally, we can
compute the final consensus clustering pattern from this con-
sensus similaritymatrix (line 5, Algorithm 2).

Algorithm 2. Consensus(PðCÞ; u) Return C
Require: PðCÞ {a set of clustering patterns of the event log L,
one computed for each trace profile} u {Clustering parameters}
Ensure: C {the traces of L clustered according to a consensus
clustering pattern computed}
1: for C 2 PðCÞ do
2: SC  similarityMatrix(rowSet(C)) {similarity matrix com-

puted between each pair of rows of C}
3: end for
4: S  1

cardinalityðPðCÞÞ
X

C2PðCÞ
SC

5: C  clustering(S; u)

Procedurally, we begin by considering the clustering
matrices, updated for each trace profile, and computing a
similarity matrix for the rows stored in every clustering
matrix under analysis (lines 1-3, Algorithm 2).

Definition 4.4 (Similarity matrix for the rows of a cluster-
ing matrix). Let CP ðn� kÞ be a clustering matrix of the event
log L, which is updated with the co-training step for the trace

profile P 2 P. The similarity matrix SCP ðn� nÞ collects the

similarities computed between each pair of rows in CP , such
that: SCP ði; jÞ ¼ 1� distanceðcPi ; cPj Þ; where cPi and cPj
denote the row vector i and the row vector j of CP , respectively
(see Definition 4.2) and distanceðcPi ; cPj Þ denotes the distance
metric selected and computed between these two row vectors.

Then we compute the consensus similarity matrix by
summing the similarity matrices of the rows of the clustering
matrices, which are computed for the multiple trace profiles
(see Definition 4.4), and normalizing the result with respect
to the number of matrices summed (line 4, Algorithm 2).

Definition 4.5 (Consensus similarity matrix). Let L be the

event log recording n traces, PðSP ðn� kÞÞ be a set of the
similarity matrices computed for the event log L. The con-
sensus similarity matrix Sðn� nÞ is computed as follows:

sði; jÞ ¼

X

SP ðn�kÞ2PðSP ðn�kÞÞ
SSP ði; jÞ

cardinalityðPðSP ðn�kÞÞÞ ; where cardinalityðPðSP ðn� kÞÞÞ is
the number of patterns processed for the consensus (or equiva-
lently the number of trace profiles).

Finally, we use the distance-based clustering algorithm
selected, in order to determine a consensus pattern C that
represents the traces of L now clustered according to the
consensus similarity matrix S (line 5, Algorithm 2).

5 TIME COMPLEXITY ANALYSIS

For this analysis we assume that n denotes the number of
traces in the event log, m the number of trace profiles in the

co-training strategy, M the average number of features per
trace profile and k the average number of clusters per run.
In addition, we assume that the time cost of each distance-
based clustering algorithm selected can be denoted with O
(d) in this analysis. The time complexity of CoTraDiC
depends on the cost of initializing one similarity matrix and
one clusteringmatrix of the event log L for each trace profile,
the cost of performing the co-training updates of both the
similarity matrix and the clustering matrix of each profile, as
well as the cost of computing the consensus clustering pat-
tern and measuring its compactness at each co-training
update. The time cost of computing the similarity matrix of

the event log for a specific trace profile is O(n2M), while the
cost of clustering the traces according to a profile similarity
matrix is assumed to be O(d). The time cost of performing
the co-training updates is here calculated by considering
the matrix multiplication as the leading operation of the
updates. We note that Formula 2, that is used to perform
the co-training updates, comprises m� 2 multiplications
with square matrices (n� n) andm� 1multiplications with
rectangular matrices ((n� k) and (k� n)). Thus, the time
cost of computing this Formula, for a specific profile, is O

(ðm� 2Þn2:376 þ ðm� 1Þn2k), with O(n2:376) the time cost of
multiplying square matrices (n� n) by resorting to the Cop-

persmithWinograd algorithm [32] and O(n2k) the time cost
of multiplying rectangular matrices (n� k) and (k� n). The
time cost of computing a consensus clustering pattern
depends on the cost of computing the consensus similarity
matrix and the cost of performing a distance-based cluster-
ing by using this similaritymatrix. The computation of a con-

sensus similarity matrix has a time cost O(mn2k), that is, the

cost O(n2k) of computing a clustering matrix rows similarity
matrix for each one of the m trace clustering patterns proc-
essed for the consensus. Thus, the total time cost is O

