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This  paper  reports  the  use  of  a hybrid  electronic  tongue  based  on data  fusion  of  two  different  sensor
families,  applied  in  the  recognition  of  beer  types.  Six  modified  graphite-epoxy  voltammetric  sensors
plus  15 potentiometric  sensors  formed  the sensor  array.  The  different  samples  were  analyzed  using
cyclic  voltammetry  and  direct  potentiometry  without  any  sample  pretreatment  in  both  cases.  The  sensor
array  coupled  with  feature  extraction  and  pattern  recognition  methods,  namely  Principal  Component
vailable online 6 December 2012

eywords:
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Analysis  (PCA)  and  Linear  Discriminant  Analysis  (LDA),  was  trained  to classify  the  data  clusters  related  to
different  beer  varieties.  PCA  was  used  to visualize  the different  categories  of taste  profiles,  while  LDA  with
leave-one-out  cross-validation  approach  permitted  the  qualitative  classification.  The  aim  of  this  work  is
to improve  performance  of  existing  electronic  tongue  systems  by  exploiting  the  new  approach  of  data
fusion  of  different  sensor  types.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Beer is a popular alcoholic beverage, and probably one of the
ldest manufactured by mankind. Brewing is based on the fermen-
ation of starches, commonly derived from cereal grains such as
arley, wheat, maize and rice. Most beers are flavored with hops,
hich add bitterness and aroma besides acting as a natural preser-

ative; occasionally, other flavorings such as seasonings, herbs or
ruits may  also be included in its elaboration [1].  The direct effect
f the use of hops is the release of �-acids, which during the boiling
rocess are converted into the iso-�-acids, whose significance is
elevant not only for foam stability, but also for their bactericidal
ffects [2].

Up to now, different styles of beer have been created around the
orld. These types of beers vary in characteristics such as flavor,

olor and aroma. Related to this, beer is generally classified into

wo main kinds based on the yeast used for fermentation. These
wo styles are Ales, which use top-fermenting yeast, and Lagers
hich are brewed with bottom-fermenting yeast. On the one hand,

∗ Corresponding author at: Sensors and Biosensors Group, Department of Chem-
stry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Spain.
el.: +34 93 5811017; fax: +34 93 5812379.

E-mail addresses: manel.delvalle@uab.es, manel.delvalle@uab.cat (M. del Valle).

925-4005/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.snb.2012.11.110
some common varieties of Ales include the Indian Pale Ale (IPA)
variety, which commonly have a nutty or fruity state, and Stout
which is easily identified by its very dark color and roasted taste.
On the other hand, some beers categorized as Lagers include the
following varieties: Pilsner which is widely produced industrially
and could be considered the most popular type of beer in the world
(identified by its light yellow to golden color and usually balanced
taste) or the American style Lagers, mostly produced in America,
and characterized by their light color and flavor as well as their
high carbonic acid content [3].

An important characteristic of beers is bitterness. Bitterness
determination is related with the total amount of iso-�-acids. This
property is currently quantified in the European Bitter Units (EBU)
scale. There are several methods related to the determination of
iso-�-acids in beers (i.e. using techniques as ultraviolet spectropho-
tometry (UV) and high performance liquid chromatography (HPLC)
coupled to UV or mass spectrometry (MS) detection [4,5]). How-
ever, these analytical methods often require long analysis time,
complicate sample pretreatment and the use of sophisticated and
expensive equipment. In this sense, due to its characteristics, work-
ing methodologies as electronic tongues (ETs) represent promising

chemical analysis systems for the analysis of foods and beverages
[6]. ETs are analytical systems consisting in an array of electro-
chemical sensors coupled to advanced data processing tools, able
to interpret the complex chemical signals and provide the sought

dx.doi.org/10.1016/j.snb.2012.11.110
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:manel.delvalle@uab.es
mailto:manel.delvalle@uab.cat
dx.doi.org/10.1016/j.snb.2012.11.110
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Table 1
Beer samples under study.

