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Abstract: To calculate the steam turbine exhaust enthalpy, this 
paper proposes a soft sensor method by using the support vector 
machine regression (SVR).  The proposed method is based on the 
following three-step strategy. Firstly, main factors, influencing 
on the last stage group efficiency, were discovered through 
mechanism analysis. Secondly, based on the designed sample 
data, the support vector machine regression is used to establish 
the functional relationship between the exhaust enthalpy and 
these main factors. To identify the parameters involved in the 
SVR, the genetic algorithm (GA) is taken as the optimizer. 
Finally, some experimental sample data collected from a 600MW 
unit are used to validate the established soft sensor model. The 
results show that the proposed method has high prediction 
accuracy, by comparing with thermal test data. 
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I. INTRODUCTION  
Steam turbine exhaust enthalpy is the important pre-step 

for calculating cylinder efficiency, cylinder power, and 
circulating water flow. As steam turbine last stage exhaust is 
in the wet state, pressure - and temperature - dryness are 
needed to determine exhaust enthalpy. However, the existing 
methods are difficult to measure exhaust dryness directly 
until now. Therefore, some soft sensor is broadly used to 
indirectly estimate the exhaust enthalpy. 

The current method to estimate exhaust enthalpy 
includes: Energy Balance Method [1,2], Equivalent Enthalpy 
Drop Method [2],Relative Internal Efficiency method[2], 
Frugal Formula [2], curve extrapolation [2] and variable 
condition iterative calculation in grade [3]. In [4], the above 
mentioned methods are compared. Neural network learning 
algorithm [5] is based on empirical risk minimization 
principle, it suffers some disadvantages, such as, difficulty to 
determine hidden note number, “over learning” phenomenon, 
and local minimum point in training processes, due to the 
lack of quantitative analysis or complete theoretical results, 

�As steam turbine last stage groups’ efficiency is directly 
related to exhaust enthalpy calculating, this paper proposes 
that last grade efficiency is mainly resulted from the last 
stage pressure ratio and displacement through mechanism 
analysis,. In such viewpoint, to online calculate the last stage 
efficiency, a soft sensor model, called GA-SVR model, is 

                                                           
� 1 This study was supported by the key fund from the National Natural 
Science Foundation of China (NO.51036002). 

established based on SVR and GA. The experimental results 
suggest that this model has high prediction accuracy. 
Another significance of the proposed model is that the 
samples used to identify the model can be easily obtained.  

II. SUMMARY OF SVR  
SVM model is proposed according to the structural risk 

minimization principle in statistical learning theory. The 
basic idea is using kernel functions to map a nonlinear 
relation to a high dimensional feature space, in which linear 
algorithm is designed for regression estimation. The model 
solves several problems such as small sample, nonlinearity, 
high dimension, over learning and local minimum point in 
neural network [6]. The regression problem in SVM called 
SVR. 

The regression problem in SVR can be interpreted as 
follow: calculate the relationship between input and output, 
according to input-output dataset {(xi, yi) i=1, 2,…… N} 
Where: xi is the N-dimension input vector i, yi is scalar 
output i, N is the sample size. 

For linear regression: 
( )y f x w x b� � �w x bw x                                                     (1) 

to ensure the sparsity of solution and robust of regression 
result, use follow insensitive loss function as loss function: 
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Suppose the training set satisfies constraint condition (2), 
then can be no error fitted by linear function in accuracy ε. 
That means if the difference between predict value and real 
value is less than ε, and loss is zero, then the points inside ε 
has no effect with the loss function. By this way, the sparsity 
of the solution is ensured.  
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Thus, regression problem is transferred to risk 
minimization problem of linear insensitive loss function, that 
is , minimizing 1 2|| | |

2
w .When constrained formula(2) can 

not be satisfied, introduce non-negative relax 

variable i� , *
i� .Then the optimization objective transferred 

to minimize: 
1 2 *|| | ( )|

12

N
w C i ii

� �� ��
�

(4)

2011 Second International Conference on Intelligent System Design and Engineering Application

978-0-7695-4608-7/11 $26.00 © 2011 IEEE

DOI 10.1109/ISdea.2011.204

1113

2012 International Conference on Intelligent Systems Design and Engineering Application

978-0-7695-4608-7/12 $26.00 © 2012 IEEE

DOI 10.1109/ISdea.2012.581

1113



Constraint condition is: 
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The first term in (4) is mainly for controlling the 
complex of machine learning, improving generalization 
ability of learning and making regression function flat, 
which is called empirical risk. The second is penalty to 
sample which is beyond the error , for reducing error, 
which is called empirical risk. C is penalty coefficient to 
balance structural risk and empirical risk. This is a convex 
quadratic optimization problem, which can be solved by 
Quadratic Programming. The constrained optimization 
problem in formula (4) can be transferred to follow 
unconstrained problem: 
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Look for the extreme value which satisfies the follow 
equations: 
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Substitute (7) into (6), the original problem is transferred 
to the follow quadratic optimization problems, that is, 
minimizing: 

      
1* * *( , ) ( )( )( )