(mn2kþ d). The cost of computing the Silhouette width of

the consensually clustered traces is O(n2). As we compute
the Silhouette width with respect to each trace profile, the
time cost of measuring the compactness of the consensus

clustering pattern is O(mn2). Both the consensus pattern
and the Silhouette width are computed at each iteration of
the co-training phase, therefore this cost is multiplied by the
number of performed iterations. Globally the time cost of
completing the clustering process is ðm n2M|ffl{zffl}

initial S
þm d|{z}

initial C
þMaxIt�

ðm ððm� 2Þn2:376 þ ðm� 1Þn2kÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
co-trained S

þm d|{z}
co-trained C

þmn2kþ d|fflfflfflfflfflffl{zfflfflfflfflfflffl}
consensus

þ mn2
|ffl{zffl}

compactness

ÞÞ,

in the worst case, that is, the maximum number of iterations

(MaxIt) is completed. This global cost is equal to mn2ðMþ
mkMaxItþMaxItþðm� 2Þn0:376MaxItÞ þ dðmþmMaxItþ
MaxItÞ, that is, (mn2ðM þ mkMaxIt þ ðm� 2Þn0:376MaxItÞþ
dmMaxIt), by considering the bold parts of the formula,
which are asymptotically the most complex in the formula.
Generally M < ðmkMaxItþ ðm� 2Þn0:376MaxItÞ < ðmkMaxItþ
mn0:376MaxItÞ, so the time complexity of the algorithm is

Oðm2n2MaxItðkþ n0:376Þ þ dmMaxItÞ.

6 EXPERIMENTS

The multiple view trace clustering algorithm presented in
this paper, whose implementation is available to the public,
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is written in Java.2 It is evaluated on several benchmark event
logs by considering both machine learning and process min-
ingmetrics. The evaluation study aims to seek answers to the
following questions: (1) Can trace clusters, discovered with
the co-training strategy, be compact clusters tightly grouping
well separated traces when evaluated by considering the
several perspectives of process mining? (2) Are trace clusters
discovered with co-training more compact than clusters dis-
covered by using competitor multi-view learning strategies?
(3) Are trace clusters able tominimize the difficulty of model-
ing spaghetti-like processes by allowing us to discover good
process models from the logs (i.e. simple models which fit
traces at the best)? (4) Are process models discovered
through traces clusteredwith the co-training strategy better if
compared to the process models constructed after clustering
traces by using either a traditional clustering algorithm with
a single process mining perspective or a competitor (e.g.
ensemble)multi-view learning strategywith all perspectives?
Experiments are run on an Intel(R) Core(TM) i7-2670QM
CPU@2.20GHz runningWindows 7 Professional.

6.1 Event Logs

We use 11 event logs exhibiting a variety of process behav-
iors. All are taken from the process mining repository.3 Event
logs contain information on activities, resources and time of
traces. The only exception is ETM, that is the only event log
used in this study without information on resources. The
event logs cProblem (1,487 traces, 6,660 events), incident (7,554
traces, 65,533 events) and oProblem (819 traces, 351 events) are
real-life event logs from Volvo IT Belgium. They contain
events from an incident and problem management system
called VINST. In particular, cProblem collects traces for
closed problems, while oProblem collects traces for open
problems only. The event log incident collects traces for
mixed problems. These three event logs are part of the BPI
Challenge 2013 [33]. The event log etm (475 traces, 2,440
events) is an artificial log describing a loan application pro-
cess. The event log hospital (1,143 traces, 150,291 events) is a
real-life log of a Gynecology department of a Dutch academic
hospital. It was originally intended for use in the BPI Chal-
lenge 2011 [34]. The event log isbpm (2,000 traces, 28,534
events) is an artificial logwith both noise and increasing trace
length. It is used for decomposed conformance checking pur-
poses. The event log photo (100 traces, 40,995 events) is an arti-
ficial log about a digital photo copier. It is introduced in [35]
for evaluating process modeling techniques. The event log
repair (1,104 traces, 11,855 events) is about a process to repair
telephones in a company. It is used in the process mining
book [1]. The event logs review (100 traces, 3,730 events) and
lReview (10,000 traces, 236,360 events) are logs, both handling
reviews for a journal. Finally, the event log claims (3,512
traces, 46,138 events) describes the handling of claims in an
insurance company. Both review and claims are used in [1].