Brand Beer type

AK Damm Lager
Amstel Lager
Bock Damm Stout
Budweiser Lager
Carlsberg Lager
Cervesa Montseny Lupulus IPA
Cervesa Montseny Malta Lager
Cervesa Montseny Negra Stout
Cervesa Pilsen Bonpreu Lager
Estrella Damm Lager
Flama Art 2A IPA
Flama Art 2B IPA
Fosca Art 2A Stout
Fosca Art 2B Stout
Glimbergen Lager
Guinness Stout
Heineken Lager
Moritz Lager
Orus Art 2B Lager
Orus Art 2C Lager
Orus Art Lager 2A Lager
Pilsner Urquell Lager
Saaz Lager
90 J.M. Gutiérrez et al. / Sensors an

nformation of the analyzed samples [7].  Their use is becoming
ore widespread in food analysis, given the advantages offered

n tasks such as recognition and classification, quantification of
omponents and prediction of properties. In this sense, there are
any reports using ETs for the analysis of milk, fruit juices, cof-

ee, wine and beer [8,9]. Applications of ETs related to beer analysis
re focused on the discrimination of samples and the prediction of
ome taste attributes [2,10],  in the correlation of features described
y a sensory panel and ETs [11], and more recently, on the moni-
oring of beer aging and its fermentation process [12,13].

Data analysis and pattern recognition in particular, are a fun-
amental part of any sensor array system [14]. For instance, ETs
hat incorporate non-linear chemometrics such as ANNs have been
emonstrated in various applications. Many ANN configurations
nd training algorithms have been used to build up ETs; these
nclude Probabilistic Neural Networks (PNNs) with Radial Basis
unctions (RBF) or Feed-Forward Networks with Backpropagation
BP) learning method [12], Fuzzy ARTMAP Neural Networks [15] or
upport Vector Machines (SVMs) [16]. Apart, linear pattern recog-
ition methods namely Principal Component Analysis (PCA), the
-Nearest Neighbor (KNN) and Linear Discriminant Analysis (LDA)
ave been commonly used in ET systems [17].

A key principle in designing ETs is the selection of sensors
orming the array and their ability to provide a useful chemical
ngerprint from the samples. This potential might be increased if
sing sensors with different measuring principles (e.g. potentiom-
try, voltammetry, and impedance). However, the use of multiple
ource sensing demands more effective data processing tools. Thus,
ensor data fusion is a strategy that combines and analyzes the mul-
isource data to take advantage of their characteristics, and that
mproves the representation of information to build a prediction
r decision model [18]. Data fusion is therefore a tool that permits
o make compatible measurements originated from very different
ature. The research of data fusion in chemistry is in a development
tage, although there are few reports describing its benefits in this
eld [19].

The aim of the present work is to use a hybrid ET based
n potentiometric and voltammetric sensors, furnished with a
ata fusion processing tool, to attempt the classification of beers.
onsidered beer samples for this study were selected taking

nto account three main classes: IPA, Lager and Stout. The elec-
rochemical sensor array was composed by fifteen solid-state
otentiometric sensors employing polymeric membranes with
ommon cations and anions ion formulations and six voltammetric
ulk-modified sensors using metallic nanoparticles and conduct-

ng polymers, in order to obtain differentiated catalytic responses.
lectrochemical responses obtained from potentiometric and cyclic
oltammetry (CV) measures were used as departure information;
ata processing stages including feature extraction, Principal Com-
onent Analysis (PCA) and Linear Discriminant Analysis (LDA),
ere used till discrimination of the different types of beer was
ossible.

. Experimental

.1. Study case

Samples under study were acquired at a craft brewery (Art
ervecers Company, Canovelles, Barcelona, Spain) and at a local
upermarket. A total of 25 samples of beer from different brands

nd varieties were selected. Samples were chosen according with
he mentioned types of beer (IPA, Lager and Stout) and also tak-
ng into account its production method (craft or commercial), in
rder to have a diversified sample set. In this way, the formed set
San Miguel Lager
Voll Damm Lager

included 17 Lager, 3 IPA and 5 Stout beers. Table 1 summarizes
detailed information about the brands and beer types used.

2.2. Sensor preparation

Due to the complexity of the case, samples were independently
processed using two  different arrays of electrochemical sensors (i.e.
potentiometric and voltammetric) and their corresponding tech-
niques.

The 15 potentiometric sensors used were all solid-state ion-
selective electrodes (ISEs) with a solid contact from a conductive
epoxy composite. This configuration has been extensively used in
our laboratories [20]. The PVC membranes were formed by sol-
vent casting the sensor cocktail dissolved in THF. The formulation
of the different membranes used (components supplied by Fluka,
Switzerland) is outlined in Table 2.

