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a b s t r a c t

This paper introduces electronic tongue systems for remote environmental monitoring applications. This
new approach in the chemical sensor field consists of the use of an array of non-specific sensors coupled
with a multivariate calibration tool which may form a node of a sensor network. In our work, the
proposed arrays were made up of potentiometric sensors based on polymeric membranes, and the
subsequent cross-response processing was based on a multilayer artificial neural network model. Two
cases are described: the environmental monitoring of ammonium pollutant plus alkaline ions at different
measuring sites in the states of Mexico and Hidalgo (Mexico), and the monitoring of heavy metals (Cu2þ,
Pb2þ, Zn2þ and Cd2þ) in open air waste streams and rivers heading down the Gulf of Mexico.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Water is fundamental for all the Earth’s life forms and a key
issue in social and economical development. Nowadays, due to the
increase in pollution, natural water sources have became insuffi-
cient to supply all the necessities. Access to potable water and the
assessment of its environmental quality, normally through physi-
cochemical monitoring, are emerging issues worldwide.

An important aspect in the monitoring of water quality is the
identification of pollution events in order to determine the appro-
priate methodologies and to preserve public health and ecosystems.

Currently, the most often used strategy is performing off-line
monitoring (Bonastre et al., 2005). This strategy starts with the
sample collection and its subsequent chemical analysis employing
conventional laboratory equipment (e.g., atomic spectroscopy, flu-
orometry or high-performance liquid chromatography) (Gentili
et al., 2001), making it difficult for real-time monitoring applica-
tions. In any event, laboratory procedures are mandatory to reliably
determine the chemical parameters and the presence of pollutants
at very low concentrations. Off-line monitoring is suitable to
monitor slight contamination events which could affect either the
þ34 93 5812379.
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environment or the population exposed over long periods of time.
In these cases, the time needed between the sample analysis and
the reported results loses importance.

For real-time monitoring applications, in-line information about
the current changes in water is required. In-line procedures are
performed in situ, directly inside the process under study. For this
reason, automatic analysis systems are highly valued. In this sense,
recent use of chemical sensors has laid the groundwork to generate
initial site-related information. Robustness, price, versatility and
speed of response are just some of the attributes that sensors can
offer for measuring the wide range of environmental elements at
different sites in a locality (De Marco et al., 2007). Unfortunately,
there are few optimally operating chemical sensors that may
function without any interference or matrix effect.

In the past decade, a new concept in the field of sensors has
appeared to facilitate different monitoring needs. Known as Elec-
tronic Tongues (ETs), these innovative systems employ an array of
non-specific sensors plus data processing methods in order to
interpret the overdetermined complex responses of the sensors
and relate them with their analytical meaning (Vlasov et al., 2005).

The idea behind this concept is to use an appropriate sensor
array that enables us to simultaneously determine a large number
of species present in the sample as long as supplied data is rich
enough; that is, cross-sensitivity of the different sensors to the
different species exists, or co-linearity is absent. In addition,
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common problems such as drifts, non-idealities or interferences,
often present in measurements with this kind of sensors (De Marco
et al., 1997), can be corrected in the data processing stage. In this
way, it is possible to conduct periodic recalibration checks to
update the response model, as well as to apply a predefined ageing
correction factor (Tønning et al., 2005). This procedure has been
useful to correct electronic tongue environmental operation for
unattended periods longer than one month (Gutiérrez et al.,
2007a). The idea is to use calibration models robust enough to
counteract sensors’ ageing and temperature effects. Similarly, the
data processing may offset any matrix or interference effect from
the sample itself. With this methodology, it is possible to achieve
a parallel determination of a large number of different species,
while importantly any interference effect is solved using advanced
chemometrics tools (Gutiérrez et al., 2007b).