6.2 Experimental Set-Up

Our study aims at evaluating the effectiveness of the co-
training strategy when it is applied to cluster a multiple
profile representation of the traces of a generic process.

6.2.1 Evaluation Metrics

We evaluate the significance of the clusters discovered by
resorting to a machine learning perspective, as well as to a
process mining perspective.

For the machine learning perspective , we compute the Sil-
houette width [31], that is a machine learning metric, in order
to analyze the compactness of a clustering pattern. We cal-
culate the Silhouette width of the clustering pattern with
respect to each trace profile of the event log. As the objective
of multiple view learning is to compute a single clustering
pattern that is compact enough with respect to the several
trace profiles, we analyze the mean of the Silhouette width
computed per profile ( average multiple view Silhouette width).
Additionally, we consider the time (in milliseconds) spent
to complete the clustering process and determine clusters of
traces, as well as the number of iterations performed to
complete the learning process with the co-training strategy.

For the process mining perspective , the objective of cluster-
ing traces of an event log is to ease the discovery of process
models, by grouping together traces that conform to similar
execution patterns/behavior. Thus, we evaluate the signifi-
cance of the clusters formed by evaluating the process mod-
els, which can be discovered from the traces within each
cluster. As discussed in [6], clusters of traces are meaningful
when all traces belonging to related cases are in the same
cluster and traces that are unrelated are not. When clusters
are meaningful, process models resulting from traces in
each cluster are less complex (more comprehensible and
less spaghetti-like) and have a high degree of fitness.4 In
this study, we generate process models using the Alpha++
mining algorithm [36] (available in the ProM framework).
Therefore, the discovered process models are expressed in
terms of Petri nets, which allow for the modeling of concur-
rency by a bipartite graph consisting of places and transi-
tions. An example of a Petri net is shown in Fig. 1. We
compute one process model from the entire log of traces, as
well as one process model from each cluster of traces. We
use the Petri-Net Complexity Analysis plugin in ProM, in
order to measure the complexity of the process models thus
discovered. The complexity analysis plugin generates met-
rics such as the number of control-flows , and-joins , and-splits ,
xor-joins , xor-splits , arcs , places and transitions (see Fig. 1) in
the process model. The larger the value of these metrics, the
more complex the model [37]. Finally, we use the con-
formance checker plugin in ProM, in order to relate events
in the event log to activities in the process model and com-
pare both [1]. We analyze the fitness metric, in order to eval-
uate the conformance checking of a process model. Fitness
evaluates the proportion of behavior, seen with traces in the
event log, possible with the discovered model. It assumes
values in the range ½0; 1�. In particular, fitness is computed
by replaying a trace from the model and recording all
situations where a transition is forced to fire without
being enabled, i.e. we count the missing tokens. Formally,

fitnessðt; P Þ ¼ 1
2 ð1� mt

c Þ þ 1
2 ð1� r

pÞ (chapter 7, p. 198 [1]),

where t is the trace to be replayed according to the process

2. http://www.di.uniba.it/ appice/software/CoTraDiC/index.htm
3. http://www.processmining.org/logs/start

