
Modeling and Evaluation of Software Systems with
Object Stochastic Activity Networks

Mohammad Abdollahi Azgomi
Department of Computer Engineering,

Iran University of Science and Technology,
Tehran, Iran

E-mail: azgomi@iust.ac.ir

Ali Movaghar
Department of Computer Engineering,

Sharif University of Technology,
Tehran, Iran

E-mail: movaghar@sharif.edu

Abstract—Stochastic activity networks (SANs) are a stochastic
generalization of Petri nets. SAN models have been used to
evaluate a wide range of systems and are supported by several
modeling tools. We have introduced object stochastic activity
networks (OSANs) to overcome some restrictions of these models.
OSANs integrate the concepts of object-orientation into SAN
models. Elements of OSANs and their submodels are defined as
classes. OSANs are more appropriate that most other object-
oriented or high-level extensions of Petri nets for application on
software systems. In this paper, we will present the definitions,
behavior and an example of OSAN models. The object-
orientation of OSANs and the flexibility of having functions for
activities, make these models more appropriate than other
extensions of Petri nets for modeling and evaluation of software
systems.

Keywords- modeling, evaluation, Petri nets, object stochastic
activity networks, software performance

I. INTRODUCTION
Stochastic activity networks (SANs) [25] are a stochastic

generalization of Petri nets. These models are more powerful
and flexible than most other stochastic extensions of Petri nets
including notable models such as stochastic Petri nets (SPNs)
[21] and generalized stochastic Petri nets (GSPNs) [7].

SAN models have been used as a modeling formalism in
several modeling tools, such as UltraSAN [28] and Möbius [14]
and have been used to evaluate the performance and
dependability of a wide range of systems.

In order to integrate the concepts of object-orientation
(OO) into SANs and to overcome some restrictions of these
models, we will introduce an object-oriented extension for
SANs, called object stochastic activity networks (OSANs) in
this paper. OSAN models are appropriate for object-oriented
modeling (OOM) of software systems and can be evaluated by
analytic or simulation techniques.

Primitives of OSANs and their submodels (called super
activity) are defined as classes. Tokens of OSANs are objects
of a user-defined token class. These models adapt some useful
ideas and features from the existing high-level and object-
oriented extensions of Petri nets.

Preliminary ideas and informal definitions of OSANs have
already been introduced in [1] and [3]. In this paper, we will

present their finalized graphical notations, formal definitions
and an example.

This paper is organized as follows. Sec. II some related
works are introduced. Sec. III mentions the motivations of this
work. In Sec. IV, the informal and formal definitions, graphical
notations and an example of OSAN models are presented.
Finally, in Sec. V, some concluding remarks and future works
are mentioned.

II. RELATED WORKS
Object-orientation has been identified as a key answer to

main critiques of Petri nets. An object-oriented paradigm
provides excellent concepts to model real-world problems [16].
OO concepts allow constructing models easily, intuitively and
naturally.

The absence of structuring capabilities has been one of the
main criticisms raised against high-level Petri nets [15]. The
attractive characteristics of these nets have prompted
researchers to enrich these formalisms with object-oriented
features.

Proposals for the integration of OO and Petri nets are
numerous and widely different. However, two major trends are
as: objects inside Petri nets vs. Petri nets inside objects [10].
C.A. Lakos has also categorized them as: object-based Petri
net (OBPN), object-oriented Petri net (OOPN) and object Petri
nets (OPN) [24].

Different styles and dialects of OOPNs are described in the
literature. A historical list of OOPNs is shown in Tab. 1. For a
detailed comparison, please see [10], [24], [15] and [16].

III. MOTIVATIONS
The integration of object-orientation into SANs, which are

a stochastic modeling formalism, will have a lot of advantages.
To be able to define tokens as instances of user-defined classes
and definition of submodels as classes and using several
instances of them to construct a model will facilitate modeling
software systems.