The voltammetric sensor array was formed by 6 graphite-
epoxy voltammetric sensors made with different modifiers added
to the bulk mixture, selected according to previous experience
in our laboratory [21]. Five of them were modified by adding
components as nanoparticles of copper and platinum, conducting
polymer in powder like polypyrrole, phtalocyanine and glucose oxi-
dase (Sigma–Aldrich, St. Louis, USA) – one component per sensor
(Table 2). Whilst, the last sensor (GEC) did not incorporate any.
Standard graphite-epoxy composites were prepared using 50-�m
particle size graphite powder (BDH Laboratory Supplies, UK) and
Epotek H77 resin and hardener (both from Epoxy Technology, USA).
Surface of the electrodes in contact with the samples was  28 mm2.

2.3. Electrochemical measurements

Each beer bottle was opened just before starting the measure-
ment, thus to avoid oxidation and loss of CO2 in the sample; and
to ensure there is no history effect. Also, each beer sample was
diluted by mixing it with distilled water in a ratio 30:70 of beer and

water respectively, in order to reduce matrix effect and to minimize
the apparition of bubbles on the electrode surface. Potentiometric
and voltammetric readings were carried out immediately after this
sample dilution.
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Table  2
Composition of the voltammetric and potentiometric sensors used in the study.

Potentiometric sensors

Sensor PVC (%) Plasticizer (%) Ionophore (%) Reference

Na+ 22 NPOE (70) CMDMM  (6)a [33]
K+ 30 DOS (66) Valinomycin (3)a [33]
NH4

+ 33 BPA (66) Nonactin (1) [33]
Ca2+ I 32.9 o-NPOE (66) Tetronasin (1.0)a [34]
Ca2+ II 33.3 o-NPOE (65.2) ETH1001 (1.0)a [34]
Ca2+ III 30 DOPP (65) BBTP (5.0) [34]
Mg2+ 32.7 o-NPOE (65.6) ETH4030 (1.0)a [34]
Ba2+ 27 DBS (70) Monensin (3.0) [34]
H+ 32.8 DOS (65.6) tri-N-dodecylamine (1) [35]
Generic cations I 29 DOS (67) Dibenzo-18-crown-6 (4) [35]
Generic cations II 27 DBS (70) Lasalocide (3) [35]
NO3

− 30 DBP (67) TOAN (3.0) [36]
Cl− 28.3 o-NPOE (70) TDMAC (0.3) [36]
SO4

2− 33 o-NPOE (66) 1,3[bis(3-Phenylthioureidomethyl)]benzene (1) [36]
Generic anions 29 DBP (65) Tetraoctylammonium bromide (4) [36]

Amperometric sensors

Sensor Modifier Reference

GEC Graphite-epoxy composite

[21]

Pc Phthalocyanine
Pt Platinum nanoparticles
Cu Copper nanoparticles
Ppy Polypyrrole
GOX Glucose oxidase biosensor
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a The formulation includes potassium tetrakis(4-chlorophenyl)-borate as additiv

Potentiometric measurements were performed using a labora-
ory constructed data-acquisition system, consisting of 32 input
hannels implemented with amplifier-follower circuits employing
perational amplifiers (TL071, Texas Instruments), which adapt the
mpedances of each sensor. Measurements were unipolar, with the
eference electrode connected to ground, and were referred to an
rion 90-02-00 double junction Ag/AgCl reference electrode. Each
hannel was noise-shielded with its signal guard. The outputs of
ach amplifier were filtered using a passive low-pass filter and con-
ected to an A/D conversion card (Advantech PC-Lab 813, Taiwan)

nstalled into a Pentium PC. The readings were obtained employ-
ng custom designed software programmed with QuickBASIC 4.5
Microsoft). Readings with the potentiometric electronic tongue
ere taken 5 min  after dipping the sensors in the sample, once the

mf values were stabilized.
The voltammetric measurement cell was formed by the 6-

ensor voltammetric array, a reference double junction Ag/AgCl
lectrode (Thermo Orion 900200) plus a commercial platinum
ounter electrode (Model 52-67, Crison Instruments). Using the
ame diluted beer samples, CV measurements were done using a
-channel AUTOLAB PGSTAT20 (Ecochemie, Netherlands). Cyclic
oltammograms were carried out at room temperature (25 ◦C)
nder quiescent condition. Potential was cycled between −1.0 V
nd +1.2 V vs Ag/AgCl, with a scan rate of 100 mV s−1 and a step
otential of 9 mV.  All experiments were done without any physi-
al regeneration of electrode surfaces. Instead, and to prevent the
ccumulative effect of impurities on electrode surfaces, an elec-
rochemical cleaning stage was done between samples applying a
onditioning potential of +1.4 V for 40 s after each measurement, in

 separate cell containing 50 ml  of distilled water [21].