4. The analysis of how deadlocks, live-locks, lack of synchronization
and and sub-processes are supported by Petri-nets is out of the scope of
this study.
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model P , mt is the number of missing tokens, c is the num-
ber of consumed tokens, r is the number of remaining
tokens and p is the number of produced tokens. Hence, if
the log can be replayed correctly, i.e., there are tokens nei-
ther missing nor remaining when replaying the log on the
Petri net, fitness equals 1. In the worst case, every produced
and consumed token is remaining or missing, fitness equals
0. As suggested in [6], we calculate the weighted average of
these metrics, in order to balance metrics over possible
unbalanced clusters. In particular, for each complexity and
conformance metric, we calculate: mWavg ¼

P
C2C sizeðCÞ �ð

mðCÞÞ=PC2C sizeðCÞ; wherem is the metric, C is the cluster-
ing pattern of an event log, while sizeðCÞ is the number of
traces falling in a cluster C 2 C.

6.2.2 Compared Algorithms

We use the k-medoids algorithm [38] as a base distance-
based algorithm and the euclidean measure as a base dis-
tance metric. Both are commonly used in the process mining
practice. The k-medoids algorithm allows us to control the
number of clusters to be discovered5 without requiring any
additional input parameters. Similarly to k-means, it gener-
ates a partition of the data such that objects in a cluster are
more similar to each other than they are to objects in other

clusters. However, it is less sensitive than k-means to out-

liers, where an extremely large value may substantially

distort the distribution of data.6 On the other hand, the k-
medoids algorithm is much more expensive. Indeed, it
involves computing all pairwise distances, that is O(n2),
whereas k-means runs in O(kn). The euclidean distance is
simple to compute on a feature-vector representation of
data. It is a proper choice in a continuous space, where all
dimensions are properly scaled and relevant. In any case,
the learning strategy presented here can be used with any
distance-based algorithm, as well as with any feature-vector
distance measure. We determine the clustering pattern by
accounting for multiple trace profiles with the co-training

strategy (coTraDiC ), as described in this paper. We set the
maximum number of iterations to fifteen (MaxIt ¼ 15).7 We
compare clustering patterns discovered by the co-training
strategy with clustering patterns discovered by multiple
view competitor strategies. As multiple view competitors
we consider: (1) Multiple view clustering patterns, which
are discovered by concatenating the features of each trace
profile and running the k-medoid algorithm with the
euclidean distance on this joint view representation of the
traces ( jCLUS ). (2) Multiple view clustering patterns, which
are discovered according to the split-and-merge ensemble
strategy [29], by running repeatedly the k-medoid algorithm
with the euclidean distance on the separate trace profiles,
and then combining single-view originated clustering pat-
terns in a single pattern (ensambleCLUS). The selected
ensemble strategy is that used to combine cluster final
results of a co-training process (see Algorithm 2). Thus, this
represents the baseline of the co-training strategy, when no
iteration is really performed.

We run five trials of algorithms which are compared in
this study. For the machine learning evaluation, we calcu-
late the mean of the average multiple view Silhouette width
of the clustering patterns, computed with these trials, and
repeat this analysis with the number of cluster k ranging
between 2, 3, 4 and 5. For each k value, we use the one-way
analysis of variance (ANOVA) [39], in order to determine
whether there are any significant differences between the
means of the average multiple view Silhouette width of the
three compared algorithms on the tested trials. We test the
hypothesis that they are all the same against the general
alternative that they are not all the same. If this hypothesis
is rejected, we run a multiple comparison test, in order to
determine whether any of those means are significantly
different from each other [39]. The significance level of this
statistical analysis is 0.05.8 For the process model eva-
luation, the clustering pattern of the trial maximizing the
average multiple view Silhouette width is that used for the

Fig. 1. The Petri net (consisting of places, transitions, and arcs) computed from Alpha++ by processing all traces (without clustering) of the log etm.
Arcs run from a place to a transition or vice-versa, never between places or between transitions. Control-flows run from a transition to a transition.

5. The presented system also allows us to specify a different number
of clusters for each profile.

6. While k-means takes the mean value of the objects in a cluster as a
reference point, the k-medoids uses the most centrally located object in
a cluster, which can be assimilated to the median.

7. The results reported in Table 4 show that, in all the logs consid-
ered in this study, the co-training phase is completed in less than five
iterations.