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

TABLE I. A HISTORICAL LIST OF OOPNS

Year OO Extensions of Petri nets
1988 PROT nets [8]
1988 OBJSA nets [11]
1991 SimCon object model [30]
1991 Language for OO Petri net (LOOPN) [22]
1991 Concurrent OO Petri net (CO-OPN) [13]
1993 Expressive comfort [31]
1993 Cooperative objects [9]
1994 Cooperative nets [27]
1994 LOOPN++ [23]
1995 Object Petri nets (OPNs) [24]
1995 Class oriented with nets (CLOWN) [12]
1997 PNTalk (PN + Smalltalk) [32]
1998 Object nets [29]
1999 Reference nets [19]
2000 Hierarchical OO Nets (HOONets) [16]
2001 Object coloured Petri nets (OCP-nets) [20]

The existing object-oriented extensions of Petri nets are
rather complicated. They lack simplicity, good graphical
representations and analysis techniques, which are the key
benefits of the original Petri nets. Some of the OOPNs are
defined as textual modeling languages (ex. LOOPN) [22]. Most
of them, such as OPNs, are behaviorally equivalent to coloured
Petri nets (CPNs) [17]. Therefore, these models are not timed
and stochastic and therefore, inappropriate for evaluation
purposes. Another disadvantage of OOPNs is their weak tool
support (comparing to SPNs and CPNs).

The aims of OSANs are as follows:

1. Integrating OO concepts into a stochastic modeling
formalism: Those parts of OO concepts that are more useful,
will be integrated into SANs. Classes, hierarchy of classes
and objects and inheritance are the most important features
that are selected.

2. To be useful for object-oriented modeling of software
systems: The unified modeling language (UML) is the de
facto standard of OOM of software systems. However, UML
lack formal semantics. Therefore, UML models are
inappropriate for verification and evaluation purposes. Petri
nets and other formalisms have been used as a complement
to Petri nets in several research projects. While, having a
formalism that takes the advantages of both of the UML and
stochastic Petri nets is a better solution for this purpose.

3. To be based on "objects inside Petri nets" approach: Tokens
of OSANs are objects of a user defined token class. These
objects can be manipulated by elements of OSAN models.

4. Submodels as classes: Submodels of OSANs can be defined
as classes. Each of these classes can be instantiated with
different names to compose an OSAN model. For each
submodel class, some data fields and methods can be
defined. These methods are used to access to the internal
states (marking of places) and data fields of submodels.
Therefore, submodels of OSANs are fully encapsulated. This
is a key benefit of OSANs over hierarchical SANs (HSANs)
[4].

IV. OBJECT STOCHASTIC ACTIVITY NETWORKS
In this section, we introduce object stochastic activity

networks, including their elements, formal definitions,
graphical notations and an example.

Our base model for the definition of OSAN models is a new
definition of SANs [26] that is slightly different from their
original definition [25].

A. Elements of OSAN Models
The elements of OSANs are simple place, coloured place,

instantaneous activity and timed activity. The simple places
hold black tokens of integer type, while the coloured places
hold a list of tokens (objects) of a user-defined token class.

The input and output gates of the ordinary SANs do not
exist in OSANs. These elements are encapsulated into
instantaneous and timed activities. The reasons for this
integration are as follows:

 Gates are not separate elements. They define the actions of a
linked activity. Such a thing is not useful in OO
methodology. Therefore, they are encapsulated into activities
as their actions, methods or functions.

 Gates are non-standard elements, which are not found in
standard extensions of Petri net.

 There are a number of ambiguities in the graphical
representation of standard gates and general gates.

However, the advantages of gates, which are their
flexibilities for construction of condensed models is still
preserved in the definition of activities that will be explained
later.

In the following paragraphs, we introduce OSAN elements
and their graphical notations:

1. Simple place. A simple place of OSANs is similar to
ordinary SANs and Petri nets. A simple place holds black
tokens of integer type.

2. Token class. Coloured tokens that are held by coloured
places are objects of a user-defined token class. A token class
has one or more fields and zero or more methods. Methods of a
token class are general functions. These methods can be called
by functions of activities. It means that the treatment of tokens
by activities can vary from one token to another, depending on
their fields and methods. The visibility of each field or method
is determined by private, public or protected keywords. The
syntax for the token class definition is quite similar to C++ or
Java. The formal definition of token class is as follows:

Definition 1. Token class is defined as a tuple TC = (ID,
DF1, …, DFn, M1, …, Mm), where:

 ID is a unique identifier of the token class,

 DF1, …, DFn are fields of the token class, where n ≥ 1 and
each field is defined as a 4-tuple (FID, FT, FC, FV), where
FID is a unique identifier for the field; FT is a data type; FC
is a field constraint for the values to be bound to the field;
and FV is the visibility of the field.