.4. Feature extraction
Feature extraction is an important stage in many signal treat-
ent procedures. In the case of potentiometric ETs, this stage is

ot employed if departure information is formed by steady-state
potentials coming from ion-selective electrodes. Nevertheless, this
situation is different for voltammetric ETs, given the nature of
their signals involves the recording of currents generated in the
solutions under study related to an applied potential, i.e. one vec-
tor is generated per each sensor. Voltammetric signals contain
hundreds of measures and usually overlapping regions with non-
stationary characteristics. Thus, their high complexity should be
reduced in order to avoid redundancies in the information and
achieve proper mathematical models with correct generalization
ability [9,17].  In other words, by retrieving particular informa-
tion from the original voltammogram, extracted features may  also
increase selectivity present in voltammetric records due to bet-
ter capture of relevant signal content. On the other hand, it is
not uncommon that the number of original features may  exceed
the number of measurements available to train the pattern recog-
nition methods; this is a dangerous situation because there is a
high risk of overfitting. In this sense, the aim of feature extraction
stage in a data fusion procedure is not only focused on making
compatible the nature of the two  distinct signals for each sensor
(discrete values from the potentiometric ET and vectors from the
voltammetric ET) and on facilitating the computation, but also on
retaining the relevant information from each signal type. To achieve
this goal, seven representative features from the cyclic voltammo-
gram of each sensor on the array were extracted as it is shown
in Fig. 1. The complete list of these features are: (1) Imean [−1,
−0.50]: the average value of the anodic current measured in the
potential range [−1 V, −0.50 V]; (2) Imean [−0.75, −0.50]: the aver-
age value of the anodic current measured in the potential range
[−0.75 V, −0.50 V]; (3) Imean [−0.25, 0]: the average value of the
anodic current measured in the potential range [−0.25 V, 0 V]; (4)
Imean [0.25, 0.50]: the average value of the anodic current measured
in the potential range [0.25 V, 0.50 V]; (5) Imean [0.75, 1]: the aver-

age value of the anodic current measured in the potential range
[0.75 V, 1 V]; (6) �I(−0.75 V) = Imax(−0.75 V) − Imin(−0.75 V): the
current change calculated as the difference between the cathodic
and anodic values in the specific potential of −0.75 V and (7)
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Fig. 1. Features extracted from voltammogra

I(1 V) = Imax(1 V) − Imin(1 V): the current change calculated as the
ifference between the cathodic and anodic values in the specific
otential of 1 V.

These 7 features were extracted from the voltammograms of
ach sensor. Since there were 6 voltammetric sensors within the
rray, each measurement from the voltammetric ET was  described
y 42 variables. Whereas 15 potentiometric sensors were used to
haracterize beer samples, each potentiometric measurement was
escribed by 15 variables. The data fusion matrix considered had
5 rows (i.e. samples) and 57 columns (i.e. variables). In order to
educe the variability associated to possible fluctuations in both
lectronic tongue signals, and to minimize other sources of variance
lso affecting the total signal of the voltammetric and potentiomet-
ic sensors, normalized signals rather than absolute signals were
sed to construct PCA and LDA models. For variable normalization,
ach variable value was divided by the square of the maximum
alue in the same column. Although this procedure could assure
btaining centered values, redundant information is not avoided.
or final application, it is advisable to choose the most relevant fea-
ures from the extracted ones using some feature selection process.

.5. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is one of the most used
lassification algorithms. It has been widely used and proven
uccessfully in many applications of electronic nose [22,23] and
lectronic tongue [24,25]. In fact, using this method, data are sepa-
ated in k a priori defined classes by using linear combinations of the
ariables in each group to create k − 1 new discriminant axis. LDA
s widely recognized as an excellent tool to obtain vectors show-
ng the maximal resolution between a set of previously defined
ategories. In LDA, vectors minimizing the Wilks’ lambda (�ω) are
btained [26]. This parameter is calculated as the sum of squares
f the distances between points belonging to the same category
ivided by the total sum of squares. Values of �ω approaching zero
re obtained with well-resolved categories, whereas overlapped
ategories approach a �ω of one. Hence, LDA tries to find a linear
iscriminant function along which the classes are best separated.
or theoretical background and details of the algorithm, reader is
eferred to [27]. Performance of the final LDA model was  evaluated
sing leave-one-out cross-validation method.