8. We use the Matlab functions, anova1(. . .) and multcompare(. . .), in
order to perform the one-way analysis of variance and the multiple
comparison test, respectively.
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cluster-based process model discovery. Process models are
discovered with k ¼ 2, as we intend to achieve the objec-
tive of simplifying the process model complexity, without
proliferating models per event log. For this analysis, we
investigate the viability of a multiple view learning strat-
egy in process mining, by also comparing process models,
computed with a multiple view clustering strategy (co-
training, joint-view or ensemble), to process models com-
puted with a single view strategy. For the single-view
learning, we compute a trace clustering pattern by running
the standard k-medoid algorithm with the euclidean dis-
tance on a specific trace profile of the event log, as
described in [5].

6.3 Results and Discussion

The analysis of the results is illustrated in the following.

6.3.1 Silhouette Width Analysis

Figs. 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, and 2k report the
measures of compactness (vertical axis) for the clustering
patterns discovered by both CoTraDiC, jCLUS and eCLUS,
by varying the number of cluster k between 2, 3, 4 and 5
(horizontal axis). Compactness is measured by the average
multiple view Silhouette width (details in Section 6.2.1).
Table 2 collects the results of the one-way analysis of the
variance of compactness and the multiple comparison test
between CoTraDiC, jCLUS and eCLUS. The results confirm
that the clustering patterns discovered by CoTraDiC are
more compact than the clustering patterns discovered by its
multiple view competitors (jCLUS and eCLUS). The statisti-
cal analysis shows that this behavior is robust for the initial
medoid choice. Results in Table 2 show that the mean of the

compactness of clusterings computed by CoTraDiC is gen-
erally significantly better than the mean computed for its
competitors. Finally, this analysis, repeated by varying the
number of cluster k, reveals that our conclusions are robust
for variations in k.

6.3.2 Learning Time Analysis

Figs. 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, and 3k report the
computation time (in millisecs, vertical axis) spent by both
CoTraDiC, jCLUS and eCLUS to complete the multiple
view clustering process, by varying the number of cluster k
between 2, 3, 4 and 5 (horizontal axis). As suggested by the

Fig. 2. Average multiple view Silhouette width analysis: mean of the average multiple view Silhouette width (Y -axis) computed on five trials run per
algorithm (CoTraDiC, jCLUS, and eCLUS) with number of cluster k ranging between 2, 3, 4, and 5 (X -axis).

TABLE 2
Silhouette Width Analysis: Results of the One-Way Analysis

of Variance and the Multiple Comparison Test between
CoTraDiC, jCLUS, and eCLUS

log/k CoTraDiC vs jCLUS CoTraDiC vs eCLUS

2 3 4 5 2 3 4 5

cProblem + + + + + + + +
incident + + + = + + + =
oProblem + + + + + + + +
etm = = = = = = = =
hospital = = = = = + + +
isbpm = + + + = + + +
photo = + + + + + + +
repair = + + + = + + +
review = + + + = + + +
lReview = = = = + + = =
claims = = = = = = = =

We report + (-) when CoTraDiC has the mean of the average multiple view Sil-
houette width that is significantly higher (lower) than the considered competi-
tor with significance value 0.05.
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asymptotic analysis of the time complexity of CoTraDic, as
well as of its multi-view competitors jCLUS and eCLUS (see
Table 3), the iterative learning strategy used with co-train-
ing slows down the clustering process. In any case, the
number of iterations, performed in the co-training phase
and reported in Table 4, shows that CoTraDiC converges in
a small number of iterations (less than 5), never stopping
with the maximum number of iteration criterion (MaxIt).
This confirms that the compactness-based criterion, that we
have defined for this task, is an efficacious stopping crite-
rion that guarantees the convergence of the co-training
phase in few iterations.

6.3.3 Process Model Analysis

Table 5 collects metrics which measure both complexity and
conformance (details in Section 6.2.1) of Petri nets computed
from the traces of the entire event log, as well as from the
clustered traces. In this analysis, we evaluate the clustering

patterns discovered by both multiple view algorithms
(CoTraDiC, jCLUS and eCLUS) and single-view algorithms
(activity—aCLUS, resource—rCLUS, performance—pCLUS
and transition—tCLUS).