Thus, by using ETs it is possible to provide multicomponent
analytical information in real time with a direct, relatively simple
measuring setup and low cost. In the same way, it is feasible to
overcome the difficulties of analyzing the sensors’ raw data by
building calibration computer models. In theory, these models may
be developed after careful training for specific chemical species as
sensed by the system, or also for complex situations such as algal
blooms (Marsili-Libelli, 2004); this situation is difficult to infer
from a single chemical analysis but may be extracted through
properly trained artificial intelligence tools fed with data from
a multisensory system.

In the recent years, there have been published contributions on
the use of ETs for environmental monitoring purposes. For example,
an array of voltammetric sensors was developed and used to detect
disturbances in the tap water quality; they were identified through
the use of Principal Component Analysis (PCA) (Krantz-Rülcker
et al., 2001), as a human expert would proceed. A similar approach
was also used for the on-line monitoring of industrial processes
(Winquist et al., 2005). Similar ETs have been developed employing
arrays of chalcogenide glass sensors, which have been applied to
monitor metal ions in river and ground waters (Legin et al., 1996; Di
Natale et al., 1997). In our laboratory, we have gained some expe-
rience in a research line dealing with ETs. Qualitative and quanti-
tative applications for different purposes have been developed,
most of which are based on arrays of ion-selective electrodes (ISE)
constructed using polyvinyl chloride (PVC) polymeric membranes.
With these, Artificial Neural Networks (ANNs) have been used as
Fig. 1. Block diagram of a system for automatic remote measurements of a
the data processing tool to extract the sought information, solve the
cross-response effects and offset the non-linearities present (Gal-
lardo et al., 2003a,b, 2005; Gutiérrez et al., 2007a,b).

But, as a major streamline in the field, the information obtained
through environmental surveillance sensor sites, or nodes, may be
further coupled with data communication and electronics to
develop a broader monitoring system, referred as sensor network
(SN). A sensor network therefore represents the merging of
measurements with communications intended to monitor and
record the conditions at diverse locations in order to grasp the
instant, global situation of a region or a system.

Up to now, the most easily networked parameters are those of
a physical nature, e.g., temperature, humidity, pressure, wind
direction and speed, illumination, etc., given that many sensors are
available (Cruller et al., 2004; Zhao and Guibas, 2004). Chemical
information is also clearly demanded, though fewer solutions are
available. Obviously, the supply of high-quality raw data with
enough variety and sufficient detail can be one of the bottlenecks in
obtaining reliable environmental models (Silberstein, 2006).
Specifically, in water quality monitoring, SN try to focus on topics
such as eutrophication, salinization, acidification, microbial
outbreak and heavy metal pollution, among others, e.g., wherever
a specific contamination problem is known to exist (Strobl and
Robillard, 2008).

Given the fact that each node in SNs may be usually equipped
with transducers, microcomputer, transceiver (which can be hard-
wired or wireless) and power source, their underlying protocol may
be highly compatible with electronic tongue systems, with the
complex data processing both performed in-site (for example,
using an embedded system) or done at a central control computer,
where the different response models of the different nodes are run.
In the end, the scenery envisaged may well be a smart environment
to enable and enrich adaptive and dynamic interaction of human
activities. But to succeed, cooperation between different field
developers and researchers is needed in order to overcome the
limitations and conceive improvements or common ground in
current methodologies, as a means of developing profitable and
feasible solutions.

The aim of this communication is to review the application of
two different electronic tongue systems as potential nodes in
sensor networks, amenable to developing in-site environmental
monitoring tasks (Fig. 1). The proposed ETs were made using arrays
region combining electronic tongues technology and sensor networks.



Table 2
Formulation of the ion-selective membranes employed in the construction of the
potentiometric sensor array.