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

 M1, …, Mm are methods of the token class, where m ≥ 0 and
each method is defined as a 4-tuple (MID, T, G, MV), where
MID is a unique identifier for the method; T is the data type
of method's return value; G is the function of the method;
and MV is the visibility of the method.

3. Coloured place. A coloured place holds a list of tokens
of a specified token class. To each coloured place is associated
a selection policy, which specifies the order of tokens to be
taken from the coloured place. The possible selection policies
are {NSP1, FIFO, LIFO, PRI}. If the selection policy of a
coloured place is NSP, the list of tokens is unordered;
otherwise, it is an ordered list. For FIFO and LIFO selection
policies, the temporal order of tokens is used. For PRI selection
policy, a user-defined order function determines the order of
tokens inside the coloured place.

Both the number of tokens inside a coloured place (i.e. the
size of the token list) and the values of its fields can be read in
predicates and functions or can be read or manipulated by
functions of activities. The following is the formal definition of
coloured place:

Definition 2. A coloured place is defined as a triplet CP =
(TC, SP, OF), where:

 TC is the identifier of a token class,

 SP ∈ {NSP, FIFO, LIFO, PRI} is a selection policy for the
place, and

 OF is the order function of the place and is defined if SP =
PRI.

The graphical representation of a coloured place is shown
in Fig. 1, where TCName is the name of a token class and sp is
the selection policy of the place.

Figure 1. The graphical notation of a coloured place

4. Timed activity. Timed activities represent activities of
the modeled system whose durations impact the system's
ability to perform. Timed activities represent parallelism in the
modeled system. A timed activity in OSANs is an
encapsulation of timed activity, input gate and output gate of
the original SANs. A timed activity is linked directly to some
input and output places. To each timed activity is associated an
activity function that behaves like functions of input/output
gates.

The graphical representation of a timed activity with m
inputs and n outputs is shown in Fig. 2.

5. Instantaneous activity. Instantaneous activities describe
events, which occur instantaneously and are completed in a
negligible amount of time. Case probabilities associated with
instantaneous activities permit the probabilistic modeling
nondeterminacy. An instantaneous activity in OSANs is an

1 NSP is abbreviation for no-selection-policy

encapsulation of instantaneous activity, input gate and output
gate of the original SANs. To each instantaneous activity is
associated an activity function.

The graphical representation of an instantaneous activity
with m inputs and n outputs is shown in Fig. 3.

Figure 2. The graphical notation of timed activity

Figure 3. The graphical notation of instantaneous activity

B. Definition of Flat OSAN Models
A flat OSAN model is composed of the above elements and

some data fields and methods. Data fields of an OSAN model
may be used as variables in activity functions. Methods of an
OSAN model are private and local functions that can be called
by activity functions.

Flat OSAN models are formally defined as follows:

Definition 3. Object stochastic activity network (OSAN) is
defined as a 13-tuple OSAN = (Σ, DF, M, SP, CP, IA, TA, IR,
OR, C, F, Π, ρ), where:

 Σ is a finite set of token types.

 DF is a finite set of data fields. Data fields are defined like
Definition 1.

 M is a finite set of methods. Data fields are defined like
Definition 1.

 SP is a finite set of simple places.

 CP is a finite set of coloured places.

 TA is a finite set of timed activities. To each timed activity, a,
with m inputs and n outputs is associated:

o A computable predicate, e, called the enabling
predicate of a,

e: MI → {true, false},

where MI = M1× ... × Mm, × stands for Cartesian
product and Mi for i = 1, …, m is defined as follows:

− If Pi ∈ SP: Mi = N, where N denotes the set of
positive integer numbers.

− Otherwise (i.e. Pi ∈ CP): Mi = L(Pi), where L(Pi)
is the set of all possible occurrences (closure) of
the token list of Pi.

:(TCName, sp)

CP-Name

OP1

OPn

 IP1

 IPm

output placesTA-name input places

OP1

OPn

 IP1

 IPm

output placesIA-name input places

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

o A computable partial function, G, called the activity
function of a,

G: MI → MO,

where MI is defined as before and MO = M1× ... × Mn,
where Mi for i = 1, …, n, and n is the number of
activity outputs and is defined as before.