.6. Feature selection
Feature selection is motivated by the need of using the best set
f input variables which will allow the pattern recognition method
o achieve the correct a posteriori classification of the data in their a
 the experiments with voltammetric sensors.

priori groups [28,29].  The selection of the features to be included in
the LDA models was  performed using the SPSS stepwise algorithm
v.11.0 (SPSS Inc., Chicago, IL, USA). According to this algorithm,
a feature is selected when the reduction of �ω produced after its
inclusion in the model exceeds Fin, the incorporation threshold of
a test of comparison of variances or Fisher’s F-test. However, the
incorporation of a new feature modifies the significance of those
features which are already present in the model. For this reason,
after the inclusion of a new feature, a rejection threshold, Fout, is
used to decide if one of the other features should be removed from
the model. When all the features in the model meet the criterion to
be kept and none of the other features meet the criterion to enter,
the stepwise selection process is stopped.

Then, after proper selection of features to be included in the clas-
sification model, LDA model is built and its accuracy is evaluated
by means of leave-one-out cross-validation method. At this point,
based on obtained predictive capabilities and previous experience,
Fin and Fout values are modified so that final performance of the
model is optimized (maximum classification success rate).

2.7. Data processing

Extraction of the seven aforementioned features from each
voltammogram and pre-processing the resulting data matrix were
an automated process via written-in-house MATLAB® v. 2012a
routines (Math Works, Inc., Natick, MA). The Linear Discriminant
Analysis (LDA from SPSS software) was  applied on data grouping
features of all the sensors and all the measurements.

3. Results and discussion

The data obtained by the process mentioned above was sub-
jected to different pattern recognition techniques such as PCA and
LDA. First, resolution of the case was  attempted using potentiomet-
ric sensors only, then voltammetric sensors alone and finally with
the hybrid ET approach.

3.1. Use of potentiometric ET

Radar plot was built in order to observe whether any patterns
(i.e. fingerprints) were present in beer samples. Fig. 2A shows a rep-
resentative case. This helped visualizing some ionic characteristics
of the beers, although no clear pattern variation existed between

IPA, Lager and Stout types. As it can be seen in Fig. 2A, differenti-
ated response was obtained for the different type of sensors and
beers. It should be noticed the differences obtained especially for
Na+ sensor, also in the case of pH and Ca2+ ISEs. In the case of
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Fig. 2. Average responses for beer classes obtained with the sensor array, both potentiometric (radar plot) and voltammetric (cyclic voltammograms obtained for each
s anine 
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ensor). (A) All potentiometric sensors, (B) graphite-epoxy composite, (C) phtalocy
olypyrrole sensor and (G) glucose oxidase biosensor.

ensors like Cl−, NO3
− or NH4

+ displayed distinct responses for at
east two beer types, even clear differences were not as noticeable.
ther sensors like K+ ISE or some with generic response to cations
id not present such distinguishable signals, probably due to their
omparable content in beers.

In this sense, the importance of those sensors could be expected

iven there are some ions in water (i.e. carbonate, calcium,
agnesium, sodium, chloride and sulphate plus its pH) whose

oncentration can determine the type of beer obtained and to
sensor, (D) platinum nano-particle sensor and (E) copper nano-particle sensor, (F)

which much attention is paid during brewery [3].  Nevertheless, it
should be noticed that the use of an array of cross-sensitive sen-
sors with slightly different sensitivities (those non-autocorrelated)
forms an overdetermined system which would permit the simulta-
neous determination of a number of analytes in a complex mixture,
although not clearly distinguished responses were individually

obtained [7].

Before performing PCA using the potentiometric electronic
tongue measurements, the data matrix was mean-centered. PCA
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s a powerful linear unsupervised pattern recognition method that
educes the dimensionality of a multivariate problem and helps
o visualize the different categories of taste and odor profiles
15,21,30] by highlighting similarities and differences between
ample clusters. The results showed that the total variance of the
rst three principal components (PC1, PC2 and PC3) was 86.48%.
ased on PCA, similarities and differences between Lager, Stout and

PA beers were not easy to find. The three kinds of beers cannot
e accurately identified at all; the reason for this may  be that the
elationship among the used potentiometric sensors does not
xpress a cross-sensitivity to the studied beers.