Fig. 3. Computation time (in milliseconds) analysis: mean computed on five trials ( Y -axis), run per algorithm (CoTraDiC, jCLUS, and eCLUS), with k
ranging between 2, 3, 4, and 5 ( X -axis).

TABLE 3
Time Complexity Analysis (CoTraDic, jCLUS, eCLUS): n Denotes the Number of Traces in the Event Log,
m the Number of Trace Profiles in the Co-Training Strategy,M the Average Number of Features per Trace

Profile, k the Number of Clusters per run, and d the Time Cost of the
Base Distance-Based Clustering Algorithm

Time complexity

CoTraDiC see Section 5 O(m2n2MaxItðkþ n0:376Þ þ dmMaxIt)

jCLUS n2mM|fflfflffl{zfflfflffl}
joint distance matrix

þ d|{z}
joint clustering

O(mn2M þ d)

eCLUS m ðn2M þ dÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
single view clustering

þmn2kþ d|fflfflfflfflfflffl{zfflfflfflfflfflffl}
consensus

O(mn2M þmn2kþmd)

If k-medoid is run as the base clustering algorithm, then d ¼ nðn� kÞNIter), whereNIter is the number of iterations during
k-medoid.

TABLE 4
Number of Iterations Analysis: Average Number of Iterations

Performed to Complete the Learning Phase

log/k 2 3 4 5 log/k 2 3 4 5

cProblem 1.2 1.8 2.2 2.2 photo 3.2 3.2 3.8 3.6
incident 1.2 1.4 1.6 1.4 repair 2 3 3 1.6
oProblem 1.4 1.6 2 1.8 review 2.5 3 3 5.5
etm 3.4 2.2 3 2.2 lReview 2.8 2.4 2.8 2.2
hospital 1.2 1.4 1.6 1.2 claims 2.2 2.6 2.6 2.4
isbpm 2.4 3.2 3.6 3

For each log, the average values are computed on five trials, run per CoTraDiC.
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Results on conformance show that a clustering phase
almost always improves or, at least, preserves conformance
of the process models which are then computed. By focus-
ing the analysis on the multiple view algorithms, we can
observe that clustering patterns computed by CoTraDiC
have more (or at least equal) conformance than clustering
patterns, computed by both jCLUS and eCLUS for ten out
of 11 event logs. The exception is the event log oProblem,
where both jCLUS and eCLUS gain more conformance
than CoTraDiC. However, also in this event log, the Petri
nets, computed from the traces clustered by CoTraDiC,
have more conformance than the baseline Petri net, which
is computed from the traces of the entire event log, as well
as more conformance than the Petri nets, which are com-
puted from the traces clustered by the single view algo-
rithms (aCLUS, rCLUS, pCLUS and tCLUS). On the other

hand, clustering patterns, computed by CoTraDiC, gain the
most conformance for eight out of 11 event logs of this
comparative study. The exceptions are the event logs: oPro-
blem, repair and claims where the most conformance is
gained by eCLUS, aCLUS and pCLUS, respectively. Thus,
also when the multiple view learning with cotraining strat-
egy is outperformed by single learning algorithms, we can-
not see the best trace profile to be used for clustering. In
fact, by focusing the analysis on the single view algorithms,
we can observe that the conformance of clustering patterns
extracted from the view Activity is more than (or equal to)
the conformance of clustering patterns extracted from
views Resource, Performance or Transition for five out 11
event logs, the conformance of clustering patterns extracted
from the view Resource is more than (or equal to) confor-
mance of clustering patterns extracted from views Activity,

TABLE 5
Process Model Analysis: Complexity (Number of Control Flows-CF, Number of AND/OR Splits/Joins, Number of Arcs-A,

Number of Places-P and Number of Transitions-T), and Conformance (Fitness-f) of the Computed Petri Nets