 IA is a finite set of instantaneous activities. To each
instantaneous activity, a, is associated an enabling predicate,
e, and an activity function, G, that are defined as before.

 IR ⊆ (SP ∪ CP) × {1, …, |SP ∪ CP|} × (IA ∪ TA) is the
input relation2. IR satisfies the following conditions:

− For any (P1, i, a) ∈ IR such that a has m inputs, i ≤ m,

− For any a ∈ TA ∪ IA with m inputs and i ∈ N, i ≤ m, there
exist P1 ∈ (SP ∪ CP) such that (P1, i, a) ∈ IR,

− For any (P1, i, a1), (P1, j, a2) ∈ IR, i = j and a1 = a2.

 OR ⊆ (IA ∪ TA) × {1, …, |SP ∪ CP|} × (SP ∪ CP) is the
output relation3. OR satisfies the following conditions:

− For any (a, i, P1) ∈ OR such that a has m outputs, i ≤ m,

− For any a ∈ (IA ∪ TA) with m outputs and i ∈ N, i ≤ m,
there exist P1 ∈ (SP ∪ CP) such that (a, i, P1) ∈ OR,

− For any (a1, i, P1), (a2, j, P1) ∈ OR, i = j and a1 = a2.

 C: M × IA → [0, 1] is the case probability function, where M
= M1× ... × Mn, n = |SP ∪ CP| and Mi for i = 1, …, n is
defined as before.

 F = {F(.|µ, a); µ ∈ M, a ∈ TA}, where M is defined as before
is the set of activity time distribution functions, where n =
|SP ∪ CP| and, for any µ ∈ M, and a ∈ TA, F(.|µ, a) is a
probability distribution function,

 Π: M × TA → {true, false} is the reactivation predicate,
where M is defined as before,

 ρ: M × TA → R+ is the enabling rate function, where M is
defined as before and R+ denotes the set of positive real
numbers.

Similar to a new definition of SANs [26], in addition to the
above stochastic setting, two other settings, namely
nondeterministic and probabilistic settings can be defined as
follows:

Definition 4. The nondeterministic setting of OSANs, that
is called object activity network (OAN) is derived from
Definition 3 and is defined as an 8-tuple OAN = (Σ, DF, M, SP,
CP, IA, TA, IR, OR), where Σ, DF, M, SP, CP, IA, TA, IR and
OR are defined as before.

Definition 5. The probabilistic setting of OSANs, that is
called object probabilistic activity network (OPAN) is derived
from Definition 3 and is defined as a 9-tuple OPAN = (Σ, DF,

2 In a graphical representation, (Pk, k, a) ∈ IR means that place Pk is linked to

k-th input of activity a. Pk is said to be an input place of a.
3 In a graphical representation, (a, k, Pk) ∈ OR means that k-th output of

activity a is linked to place Pk. Pk is referred to as an output place of a.

M, SP, CP, IA, TA, IR, OR, C), where Σ, DF, M, SP, CP, IA,
TA, IR, OR and C are defined as before.

C. Hierarchical OSAN Models
OSAN model as in Definition 3 are a flat network of

elements. Now we define hierarchical object stochastic activity
networks (HOSANs) as a hierarchical extension of OSANs.
HOSAN models provide facilities for composing a hierarchy of
OSAN submodels using a new element called super activity
(SA).

A super activity is a submodel of OSANs, which is
composed of OSAN elements and other super activities. Place
fusion provides a mechanism for interfacing super activities to
other parts of an HOSAN model. A super activity may have
some input and output fusion places that are a subset of the
simple or coloured places of OSANs. Fusion places will be
bound to the actual places of the container HOSAN model or
super activity.

Super activities are defined as super activity classes. Each
super activity class can be instantiated to be used as an element
of the container HOSAN model or super activity.

HOSAN model is defined as follows:

Definition 6. Hierarchical object stochastic activity
network (HOSAN) is defined as a 4-tuple HOSAN = (OSAN, δ,
SA, BF) where:

 OSAN is defined as in Definition 3,

 δ is a finite set of super activity classes, which will be
defined later.