To estimate the success rate in sample identification, a LDA clas-
ifier using leave-one-out cross-validation was implemented, given
he small sample set available. LDA was trained 25 times using 24
raining samples and validated using the sample that had been left
ut. In this re-sampling approach all measurements available act
s validation sample once. Performance of the model, estimated as
he average performance over the n tests, can be summarized in
hat only 48% of the 25 samples from the three different beer types
ere correctly classified. Hence, the employed electronic tongue
sing such potentiometric sensors coupled to LDA model was  not
ble to demonstrate the proper ability to differentiate between beer
amples.

.2. Use of voltammetric ET

It is observed that the different voltammetric electrodes used
e.g. Fig. 2B–G) displayed differentiated signals for each kind of
eer. As can be seen, different response profiles were obtained
epending on the nature of the modifier employed (not only in
he voltammogram shape, but also in the obtained currents); thus
ifferent fingerprints could be extracted with each type of sensor.
lthough similarities were observed, in general, some differenti-
ted responses could be seen at both extreme potentials in the
xidation and reduction zone.

A feature extraction-pattern recognition strategy was  then cho-
en in order to reduce the huge amount of data contained in the
hole voltammetric data set and to achieve the correct recogni-

ion of the beer type. In this way, 7 different features representing
ajor differences observed in those regions were selected from

ach voltammogram; these, from an electrochemical point of view,
ould be taken as indicator of the compounds that can be easily
educed such as flavonols or oxidized such as saccharides. A mean
entering pre-processing technique was applied to the voltam-
etric data matrix. As first step, PCA was applied to the dataset

btained with the 42 extracted variables (6 sensors × 7 features).
esults show that the first three principal components captured
1.7% of data variance, while overlapping between the beer classes
as observed.

As before, LDA model was performed on the voltammet-
ic electronic tongue data to estimate the classification success
ate in sample identification using leave-one-out cross-validation
pproach. A very low success rate in classification was obtained,
ith only seven samples classified correctly among 25 beer sam-
les leading to 40% of classification success rate. Therefore, the used
lectronic tongue with the employed voltammetric sensors, and the
nformation extracted coupled to LDA approach, was also not able
o distinguish between the three kinds of beer.

.3. Hybrid ET

Before performing pattern recognition with the hybrid ET, we

ttempted a variable selection using LDA stepwise technique sepa-
ately on each data set in order to discard features that may  disturb
he classification task. Unfortunately, a clear area of overlapping
till exists for the potentiometric ET measurements. Moreover,
uators B 177 (2013) 989– 996

variable selection was quite suitable for voltammetric ET in terms
of LDA classification success rate which increased significantly from
40% to 84%. However, this improvement was not sufficient to yield
a good classification of the beers. In an attempt to further enhance
this finding, we  suggest to carry out data fusion technique.

In order to perform the fusion of data from the two ETs, a low-
level of abstraction was  chosen [31,32].  In our case, this means that
the voltammetric and potentiometric ETs data sets are combined
together to make a single data matrix, with number of rows equal to
the number of samples and number of columns equal to the number
of features extracted from both voltammetric and potentiometric
channels. The low-level of abstraction for the feature selection is
in connection with the fact of the different sensors signal dimen-
sionality [31]. Nevertheless, merging measurements from the two
sensor types could potentially provide increased redundancy con-
nected with identification ability. The idea behind the data fusion
approach was to observe the classification performance when using
single sensors from the two sensor families. Besides, it is obvious
that the number of features from the two sources would be similar
when low-level abstraction data fusion is performed. If the num-
ber of variables from one instrument is significantly larger, they
could dominate the fused data set [32]. Hence, in the low-level
fusion approach, the data set obtained from each sensor family
(i.e. voltammetric and potentiometric) were merged in a single
matrix of 25 samples by 57 features (the 42 previous features from
the voltammetric ET plus the 15 emf potentials from the potentio-
metric sensors used). Afterwards, stepwise LDA was applied to the
merged set to select the features with highest discriminating power
while removing the ones that did not contribute to the classifica-
tion. This extra-step, seeks to avoid irrelevant or redundant features
from the low-level abstraction data fusion set. In this manner, the
stepwise technique used the Wilk’s lambda method with Fin = 1.7
for a feature to be added and Fout = 0.6 for a feature to be deleted
from the model. These threshold values were chosen as a balance
between keeping the number of selected features small and obtain-
ing high classification success rate by LDA. For a given combination
of Fin and Fout values, the algorithm used a leave-one-out resampling
method within the training subset to select features and estimate
the weights for the LDA classifier. The % of correct classification was
used as the figure of merit for optimizing values of Fin and Fout. Out
of the whole set of features only 15 features from the initial data
set (14 from voltammetric data set and 1 from potentiometric data
set) were finally required to achieve the best classification ability.