, 12

* *( ) ( )
1 1

N
W x xi i j j i ji j

N N
yi i i iii i

� � � � � �

�� � � �

� 
 
 
�
�

� 
 
 �� �
� �

)j        (8) 

With constraint condition 
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From (8) get linear regression function for support vector 
machine: 
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For nonlinear regression, map nonlinear data to high 
dimension space using kernel function and do linear 
regression. Introduce kernel function K (x, xi), (8) is 
transferred to  

   
1* * *( , ) ( )( ) ( , )
2 , 1

* *( ) ( )
1 1

N
W K x xi i j j i

i j

N N
yi i i ii

i i

� � � � � �

�� � � �

� 
 
 
�
�

� 
 
 �� �
� �

    (11) 

The expression form of regression function is transferred 
to: 
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This choice of radial basis functions (RBF):  
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 as a kernel function. Because RBF 

can well let the sample set from input space to high 
dimensional feature space through non-linear mapping. 
Many studies show that, RBF with a better performance 
than other kernel function [7]. 

III. GA OVERVIEW 
The thought of GA is similar to the natural evolution, is a 

solution based on survival of the fittest ideas. The major 
steps in solving problems are encoding, selection, crossover 
and mutation. Selection is to let good “genes” keep going; 
Cross is good “genes” are exchanged between the 
combination in order to achieve better “gene”; mutation is to 
generate a new “genetic” and avoid local optimum. Because 
the initial population crossover and mutation is random, for a 
given space we can found relatively satisfied with the results 
with proper and sufficient large initial population evolution 
(selection, crossover and mutation) number. As a global 
optimization search method, GA haves the advantages of 
parallel processing, no mathematical equations and 
derivative expressions with explicit objective function; no 
easy to fall into local optimal solution, etc. GA optimization 
is fast and high efficiency. 

IV. THE APPLICATION OF SVR MODEL FOR THE LAST 
STAGE GROUP EFFICIENCY OF TURBINE 

A. The choice of input parameters [8] 
The input parameters of last stage group efficiency exists 

the features of high dimensions, variables nonlinear and 
strong coupling, this features affect the SVM model 
accuracy and generalization ability. So bonding mechanism, 
it can extract key factors as model input parameters. From 
the experimental data and mechanism analysis, the impact of 
the last stage group pressure ratio is the dominant factor in 
the last stage group efficiency; at the same moment, exhaust 
steam volume can also affect the last stage group efficiency -
when the exhaust steam volume changes, loss of the last 
stage groups will change over speed. So the last stage group 
efficiency can be expressed as ( , )f Dci �� � . This election 
is these two key parameters as input parameters. 

B. Sample set construction  
Take the case of shanghai turbine works 600MW turbine, 

this paper selects 13 working conditions data as input data. 
Any of these 10 sets of data as training samples and the other 
three sets of data as the test samples. Original date [9] as 
table 1 shows.  

As the order of magnitude of the input parameters is 
quite different, each parameter should be normalized before 
calculated to avoid overflow.  The processing methods are as 
follows:  
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Table 1.  THE ORIGINAL DATA OF 600MW TURBINE 

Condition Last stage pressure 
ratio 

Exhaust steam 
volume (t/h) 

Last stage 
efficiency 

1 0.0897 2011.1 0.7781 
2 0.1673 2093.5 0.9171 
3 0.1731 2011.1 0.9139 
4 0.3497 900.1 0.8826 
5 0.3408 925.5 0.8801 
6 0.4005 571.7 0.83912 
7 0.3909 2011.1 0.8625 
8 0.2979 1077.2 0.8993 
9 0.2178 1539.9 0.9068 
10 0.2441 1350.3 0.9079 
11 0.2931 1097.3 0.8982 
12 0.2428 1359.6 0.9082 
13 0.186 1848.8 0.9046 
 
Exhaust steam volume: min[ ]

max min

G Gc cGc
G Gc c
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; 

Last stage pressure ratio: min[ ]
max min
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.  

C. Optimization of SVR model parameter 
By choosing RBF as a kernel function, there are three 

parameters in SVR model: penalty coefficient C, insensitive 
factor  and width coefficient  in RBF kernel function. 
After training set and SVM model is known, to reduce 
generalization error and increase generalization ability of 
SVM, we need to optimize the parameters C, ε and σ. This 
paper uses 5-fold cross validation to estimate the 
generalization error of regression, the conditions as training 
samples are divided into five groups from 1 to 9: 1 condition, 
2-3 condition, 4-5 condition, 6-7 condition, 8-10 condition. 
The first group 1 to 4 as a training sample, group 5 as the test 
samples, root mean square error (RMSE) of the test sample 
can be tested 21

( )
1

n
y yeRMSE i iin

� � 

�

. By repeating the steps 

above, the sum of 5 cross validation errors is obtained. 
Regard minimization of validation errors as the criteria for 
parameter optimization.  