Sensor PVC
(%)

Plasticizer
(%)

Ionophore
(%)

Reference

Cd2þ 34 ETH 264
(65)

N,N0 ,N0-Tetrabutyl-3,6-
dioxaoctanedi
(thioamide) (1)a

Schneider et al.
(1980)

Cu2þ 57.2 NPOE
(34.3)

o-Xylylenebis(N,N-
diisobutyldithiocarbamate)
(6.9)a

Kamata et al.
(1989)

Pb2þ (1) 37.2 NPOE
(49.6)

S,S0-Methylenebis(N,N-
diisobutyldithiocarbamate)
(11.2)

Kamata and
Onoyama (1991)

Pb2þ (2) 33 NPOE
(65.65)

tert-Butylcalix[4]arene-tetrakis
(N,N-dimethylthioacetamide)
(1)a

Malinowska et al.
(1994)

Zn2þ (1) 40.22 NPOE
(53.62)

Tetrabutylthiuram disulfide
(2.3)a

Kojiama and
Kamata (1994)

Zn2þ (2) 55.25 DBBP
(41.4)

3,7,12,17-Tetramethyl-
8,13-divinyl-2,18-
porphinedipropionic
acid disodium salt (2.76)b

Gupta et al. (2003)

Hþ 32.8 DOS (65.6) tri-N-dodecylamine (1)a Schulthess et al.
(1981)

Generic 1 34.5 BPA (63.2) Tetrabenzyl pyrophosphate
(2.3)a

Xu and Katsu
(2000)

Generic 2 34.5 DBP (62) [2,20]-Furildioxime
monohydrate (4)a

Singh and Mehtab
(2007)

a The formulation included potassium tetrakis(4-clorophenyl)borate as additive.
b The formulation included sodium tetra borate as additive.
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of potentiometric sensors, in this case employing PVC membranes
with common formulations. As the data processing stage, ANNs
were used to build response models in order to predict concen-
trations of polluting species, departing from the cross-response
signals from the array plus temperature perturbation to sensor
operation. To demonstrate the functionality as an SN node, a digital
radio link was established between the different monitoring loca-
tions and a personal computer as the central node where the data
were processed and stored. As in the environmental applications
carried out, two different situations were studied, one to quantify
sodium, ammonium and potassium in the Rio Salado (Mexico) and
the other to determine heavy metals (cadmium, copper, lead and
zinc) in open air waste streams heading down the Gulf of Mexico.

2. Experimental

2.1. Reagents and solutions

For the first application case, the quantitative determination of ammonium,
sodium and potassium, the ion-selective PVC membranes were prepared from high-
molecular-weight PVC (Fluka, Buchs, Switzerland) and the plasticizers bis(1-butyl-
pentyl) adipate (BBPA), dioctyl sebacate (DOS), 2-nitrophenyloctylether (NPOE) and
dibutyl sebacate (DBS) (all from Fluka). The recognition elements employed to
formulate the potentiometric membranes were the ionophores nonactin (nonactin
from Streptomyces, Fluka), valinomycin (potassium ionophore I, Fluka), bis[(12-
crown-4)methyl]-2-dodecyl-2-methylmalonate (CMDMM, Dojindo Laboratories,
Kumamoto, Japan) and tri-N-dodecylamine (TDDA, hydrogen ionophore I, Fluka).
Additionally, two generic response recognition elements were used: dibenzo-18-
crown-6 and lasalocide, both for cations. All the components of the membranes
were previously dissolved in tetrahydrofuran (THF, Fluka).

For the second application, the quantitative determination of cadmium, copper,
lead and zinc, the ion-selective PVC membranes were prepared from high-molec-
ular-weight PVC (Fluka) and the plasticizers (10-Hydroxydecyl) butyrate (ETH 264),
2-nitrophenyloctylether (NPOE), bis(1-butylpentyl) adipate (BBPA), dibutylphtalate
(DBP) and dibutyl(butyl) phosphonate (DBBP) (Fluka). The ionophores used were
N,N,N0 ,N0-Tetrabutyl-3,6-dioxaoctanedi(thioamide) (Cadmium Ionophore I),
o-Xylylenebis(N,N-diisobutyldithiocarbamate) (Copper(II) Ionophore I), S,S0-Meth-
ylenebis(N,N-diisobutyldithiocarbamate (Lead Ionophore II), tert-Butylcalix[4]ar-
ene-tetrakis(N,N-dimethylthioacetamide) (Lead Ionophore IV), Tetrabutylthiuram
disulfide (Zinc Ionophore I), 3,7,12,17-Tetramethyl-8,13-divinyl-2,18-porphinedi-
propionic acid disodium salt (Zinc Ionophore II) and tri-N-dodecylamine (TDDA,
hydrogen ionophore I), all from Fluka. In addition, two generic response recognition
elements were used: tetrabenzyl pyrophosphate (Fluka) and [2,20]-Furildioxime
monohydrate (Fluka).