 SA is a set of super activity instantiations, which is defined
as follows:

SA = {(sa, sac)| sa is an identifier for a super activity
instantiation and sac ∈ δ}.

 BF is a binding function that binds each input or output
fusion place, fp, of super activity, sa, to one of the places of
the model (p ∈ SP ∪ CP) and is defined as follows:

BF: FPSA → SP ∪ CP,

where SP is the list of simple places, CP is the list of
coloured places, SA is the list of super activities and FPSA is
defined as follows:

FPSA =)(∪
SAsa

sasa OFPIFP
∈

∪

To bind a fusion place, fp, to a place, p, both of them must be
of the same type (i.e. if fp is a simple place, p must be a
simple place too. Also, if fp and p are coloured, their token
classes must be same: TC(fp) = TC(p)).

Now, we can define HOSAN super activity as follows:

Definition 7. An HOSAN super activity class (SAC) is
defined as a 6-tuple SAC = (ID, F, M, HOSAN, IFP, OFP)
where:

 ID is the identifier of the super activity class.

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

 F is a finite set of data fields.

 M is a finite set of methods.

 HOSAN is defined as in Definition 5.

 IFP is a finite set of input fusion places, such that:

IFP ⊆ SP ∪ CP,

 OFP is a finite set of output fusion places, such that:

OFP ⊆ SP ∪ CP, IFP ∩ OFP = ∅, and IFP ∪ OFP ≠ ∅.

The above definition of super activity is a recursive
definition. Therefore, we need to define the base case:

Definition 8. An HOSAN with SA=∅ is equivalent to a flat
OSAN model. Such a model is composed of no super activity.

The graphical representation of super activity class is
shown in Fig. 4.

Figure 4. The graphical representation of super activity

D. An Example of OSAN Models
As an example of OSANs and HOSANs, we model a

queuing network of six tandem and parallel queues.. The
resulting model is appeared in Fig. 5. In Fig. 5(a), we have
defined a token class called TCustomer, which defined two
fields ID of type char with length 2 and Pri of type byte and a
method CheckCustomer. Then, we have defined an OSAN
super activity called QSA in Fig. 5(b). QSA models an
M/M/1/N queue, for customers of class TCustomer. We have
defined the input and output fusion places (input and output)
of QSA and a coloured place called QPlace of class
TCustomer and with FIFO selection policy. Then, we have
constructed, as shown in Fig. 5(c), a queueing network of six
parallel and tandem queues of type QSA.

E. Evaluation of OSAN Models
OSAN models can be evaluated by state space analysis

techniques or discrete-event simulation. Methods for the
evaluation of OSANs are quite similar to CSAN models.
Details are presented in our other publications ([2] or [6]).

Analytic solution by deriving embedded continuous-time
Markov chains (CTMCs) could not be always used even for
ordinary SAN models. Since, if an SAN model includes a non-
exponential timed activity or if its state-space is infinite, it may
not be solved analytically by transformation of state space into
CTMCs. In such cases, discrete-event simulation may be
employed to solve the model. Therefore, simulation is a general
technique for the evaluation of OSAN models.

I. Object Stochastic Activity Networks

(b)

Arrival

 EnablingPredicate () { return Q1.Rejected < 100 && Q4.GetQueueSize() < 5; }
 ActivityFunction ()

 {
 QBase.TCustomer *cust = new QBase.TCustomer;
 cust->ID[0] = 'A'+random(26);
 cust->ID[1] = 0;
 cust->Pri = random(3);
 Input1->Add(cust);
 }

Departure

 EnablingPredicate () { return Output3->Size() > 0 }
 ActivityFunction ()

 {
 QBaseMA.TCustomer *cust;
 cust = Output3->Remove();
 delete cust;
 }

(c)
Figure 5. HOSAN model of a queuing network: (a) TCustomer token class,

(b) QSA super activity, (c) HOSAN model

 type1 F1
 …
 typen Fn

 M1
 …
 Mn

OFP1

OFPn

IFP1

IFPm
HOSAN

SACName

 char ID[2]
 byte Pri
 public bool CheckCustomer ()

 {
 //Do some checking
 };

QBase

TCustomer

(a)

Arrival

 EnablingPredicate () { return input->Size() > 0; }
 ActivityFunction ()