Despite the efforts made to keep a similar number of features
for both families (i.e. the use of a low-level abstraction for fea-
ture selection), a higher proportion of voltammetric features were
finally taken; this may  be explained by the higher dimensionality of
voltammetric sensor data (490 current values sample−1 sensor−1,
i.e. a total of 2940 data points sample−1) when compared to poten-
tiometric sensors (1 potential value sample−1 sensor−1, i.e. a total
of 15 data points sample−1). Besides, results of this feature selec-
tion stage suggest that slightly richer information related to beer
composition (e.g. polyphenols, flavonols, saccharides, etc.) can be
deduced from the voltammetric array, but still not enough to
achieve the best classification. In this manner, by using the hybrid
ET, complementary information may  be obtained; that is, potentio-
metric sensors providing information related to ionic composition
while amperometric sensors provide information more related to
electroactive compounds present. Thus, when joining both data
sets, complimentary information was  obtained that allowed the
correct discrimination of beer samples.

The resulting data matrix (25 samples × 15 features) was mean-

centered before the PCA was performed. The score plot of the first
three principal components for the three kinds of beers is shown in
Fig. 3. As can be appreciated, samples of the three different classes
are well separated by the first three components (PC1, PC2 and PC3),
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Fig. 3. 3D-Score plot of PCA performed from data fusion of voltammetric and potentiomet
discrimination is obtained for the different types of beers: (1) Lager, (2) Stout and (3) IPA
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ig. 4. Projections of beer samples in the space defined by the LDA discriminant
unction (DF) 1 and 2. The centroid on each class is indicated as the asterisk.

hich cover the 82.44% of the total variance. Because of this satis-
actory result, it can be deduced that the combined data set contains
ow enough information and displays a high cross-sensitivity to the
eer samples.

Linear Discriminant Analysis (LDA) was conducted on the
erged data set as classification tool, at a 5% significance level.

nitially, the model was built using all the available samples as
raining set, in order to check the classification capability of LDA.
t was found that all the samples were correctly classified in their
rigin group. LDA results are shown in Fig. 4. Plots of the first two
iscriminant functions show high separation of the three groups.
unction 1 seemed to discriminate mostly between Stout beer
rom Lager and IPA beers. In the vertical direction (Function 2)
here was an evident discrimination between Lager from IPA and
ager from Stout. The classification results of LDA leave-one-out

ross-validation approach, in terms of the confusion matrix,
re reported in Table 3. Rows indicate expected beers class and
olumns predicted ones. As it can be noticed in this table, only one
eer sample was misclassified: specifically, one sample belonging

able 3
onfusion matrix for LDA using leave-one-out cross-validation approach in the clas-
ification of beer samples.

Expected Predicted

Lager Stout IPA

Lager 17 0 0
Stout 0 4 1
IPA 0 0 3
ric sensors array. A total of 25 samples were analyzed. As can be observed, a correct
.

to Stout was misclassified as IPA class. Hence, the classification
success rate of the three kinds of beer reaches 96% of accuracy.
The efficiency of the classification obtained was  also evaluated
according to its sensitivity, i.e. the percentage of objects of each
class identified by the classifier model, and to its specificity, the
percentage of objects from different classes correctly rejected by
the classifier model. The value of sensitivity, averaged for the three
classes considered was, 93.3%, and that of specificity was 98.5%.

Finally, to verify the significance of the selected feature from the
potentiometric data on the final performance of the LDA treatment,
we applied LDA on the data set formed with only the 14 features
selected from the voltammetric sensors. As a result, the classifica-
tion rate was  demoted to 84% of correct classification. This confirms
best performance of LDA (96%) obtained when all LDA stepwise
selected features were taken: 14 selected features from the voltam-
metric data set and one selected feature from the potentiometric
data set.

4. Conclusions

A hybrid electronic tongue based on the combination of poten-
tiometric and voltammetric sensors was  developed in order to
create a tool capable of distinguishing between different kinds
of beers. The sensors array coupled with feature extraction and
pattern recognition methods, namely Principal Component Anal-
ysis (PCA) and Linear Discriminant Analysis (LDA), were trained
to classify the data clusters related to different beer types. PCA
was used to visualize the different categories of taste profiles and
LDA with leave-one-out cross-validation approach permitted the
qualitative classification. According to the LDA model, 96% of beer
samples were correctly classified. Moreover, the performance of
hybrid electronic tongue systems by exploiting the new approach
of data fusion of different sensor families, in comparison of simple
electronic tongue, was illustrated.
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del Valle, A review of the use of the potentiometric electronic tongue in the
monitoring of environmental systems, Environmental Modelling & Software
25 (2010) 1023–1030.