The materials used to prepare the solid electrical contact were the epoxy resin
components Araldite M and Hardener HR (both from Fluka) and graphite powder
(50 mm, Merck) as a conducting filler. All other reagents used were of analytical
grade, pro-analysis or the equivalent.

Both electronic tongues were used to predict the concentration of species of
water samples studied from different sources. These samples were taken from
different places of environmental concern in Mexico: Zumpango lake, a well, an
irrigation channel (20�05022.140 N, 99�14056.0500 W elevation; 2079 m) and Rio Salado
(local name Hueypoxtla, 20�05023,6500 N, 99�13056.3100 W, 2069 m above sea level).

2.2. Sensor array

The sensors used were all-solid-state ion-selective electrodes (ISEs) with a solid
electrical contact made from a conductive epoxy composite. This is the usual
configuration in our laboratories (Gallardo et al., 2003a; Alegret and Martinez-
Fábregas, 1989). The PVC membranes were formed by solvent-casting the sensor
cocktail dissolved in THF over the solid contact.
Table 1
Formulation of the ion-selective membranes employed in the construction of the
potentiometric sensor array.

Sensor PVC (%) Plasticizer (%) Ionophore (%) Reference

NH4
þ 33 BPA (66) Nonactin (1) Davies et al. (1988)

Kþ 30 DOS (66) Valinomycin (3)a Shen et al. (1998)
Naþ 22 NPOE (70) CMDMM (6)a Tamura et al. (1982)
Hþ 32.8 DOS (65.6) TDDA (1)a Schulthess et al. 1981)
Generic 1 29 DOS (67) Dibenzo-18-

crown-6 (4)
Umezawa (1990)

Generic 2 27 DBS (70) Lasalocide (3) Suzuki et al. (1988)

a The formulation included potassium tetrakis(4-clorophenyl)borate as additive.
For the first application the monitoring of alkaline species, the sensor array
included a total of nine sensors: two replicate ion-selective electrodes for ammo-
nium, two for sodium, two for potassium, one for hydrogen and two of a generic
response to alkaline ions (one of each type), as optimized in preliminary studies
(Gallardo et al., 2005). The formulations of the ion-selective membranes employed
in the array are summarized in Table 1.

In the second application, for heavy metals, the sensor array was formed by 11
electrodes: two for cadmium, two for copper, two for lead (one of each type), two for
zinc (one of each type), one for hydrogen ion and two of a generic response to metals
(one of each type). The formulations of the ion-selective membranes employed in
this array are summarized in Table 2.

2.3. Apparatus

Potentiometric measurements were performed with an electronic system
developed in our laboratory (Gutiérrez et al., 2007a). Each channel had
Fig. 2. Block diagram of the interconnections of the electronic system used.



Table 4
Ranges of variation in the concentration of the analytes in the solutions used for the
training process in the second application.

Ion Concentration ranges (M)

[Cd2þ] 5.2� 10�8–2� 10�6

[Cu2þ] 5.2� 10�7–2� 10�5

[Pb2þ] 5.2� 10�8–2� 10�6

[Zn2þ] 5.2� 10�7–2� 10�5

Table 3
Ranges of variation in the concentration of the analytes in the solutions used for the
training process in the first application.