The baseline process model is the Petri net computed from the entire event log. It is compared to the Petri nets computed from the trace clustering pattern, discov-
ered by considering the multiple trace profiles (CoTraDiC, jCLUS and eCLUS), as well as from the trace clustering pattern, discovered by considering a single
trace profile - activity (aCLUS), resource (rCLUS), performance (pCLUS) and transition (tCLUS). The best fitness computed with a multiple view clustering pat-
tern is in bold. The best fitness computed with a single-view clustering pattern is in italics. (*) identifies the Petri net model with the best fitness per log.
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Performance or Transition for two out 11 event logs, the
conformance of clustering patterns extracted from the view
Performance is more than (or equal to) conformance of
clustering patterns extracted from views Activity, Resource
or Transition for three out 11 event logs, while confor-
mance of clustering patterns extracted from the view Tran-
sition is more than (or equal to) conformance of clustering
patterns extracted from views Activity, Resource or Perfor-
mance for six out 11 event logs. This shows that there is no
trace profile (or equivalently no process mining perspec-
tive) that is more informative than others in absolute. This
result can be interpreted as a validation of the viability of
both multiple view clustering and co-training strategy in
process mining.

Results on complexity show that the complexity of the
Petri nets, which are computed from the clustered traces, is
generally lower than the complexity of the baseline Petri
nets, which are computed from the traces of the entire log.
Complexity metrics almost always testify to a reduction of
Petri nets complexity when traces are clustered by CoTra-
DiC. The only exception is the event log repair, where, on
the other hand, no multiple view clustering pattern is able
to reduce the complexity of the baseline Petri net. To con-
clude this analysis of the complexity of cluster-based Petri
nets, we analyze the Petri nets computed from the event log
etm. We consider the traces clustered by CoTraDiC. Petri
nets, computed from the clustered traces are shown in
Figs. 4a and 4b, while the baseline Petri net, computed from
the traces of the event log, is shown in Fig. 1. We can
observe that, in this case, clustering has appropriately clus-
tered together two hundred related traces (Cluster 1,
Fig. 4a), by allowing us to discover a standard process
model that is significantly more comprehensible than the
baseline model (Fig. 1). On the other hand, the remaining
two hundred and seventy-five clustered traces allow us to
discover a Petri net (Cluster 2, Fig. 4b) that is no more com-
plex than the baseline Petri net (Fig. 1) and captures several
exception of the standard process model of Cluster 1.

7 CONCLUSION

Traditional process mining algorithms have problems deal-
ing with unstructured processes and generate spaghetti-like

process models that are hard to understand. An approach
to overcome this problem is to cluster process executions
(traces), such that each of the resulting clusters corresponds
to a coherent set of traces that can be adequately repre-
sented by a comprehensible process model. In this paper,
we consider that traces of an event log can be represented
in multiple trace profiles, derived by accounting for the sev-
eral perspectives (activity, control flow, organization and
performance) investigated in process mining [1]. We
describe an algorithm, in order to learn these multiple trace
profiles by co-training. This allows us to generate a single
clustering pattern according to all perspectives. The empiri-
cal evaluation shows that the traces clustered with the co-
training strategy have high compactness when compared to
traces clustered with alternative multiple view learning
approaches. In addition, they allow us to compute process
models that have high conformance and comprehensibility
when compared to the process model, discovered from the
traces of the entire event log, as well as the process models,
discovered from the traces clustered with both alternative
multiple view and baseline single view approaches. This
supports the idea that processing jointly the multiple per-
spectives of trace data allows us to minimize the problem of
spaghetti-like process models, by handling variability in the
recorded behavior of existing logs and facilitating process
model discovery. It also shows that co-training is an effica-
cious strategy for multiple view learning in process mining.

Some directions for further work are still to be explored.
A weighting schema can be used, in order to weigh the rela-
tive importance of the specific trace profile in the co-training
strategy. Moreover, it would be interesting to investigate
model-based stopping criteria for the co-training process,
which account for the conformance/complexity of the pro-
cess models discovered with the clustered traces. Finally,
the defined strategy can be easily parallelized. We intend to
investigate this opportunity, in order to reduce both time
and space complexities of the computations.
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