 {
 Arrivals++;
 if (QPlace->Size() < N)
 QPlace->Add(input->Remove());
 else
 Rejected++;
 }

Service EnablingPredicate () { return QPlace->Size() > 0; }
 ActivityFunction () { output->Add(QPlace->Remove()); }

 public int N = 10
 private int Arrivals = 0
 private int Rejected = 0
 public int GetArrivals () { return Arrivals; }
 public int GetRejected () { return Rejected; }
 public int GetQueueSize () { return QPlace->Size(); }
 QBase.TCustomer *GetQueue () { return QPlace->Token(); }

QSA

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

V. CONCLUSIONS
In this paper, we have presented the informal and formal

definitions, graphical notations, and an example of object
stochastic activity networks. OSANs are an object-oriented
extension of SAN Models. Elements of OSANs and their
submodels, called super activity, are defined as classes.

The object-orientation of OSAN models helps them to be
more useful for modeling and evaluation of software systems
and business processes. As a case study and to demonstrate the
application of OSANs on software systems, we have
transformed the UML diagrams into analyzable OSAN models
[18]. The derived models have been evaluated using
SANBuilder modeling tool [5]. The results of this case study
showed that OSANs can be used as a complement of UML on
modeling and evaluation of software systems. The object-
orientation of OSANs and the flexibility of having functions
for activities are the key benefits of OSANs over other
extension of Petri nets for their applications in this area.

To continue the current research, we have planned to work
on the following topics in future:

 Introduce efficient techniques for the reachability analysis
and analytic solution of OSANs,

 Introduce fast methods for simulation of OSANs, and

 Do more case studies, which use OSANs for modeling and
analysis of software systems.

REFERENCES
[1] M. Abdollahi Azgomi and A. Movaghar, "Towards an object-oriented

extension for stochastic activity networks," Proc. of 10th Workshop on
Algorithms and Tools for Petri Nets (AWPN'03), Eichstätt, Germany,
2003, pp. 144-155.

[2] M. Abdollahi Azgomi and A. Movaghar, "Coloured stochastic activity
networks: definitions and behaviour," Proc. of the 20th Annual UK
Performance Eng. Workshop (UKPEW'04), Bradford, UK, July 7-8,
2004, pp. 297-308.

[3] M. Abdollahi Azgomi and A. Movaghar, "Modeling and evaluation with
object stochastic activity networks," Proc. of 1st Int'l Conf. on
Quantitative Evaluation of Systems (QEST'04), Enschede, The
Netherlands, Sept. 27-30, 2004, pp. 326-327.

[4] M. Abdollahi Azgomi and A. Movaghar, "Hierarchical stochastic
activity networks: formal definitions and behaviour," Int'l J. of
Simulation, Sys., Sci. and Tech., vol. 6, 2005, pp. 56-66.

[5] M. Abdollahi Azgomi and A. Movaghar, "A modeling tool for
hierarchical stochastic activity networks," Simulation Modelling Practice
and Theory, vol. 13, no. 6, Elsevier Science B.V., 2005, pp. 505-524.

[6] M. Abdollahi Azgomi, High-level extensions for stochastic activity
networks: theories, tools and applications, Ph.D. dissertation, Dept.
Comp. Eng., Sharif Univ. of Tech., Tehran, Iran, 2005. (in Persian)

[7] M. Ajmone Marsan, G. Balbo and G. Conte, "A class of generalized
stochastic Petri nets for performance evaluation of multiprocessors
systems," ACM Trans. Comp. Sys., vol. 2, no. 2, 1984, pp. 93-122.

[8] M. Baldassari, and G. Bruno, "An environment for object-oriented
conceptual programming based on PROT nets," Advances in Petri Nets
1988, LNCS, vol. 340, Springer, 1988, pp. 1-19.

[9] R. Bastide and P. Palanque, "Cooperative objects: a concurrent, Petri net
based, object-oriented language," IEEE System, Man and Cybernetics,
1993, pp. 286-291.

[10] R. Bastide, "Approaches in unifying Petri nets and the object-oriented
approach," Proc. of 1st Workshop on OOP and Models of Concurrency
(OO-MC'95), ICATPN'95, 1995.

[11] E. Battiston, F. de Cindio and G. Mauri, "OBJSA nets: a class of high-
level nets having objects as domains," Proc. of APN'88, LNCS, vol. 340,
Springer, 1988, pp. 20-43.