Ion Concentration ranges (M)

[Naþ] 3.4� 10�3–1.5� 10�2

[NH4
þ] 7.3� 10�6–9.7� 10�4

[Kþ] 3.8� 10�4–1.5� 10�3
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a conditioning stage using an INA116 (Texas Instruments, Dallas, TX) instrumenta-
tion amplifier for adapting the impedance of each sensor. Measurements were
differential versus the reference electrode (double junction Ag/AgCl electrode, Orion
Model 90-02-00 Waltham, MA) and grounded with an extra connection in contact
with the solution through a stainless steel wire. All channels were noise-shielded
with their signal guard, and the outputs of each amplifier were filtered with
a second-order active low-pass filter with �3 dB, 2-Hz cutoff frequency, using
a UAF42 (Texas Instruments) universal filter. These filtered outputs were connected
to an MPC506 (Texas Instruments) 16-channel analogue multiplexer. Digitalization
was performed by an ADS7804 (Texas Instruments) 12-bit analogue-to-digital
converter. The complete data-acquisition system was controlled using an AT90S8515
(Atmel, San José, CA) microcontroller which also supplied the RS-232-C serial
communication. This microcontroller was programmed making use of the interface
from ImageCraft Development Tools that employed language C. The program’s main
task was the multiplexer’s control that selects each channel, the data acquisition
with the analogue-to-digital converter and the transmission/reception of words of
both control and data. The time involved in accessing the multiplexer channels,
performing the analogue-digital conversion and subsequent transmission was
15.5 ms. In standby mode, the system consumes about 100 mW. Fig. 2 depicts these
interconnections in detail. For telemetry tests, the physical communication channel
was replaced by a pair of wireless radio modems (Data-Linc Group, Bellevue, WA),
model SRM6100, operating in a 2.4–2.4835 GHz licence-free band employing
advanced spectrum frequency hopping and error-detection technology. To obtain
the best communication performance, a data transmission rate of 57,600 bauds was
used. This speed of transmission allowed a distance of up to 15 miles to be reached
under optimal conditions with line-of-sight between radios and a maximum power
consumption of 500 mW according to the manufacturer.

2.4. Training and measurement procedure

The ANN response model had to be built before the application. The objective of
this step is to determine the ANN configuration that best describes the response of
the system. For this purpose, measurements were taken employing standard solu-
tions with a defined background that have to match the real samples analyzed in
order to counterbalance any matrix effect. Due to the difficulty of reproducing the
background of an environmental sample, we decided to employ a 1/3 dilution (v/v)
of a natural water sample taken from the Rio Salado in Milli-Q water (Millipore,
Billerica, MA). The next step was to prepare a set of mixtures of the different ions
considered. These were carried out through additions of a standard solution over the
previously defined background.

The training of the first electronic tongue was performed from the measures of
a sensor array corresponding to a set of samples defined from a Factorial Design (FD).
The use of FDs allows several levels of variables to be studied, as well as the rela-
tionships between them, to be distinguished with a minimum experimental effort
(Montgomery, 2000). In this way, 27 solutions were defined from a complete
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Fig. 3. Block diagram of the proposed manifold for monitoring the conc
factorial design with three levels of concentration and three factors (the three ions
considered, 33). The analytes variation ranges in these solutions are summarized in
Table 3. The ranges were in accordance with the expected levels on the natural
samples. Apart from this set of solutions defining the training space, 10 additional
synthetic samples were prepared for a test subset in order to evaluate the perfor-
mance of the electronic tongue. These additional samples did not participate in the
training process and their concentration ranges were distributed randomly inside
the training space. In order to correct possible drifts, the inputs to the neural
network of each sensor were periodically checked against a background solution.

For the second case studied, that of heavy metals, 27 solutions were defined
from a fractional factorial design with three levels of concentration and the four ions
considered (34–1) (Gutiérrez et al., 2007b). The ranges of variation of the concen-
tration for the analytes in these solutions are summarized in Table 4. In this case, 10
additional synthetic samples were also included in a test subset. As before, these
were distributed randomly inside the training space.