36] M.  Cortina, A. Duran, S. Alegret, M.  del Valle, A sequential injection electronic
tongue employing the transient response from potentiometric sensors for
anion multidetermination, Analytical and Bioanalytical Chemistry 385 (2006)
1186–1194.

Biographies

Juan Manuel Gutierrez received his PhD in Electrical Engineering from the CINVES-
TAV, Mexico in 2008 and then he did a postdoctoral research on electronic tongues at
the Sensors & Biosensors Group of the Autonomous University of Barcelona, Spain.
He is currently a Research Professor at the Bioelectronics Section of the Depart-
ment of Electrical Engineering in CINVESTAV, Mexico City. His research interests
are focused on the developing of Bio-inspired Systems employing portable instru-
mentation and advanced data processing tools.

Zouhair Haddi is currently a PhD student at the Laboratory of Electronics, Auto-
matic and Biotechnology, University Moulay Ismaïl, Faculty of Sciences in Meknes,
Morocco. His research interests include pattern recognition methods, sensors
networks and electronic noses for food analysis.

Aziz Amari received his PhD in electronics and artificial intelligence from the
University Moulay Ismaïl (Meknes, Morocco) in 2009. He is currently an assis-
tant professor at the University Mohamed V, Faculty of Sciences (Rabat, Morocco).
He is member of the Laboratory of Electronics, Automatic and Biotechnol-
ogy  at the University Moulay Ismaïl (Meknes, Morocco). His research interests
include chemical sensors, artificial neural networks, features selection, food
analysis, aroma extraction techniques and pattern recognition methods applied
to  electronic noses and electronic tongues, instrumentation and measurement
systems.

Benachir Bouchikhi received the PhD degree from the Université de droit,
d’Economie et des Sciences d’Aix Marseille III, in 1982. Benachir Bouchikhi was
awarded a Doctor of Sciences degree in 1988 from the University of Nancy I. Dr.
Bouchikhi got a position of titular professor at the University of Moulay Ismaïl, Fac-
ulty  of Sciences in Meknes, Morocco since 1993. He is the director of the Laboratory
of Electronics, Automatic and Biotechnology. His current research interests involve
metal oxide sensors for electronic noses and their application to food analysis and
the  control of the climate and drip fertirrigation under greenhouse. He  is author and
co-author of over 45 papers, published on international journals. During the last 10
years he has coordinated a dozen national and international projects, in the area of
food safety, the control of the climate and drip fertirrigation under greenhouse. He
is  a member of the Editorial Board of Journal of Sensors and advisory board of Sensors
and Transducers Journal.

Aitor Mimendia completed his PhD in Environmental Sciences from the
Autonomous University of Barcelona (2012). His research topics deal with the appli-
cation of electronic tongues and flow systems to environmental applications.

Xavier Cetó received the MSc  degree in Chemistry in 2009 from the Universtitat
Autònoma de Barcelona, where he is at the moment finishing his PhD in analytical
chemistry. His main research topics deal with the application of Electronic Tongues
and chemometric tools for data analysis, mainly employing voltammetric sensors
and biosensors, albeit also potentiometric ones.

Manel del Valle received his PhD in chemistry in 1992 from the Universtitat
Autònoma de Barcelona, where he got a position of associate professor in analytical

chemistry. He is a member of the Sensors & Biosensors Group where he is a specialist
for  instrumentation and electrochemical sensors. He has initiated there the research
lines of sensor arrays and electronic tongues. Other interests of his work are the use
of impedance measurements for sensor development, biosensors and the design of
automated flow systems.


	Hybrid electronic tongue based on multisensor data fusion for discrimination of beers
	1 Introduction
	2 Experimental
	2.1 Study case
	2.2 Sensor preparation
	2.3 Electrochemical measurements
	2.4 Feature extraction
	2.5 Linear Discriminant Analysis
	2.6 Feature selection
	2.7 Data processing

	3 Results and discussion
	3.1 Use of potentiometric ET
	3.2 Use of voltammetric ET
	3.3 Hybrid ET

	4 Conclusions
	Acknowledgments
	References

	Biographies