Model parameter optimization uses GA. GA in 
evolutionary search non-use of external information in the 
basic, only chooses fitness function as the basis and uses 
population fitness value of each individual to search. GA 
population size select 50, evolutionary generations is 100, 
crossover probability value of 0.7, mutation probability 
value of 0.01, set range of optimization of parameters C, ε, σ 
in SVR model: 0.01<C<1000, 0.01<σ<1000, 0.0001<ε<0.1. 

This paper selects 1 21 1 ( )
1

n
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fitness function, by using GA global search capability, 
through selection, crossover and mutation, from a given 
range of parameters starting, along the search direction to the 
maximum fitness function value. Populations continue to 
propagate down from generation to generation and converge 

to a group of individuals best adapted to the environment, 
which is the optimal solution in this model. 

D. GA-SVR model validation 
This paper uses 5-fold cross validation as parameter 

optimization criteria and GA to optimize the parameters of 
SVR. Logic diagram shows in Fig. 1. 

Set fitness function, probability of
mutation and crossover, population
size, iteration number and conditions
precedent of GA

Set fitness function, probability of mutation and
crossover, population size, iteration number
and conditions precedent of GA

For GA manipulation: selection, crossover and
mutation

Determine whether the stop condition

Output the optimal parameters, read the test
samples, output test value

Y

N

Select the training sample set for training the
SVR according to 5-fold cross validation get
the average error as the fitness value of GA

 
Figure 1.  Based on GA-SVR model logic diagram 

Through optimized by genetic algorithm SVR model 
parameters are as follows: C-32.5, ε-0.01, σ-10.7. The results 
show in Fig. 2: model output value and the design error is 
almost 0, this model achieves a good return result. The 
comparative results show in Table 2. 

 
Figure 2.  The comparison of GA-SVR model predicted result and the 

design value 

As can be seen from the table, error of test samples 11-13 
is less than 0.5%. It means that SVR model have high 
accuracy. By analyzing the efficiency losses of the last stage, 
SVR model, established with extracting key factor, can be 
used for the online calculation of last stage efficiency. 
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Table 2.  Model prediction error analysis 

Condition Design value Predictive value Relative error (%) 
1 0.7781 0.77808 0.0026 
2 0.9171 0.91709 0.0011 
3 0.8826 0.88259 0.0011 
4 0.9046 0.90459 0.0011 
5 0.8801 0.88007 0.0034 
6 0.83912 0.83911 0.0012 
7 0.8625 0.86254 -0.0046 
8 0.8993 0.89932 -0.0022 
9 0.9068 0.90678 0.0022 

10 0.9079 0.90791 -0.0011 
11 0.8982 0.89959 -0.015 
12 0.9082 0.90859 -0.043 
13 0.9139 0.91584 -0.21 

V. THE RESULTS VERIFY 
Exhaust enthalpy can be calculated according to the 

calculus c j ih h H�� 
 �HHH . Where ch  is exhaust enthalpy; 

jh is enthalpy before the last stage group; i�  is last stage 
efficiency; H� is ideal enthalpy drop in the last stage group. 
That is an important application of research results. 

With the efficiency of steam turbine last stage group we 
can discuss its flowing characteristics and exhaust enthalpy 
easily, the calculate steps are provided in Fig.3; while we 
can also obtain exhaust enthalpy of steam turbine last stage 
through traditional heat balance method. Selecting 5 group 
experimental data [10] of 600MW unit are provided to prove 
this GA-SVR modal through calculating exhaust enthalpy. 
The results are showed in table 3 and Fig.4. 

Calculate pressure, temperature, and
flow rate of last stage with the middle

stages flowing characteristics

Evaluate exhaust pressure with
condenser’s various operation characteristic

Calculate the efficiency of last stage through
GA-SVR model by last stage’s pressure ratio

and flow rate

Calculate exhaust enthalpy by the efficiency
and extraction steam parameters

OVER
 

Figure 3.  The steps of calculating exhaust enthalpy 

Table 3.  Comparing the results of the exhaust enthalpy by model 
calculations and experimental data 

Condition Last stage 
efficiency (%) 

Exhaust enthalpy 
by model 

calculating(kJ/kg) 

Exhaust 
enthalpy by 
thermal test 
data(kJ/kg) 

Relative 
error (%) 

1 0.8196 2542.851 2564 0.82 
2 0.8375 2530.433 2578 1 83 
3 0.8441 2500.208 2507 0 28 
4 0.8604 2473.058 2485 0 46 
5 0.8878 2468.918 2435 -1.4 

 

Figure 4.  Comparing the results of the exhaust enthalpy by model 
calculation and experimental data 

In Fig. 4, these two curves have same trend, so the GA-
SVR modal is proved. SVR model can be applied in practice. 

VI. CONCLUSIONS 
To calculate the steam turbine exhaust enthalpy, this 

paper proposes a soft sensor method by using SVR and GA. 
Genetic optimization is firstly used to improve SVR 
parameters and thus the GA-SVR is established. The GA-
SVR modal is then used to calculate the exhaust enthalpy 
with the efficiency of steam turbine last stage group. 
Enthalpy by model calculating and thermal test data has the 
same trend, SVR modal is proved.  
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