2.5. Software

The ANNs tested were trained and evaluated using the routines available to the
Neural Network Toolbox v. 4.0.6, which are optional add-ons in the Matlab v.7.1
(Math Works, Inc., Natick, MA) environment. Sensor readings were acquired on the
PC using custom software written in Visual Basic (Microsoft, Seattle, WA). Infor-
mation about the developed software is available by contacting the authors.

2.6. Determining natural water samples

Once we had trained and tested the ET system using synthetic solutions, the next
step was to apply them in natural water samples from different sources. Several
water samples were collected from different areas of the state of Hidalgo (Mexico).
All samples were filtered before use and no other pretreatment was performed
except in the case of the heavy metals; in this case buffering conditions have to be
ensured. For these samples, the pH was adjusted at 4.5 using acetic/acetate buffer.
The measurements were carried out off-line, employing the same methodology that
we had previously used with the synthetic samples.

2.7. Environmental networked monitoring

Simultaneous monitoring of ammonium, potassium and sodium was carried out
in the Rio Salado also called Hueypoxtla (Hidalgo, Mexico), a river fed by the runoff
water in the rainy periods. The river crosses different inhabited nuclei and continues
heading northwards to the Tula River, from which it becomes an indirect tributary.
The monitoring site was situated near the village of Doxey. At that point, the river
may contain polluting species coming from the waste waters of villages and
industries and runoffs from the crop fields.
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Fig. 4. Modelling performance achieved for the optimized ANN with samples from the
external test set: (A) sodium, (B) ammonium and (C) potassium for the Rio Salado
application monitoring. The dashed line corresponds to ideality, and the solid line is
the regression of the comparison data. Uncertainty intervals calculated at the 95%
confidence level.
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For the monitoring process, the ISE array was deployed into the river, while the
data acquisition system maintained a radio frequency link with a laptop located
120 m from the checkpoint (Fig. 3). The sensor readings were taken every minute for
8 h. In order to correct possible deviations in the readings, a blank measurement was
taken every 30 min.

3. Results and discussion

3.1. Building the ANN models

The first task for operating with an electronic tongue is to build
up its response model. If this model uses ANNs, significant effort is
needed to optimize the configuration details that determine its
operation. Normally, this is a trial-and-error process, where several
parameters (training algorithms, number of hidden layers, transfer
functions, etc.) are fine-tuned in order to find the best configuration
to optimize the performance of neural network model.

In the monitoring applications, the ANN architectures were
exhaustively studied, as our group had previously done (Gallardo
et al., 2003b). The algorithm selected for the learning process was
Bayesian Regularization due to its solid capacity for training and
prediction in comparison to other training strategies such as Lev-
enberg–Marquardt or Gradient Descent; the latter in particular
suffers from a slow convergence of training, and its predictive
power is often poor. In addition to these benefits, the Bayesian
Regularization training algorithm does not need an internal vali-
dation data set to minimize overfitting, as it accomplishes this
objective through other means; this requires less experimental
effort, as only two data subsets (training and external test) are
needed (Demuth and Beale, 1992).

Similarly, the choice of the number of hidden layers as well as
the number of neurons was optimized in order to find the smallest
topology with better performance. Just one hidden layer was
necessary to achieve good results. Different numbers of neurons
(from 3 to 20) and the combination of transfer function in hidden
and output layers were also studied. Considering the non-linear
behaviour of the sensors, two different non-linear functions were
considered for the hidden layer, a sigma-shaped function named
the tansig function (Freeman and Skapura, 1991) and a logarithm
function represented by the logsig function.