[12] E. Battiston, A. Chizzoni and F. de Cindio, "Inheritance and concurrency
in CLOWN," Proc. of 1st Workshop on OOP and Models of Concurrency
(OO-MC'95), ICATPN'95, 1995.

[13] D. Buchs, and N. Guelfi, "A concurrent object oriented Petri nets
approach for system specification," Proc. of ICATPN'91, LNCS,
Springer, 1991, pp. 432- 454.

[14] D.D. Deavours and et al., "The Möbius framework and its
implementation," IEEE Trans. on Soft. Eng., vol. 28, no. 10, 2002, pp.
956-969.

[15] N. Guelfi et al., "Comparison of object-oriented formal methods," Tech.
Rep. of the ESPIRIT Proj. #20072, Dept. of CS, Univ. of Geneva, 1997.

[16] J.E. Hong and D.-H. Bae, "Software modeling and analysis using
hierarchical object-oriented Petri nets," J. of Info. Sci., vol. 130, 2000,
pp. 133-164.

[17] K. Jensen, "An introduction to the theoretical aspects of colored Petri
nets," in de Bakker, J.W., de Roever, W.-P. and Rozenberg, G. (eds.), A
Decade of Concurrency, LNCS, vol. 803, Springer, 1994, pp. 230-272.

[18] A. Kamandi, M. Abdollahi Azgomi, and A. Movaghar. "Transformation
of UML models into analyzable OSAN models," Elect. Notes in Theo.
Comput. Sci. (ENTCS), vol. 159, Elsevier Science B.V., 2006, pp. 3-22.

[19] O. Kummer and F. Wienberg, "Renew - the reference net workshop,"
Petri Net Newsletter, vol. 56 , 1999, pp. 12-16.

[20] C. Maier and D. Moltz, "Object coloured Petri nets - a formal technique
for object-oriented modeling, in Agha, G. et al. (eds.): Concurrent OOP
and Petri nets, LNCS, vol. 2001, Springer, 2001, pp. 406-427.

[21] M. K. Molloy, "Performance analysis using stochastic Petri nets," IEEE
Trans. on Comp., vol. C-31, 1982, pp. 913-917.

[22] C.A. Lakos and C.D. Keen, "LOOPN-language for object-oriented Petri
nets," Proc. of SCS Multiconf. on O.O. Sim., 1991, pp. 22-30.

[23] C.A. Lakos and C.D. Keen, "LOOPN++-a new language for object-
oriented Petri nets," Proc. of ESM'94, 1994, pp. 369-374.

[24] C.A. Lakos, "From coloured Petri nets to object Petri nets," Proc. of
ICATPN'95, LNCS, vol. 935, Springer, 1995, pp. 278-297.

[25] A. Movaghar. and J.F. Meyer, "Performability modeling with stochastic
activity networks," Proc. of the 1984 Real-Time Systems Symp., Austin,
TX, USA, pp. 1984, pp. 215-224.

[26] A. Movaghar, "Stochastic activity networks: a new definition and some
properties," Scientia Iranica, vol. 8, no. 4, 2001, pp. 303-311.

[27] C. Sibertin-Blanc, "Cooperative nets," Proc. of ICATPN'94, LNCS,
Springer, 1994.

[28] W.H. Sanders et al: "The UltraSAN modeling environment,"
Performance Evaluation, Elsevier, vol. 24, 1995, pp. 1-33.

[29] R. Valk, "Petri nets as token objects," An introduction to elementary
object nets," Proc. of ICTAPN'98, LNCS, vol. 1420, Springer, 1998, pp.
1-25.

[30] K.M. van Hee and P.A.C. Verkoulen, "Integration of a data model and
high-level Petri nets," Proc. of ICATPN'91, LNCS, Springer, 1991.

[31] P.A.C. Verkoulen, "Integrated information systems design: an approach
based on object-oriented concepts and Petri nets, Ph.D. Thesis,
Technical Univ. of Eindhoven, the Netherlands, 1993.

[32] T. Vojnar, "Towards formal analysis and verification over state spaces of
object-oriented Petri nets, Doctoral Thesis, Brno Univ. of Techn., 2001.

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