Other parameters for the configuration for ANN models were
initially fixed: the learning rate was set at a value of 0.1 and the
momentum to a value of 0.4 (Gutiérrez et al., 2007b). The modelling
capacity of the ANN was examined in terms of the Root Mean
Squared Error (RMSE), plus the linear regression analysis of the
comparison graphs between obtained and expected concentration
values for the different analytes.

3.1.1. Electronic tongue to determine alkaline ions
For this case, the ANN model had 10 input neurons (nine sensors

from the array plus the temperature sensor) and three output
neurons (one for each analyte modelled: ammonium, sodium and
potassium). After a systematic evaluation of topologies, the best
training results were obtained employing a tansig function and 10
neurons in the hidden layer, and a purelin function in the output
layer. Fig. 4 summarizes the comparison results corresponding to
the external test, displaying predicted versus expected concentra-
tions for ammonium, sodium and potassium. Furthermore, the
linear regression analysis is depicted, one per analyte. The ideal
behaviour is that which offers unity slopes and zero intercepts; in
addition, the correlation coefficient has to be close to one. The ANN
model’s generalization capability is evidenced from the accuracy of
the concentration values obtained from the external test, as these
samples did not take part in the training process. The correlation
coefficients obtained are good for ammonium and sodium (R > 0.9)
and worse for potassium, as its correlation coefficient is lower
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Fig. 5. Modelling performance achieved for the optimized ANN with samples from the external test set: (A) cadmium, (B) copper, (C) lead and (C) zinc for the natural water samples’
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(R ¼ 0.756); in any case, the confidence intervals for intercept and
slope are in agreement with the ideal situation.

3.1.2. Electronic tongue to determine heavy metals
The characteristics of the ANN model used in this case could be

summarized as follows: there were 12 input neurons (11 sensors
from the array plus the temperature) and four output neurons (the
four concentrations considered, Cu2þ, Pb2þ, Zn2þ and Cd2þ). Once
the ANN optimization was completed, the best results were
obtained with six neurons in the hidden layer, and with the tansig
and purelin transfer functions (in the hidden and output layers,
respectively).
Table 5
Ammonium, potassium and sodium concentrations in real samples analyzed by the
electronic tongue.

Sample Ion

[Naþ] (M) [NH4
þ] (M) [Kþ] (M)

Well 9.70� 10�3 7.10� 10�4 8.70� 10�4

Irrigation channel 1.15� 10�2 6.84� 10�4 8.30� 10�4

Rio Salado 1.02� 10�2 6.10� 10�4 7.60� 10�4

Zatopenco Lake 1.05� 10�3 8.12� 10�4 9.10� 10�4
The behaviour of the optimized model for the external test set,
defined for quaternary mixtures of the four species, is shown in
Fig. 5. The linear regression of the comparison results between
predicted and expected values for the external test set is also
shown. All regression results include unity slopes and zero inter-
cepts at a 95% confidence level for the four ions considered.
3.2. First application – natural water samples

The training process of the electronic tongues was conducted
with a diluted natural water background. To ensure the ET capa-
bilities, several measurements of natural water samples coming
from different sources were carried out. Table 5 summarizes the
Table 6
Heavy metal concentrations in real samples analyzed by the electronic tongue.

Sample Ion

[Cd2þ] (M) [Cu2þ] (M) [Pb2þ] (M) [Zn2þ] (M)

Well 1.6� 10�7 6.1� 10�6 1.6� 10�7 6.2� 10�6

Irrigation channel 1.5� 10�7 6.3� 10�6 1.1� 10�7 7.7� 10�6

Rio Salado 1.5� 10�7 5.7� 10�6 1.2� 10�7 7.3� 10�6

Zatopenco Lake 1.4� 10�7 6.1� 10�6 1.8� 10�7 8.7� 10�6
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concentration values for ammonium, sodium and potassium in the
individual samples tested. It is clear that there are no clear
differences between the results obtained from different samples.
The catchment was a limited area, so this could be the reason for
the similarity.

The results of the electronic tongue for heavy metals are shown
in Table 6. In this case there are no differences to remark upon,
except for the low concentration values attained, which is the
desirable situation. With the exception of an anthropic cause, the
heavy metal concentrations in natural waters are closely related to
the geomorphic characteristics of the zone. The small size of the
area under study seems to be the reason for these similar results.

3.3. Second application: Rio Salado monitoring

In the first application, the proposed system was trained using
diluted natural water, and then the electronic tongue was applied
to individual samples. The second application consisted of simul-
taneous unattended monitoring of ammonium, sodium and
potassium concentrations in the Rio Salado. For approximately 8 h,
these analytes were continuously monitored, as initially attempted
in a previous study (Gutiérrez et al., 2007a), but this time exploring
a different catchment for a longer period of time.

Fig. 6 shows the concentration values for the ions predicted by
the electronic tongue, which had been previously trained in the
laboratory. Analogously, the figure also displays the corresponding
river water temperature. The monitoring day (December 18th,
2008), was warm and sunny, and the water temperature variation
was approximately 2 �C during the monitoring time.

Our previous attempt carried out in the Ignacio Ramirez dam
(Gutiérrez et al., 2007a) reported an important matrix effect in the
case of sodium determination. In this study, the same fact was
confirmed because the determinations of sodium concentrations
were lower than those obtained by reference methods. This is the
main reason a further study should be conducted in order to
identify the adequate capabilities of the electronic tongue needed
to resolve this. It is worthwhile to mention that although sodium
was the most difficult chemical to track, the most significant
species in terms of environmental significance, ammonium, could
be correctly predicted. Moreover, the interference shown by
sodium and potassium in their individual sensor was correctly
counterbalanced, an achievement that is impossible to attain using
an ammonium sensor alone. Lastly, the robust operation exhibited
by the radio link reveals the feasibility of developing an
Hour
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Fig. 6. Representation of the concentration values predicted by the electronic tongue
for the ions considered: ammonium, potassium and sodium in the Rio Salado moni-
toring. The water temperature is also represented.
environmental sensor network for monitoring surface waters
employing this analytical system.
4. Conclusions

Two different electronic tongue systems have been proposed
and optimized for the environmental monitoring of various
pollutants using similar procedures and equipment. This is a proof
of concept for the versatility of the proposed system. The complex
response obtained from the sensor array could be successfully
processed employing a multilayer ANN; this tool has proved to be
especially suited for building response models for highly non-linear
cases, such as the potentiometric sensors considered. With this
approach, a quantitative multidetermination of a number of
chemical species is easily attainable with rather simple equipment,
shifting the complexity from the sensors to the software side.

The first case studied showed the monitoring of ammonium,
sodium and potassium in natural water samples. In order to
demonstrate the viability of the proposed system for automated
remote applications, it was further combined with a radio link for
real-time monitoring during an 8-h period. The electronic tongue
used here made it possible to determine the content of the three
cations in real water samples, although a high matrix effect was
encountered for sodium determination, basically caused by the
high salinity in the samples. This matrix effect has to be further
studied and offset. One alternative to correct this effect would be to
increase the number of sensors used in the array, incorporating
additional sensors for new species. The second electronic tongue
system was used to monitor heavy metals (copper, lead, zinc and
cadmium) and was applied on natural water samples from open air
waste streams heading down the Gulf of Mexico. Although the ANN
had some difficulties in modelling the cadmium and zinc concen-
trations because of the low levels involved, the natural samples’
analyses carried out employing the electronic tongue are in
concordance with the reference method determinations.

Overall, it has been demonstrated that the electronic tongue
approach can be a viable option to monitor several analytes on-site,
with the added advantages of simplicity, the low cost of both the
system and the analysis, speed of response, versatility, simple
measuring setup, etc. Furthermore, radio transmission can be easily
incorporated for easy and robust communication, thus demon-
strating the feasibility of the proposed system for automated
remote applications and their integration into sensor network
technologies.
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