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Abstract—Stochastic activity networks (SANs) are a stochastic 
generalization of Petri nets. SAN models have been used to 
evaluate a wide range of systems and are supported by several 
modeling tools. We have introduced object stochastic activity 
networks (OSANs) to overcome some restrictions of these models. 
OSANs integrate the concepts of object-orientation into SAN 
models. Elements of OSANs and their submodels are defined as 
classes. OSANs are more appropriate that most other object-
oriented or high-level extensions of Petri nets for application on 
software systems. In this paper, we will present the definitions, 
behavior and an example of OSAN models. The object-
orientation of OSANs and the flexibility of having functions for 
activities, make these models more appropriate than other 
extensions of Petri nets for modeling and evaluation of software 
systems. 

Keywords- modeling, evaluation, Petri nets, object stochastic 
activity networks, software performance 

I.  INTRODUCTION 
Stochastic activity networks (SANs) [25] are a stochastic 

generalization of Petri nets. These models are more powerful 
and flexible than most other stochastic extensions of Petri nets 
including notable models such as stochastic Petri nets (SPNs) 
[21] and generalized stochastic Petri nets (GSPNs) [7].  

SAN models have been used as a modeling formalism in 
several modeling tools, such as UltraSAN [28] and Möbius [14] 
and have been used to evaluate the performance and 
dependability of a wide range of systems. 

In order to integrate the concepts of object-orientation 
(OO) into SANs and to overcome some restrictions of these 
models, we will introduce an object-oriented extension for 
SANs, called object stochastic activity networks (OSANs) in 
this paper. OSAN models are appropriate for object-oriented 
modeling (OOM) of software systems and can be evaluated by 
analytic or simulation techniques.  

Primitives of OSANs and their submodels (called super 
activity) are defined as classes. Tokens of OSANs are objects 
of a user-defined token class. These models adapt some useful 
ideas and features from the existing high-level and object-
oriented extensions of Petri nets.  

Preliminary ideas and informal definitions of OSANs have 
already been introduced in [1] and [3]. In this paper, we will 

present their finalized graphical notations, formal definitions 
and an example.  

This paper is organized as follows. Sec. II some related 
works are introduced. Sec. III mentions the motivations of this 
work. In Sec. IV, the informal and formal definitions, graphical 
notations and an example of OSAN models are presented. 
Finally, in Sec. V, some concluding remarks and future works 
are mentioned. 

II. RELATED WORKS 
Object-orientation has been identified as a key answer to 

main critiques of Petri nets. An object-oriented paradigm 
provides excellent concepts to model real-world problems [16]. 
OO concepts allow constructing models easily, intuitively and 
naturally. 

The absence of structuring capabilities has been one of the 
main criticisms raised against high-level Petri nets [15]. The 
attractive characteristics of these nets have prompted 
researchers to enrich these formalisms with object-oriented 
features. 

Proposals for the integration of OO and Petri nets are 
numerous and widely different. However, two major trends are 
as: objects inside Petri nets vs. Petri nets inside objects [10]. 
C.A. Lakos has also categorized them as: object-based Petri 
net (OBPN), object-oriented Petri net (OOPN) and object Petri 
nets (OPN) [24]. 

Different styles and dialects of OOPNs are described in the 
literature. A historical list of OOPNs is shown in Tab. 1. For a 
detailed comparison, please see [10], [24], [15] and [16].  

III. MOTIVATIONS 
The integration of object-orientation into SANs, which are 

a stochastic modeling formalism, will have a lot of advantages. 
To be able to define tokens as instances of user-defined classes 
and definition of submodels as classes and using several 
instances of them to construct a model will facilitate modeling 
software systems. 
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TABLE I.  A HISTORICAL LIST OF OOPNS 

Year OO Extensions of Petri nets 
1988 PROT nets [8] 
1988 OBJSA nets [11] 
1991 SimCon object model [30] 
1991 Language for OO Petri net (LOOPN)  [22] 
1991 Concurrent OO Petri net (CO-OPN) [13] 
1993 Expressive comfort [31] 
1993 Cooperative objects [9] 
1994 Cooperative nets [27] 
1994 LOOPN++ [23] 
1995 Object Petri nets (OPNs) [24] 
1995 Class oriented with nets (CLOWN) [12] 
1997 PNTalk (PN + Smalltalk) [32] 
1998 Object nets [29] 
1999 Reference nets [19] 
2000 Hierarchical OO Nets (HOONets) [16] 
2001 Object coloured Petri nets (OCP-nets) [20] 

 

The existing object-oriented extensions of Petri nets are 
rather complicated. They lack simplicity, good graphical 
representations and analysis techniques, which are the key 
benefits of the original Petri nets. Some of the OOPNs are 
defined as textual modeling languages (ex. LOOPN) [22]. Most 
of them, such as OPNs, are behaviorally equivalent to coloured 
Petri nets (CPNs) [17]. Therefore, these models are not timed 
and stochastic and therefore, inappropriate for evaluation 
purposes. Another disadvantage of OOPNs is their weak tool 
support (comparing to SPNs and CPNs). 

The aims of OSANs are as follows: 

1. Integrating OO concepts into a stochastic modeling 
formalism: Those parts of OO concepts that are more useful, 
will be integrated into SANs. Classes, hierarchy of classes 
and objects and inheritance are the most important features 
that are selected.  

2. To be useful for object-oriented modeling of software 
systems: The unified modeling language (UML) is the de 
facto standard of OOM of software systems. However, UML 
lack formal semantics. Therefore, UML models are 
inappropriate for verification and evaluation purposes. Petri 
nets and other formalisms have been used as a complement 
to Petri nets in several research projects. While, having a 
formalism that takes the advantages of both of the UML and 
stochastic Petri nets is a better solution for this purpose.  

3. To be based on "objects inside Petri nets" approach: Tokens 
of OSANs are objects of a user defined token class. These 
objects can be manipulated by elements of OSAN models. 

4. Submodels as classes: Submodels of OSANs can be defined 
as classes. Each of these classes can be instantiated with 
different names to compose an OSAN model. For each 
submodel class, some data fields and methods can be 
defined. These methods are used to access to the internal 
states (marking of places) and data fields of submodels. 
Therefore, submodels of OSANs are fully encapsulated. This 
is a key benefit of OSANs over hierarchical SANs (HSANs) 
[4].  

IV. OBJECT STOCHASTIC ACTIVITY NETWORKS 
In this section, we introduce object stochastic activity 

networks, including their elements, formal definitions, 
graphical notations and an example.  

Our base model for the definition of OSAN models is a new 
definition of SANs [26] that is slightly different from their 
original definition [25].  

A. Elements of OSAN Models 
The elements of OSANs are simple place, coloured place, 

instantaneous activity and timed activity. The simple places 
hold black tokens of integer type, while the coloured places 
hold a list of tokens (objects) of a user-defined token class.  

The input and output gates of the ordinary SANs do not 
exist in OSANs. These elements are encapsulated into 
instantaneous and timed activities. The reasons for this 
integration are as follows: 

 Gates are not separate elements. They define the actions of a 
linked activity. Such a thing is not useful in OO 
methodology. Therefore, they are encapsulated into activities 
as their actions, methods or functions.  

 Gates are non-standard elements, which are not found in 
standard extensions of Petri net. 

 There are a number of ambiguities in the graphical 
representation of standard gates and general gates. 

However, the advantages of gates, which are their 
flexibilities for construction of condensed models is still 
preserved in the definition of activities that will be explained 
later. 

In the following paragraphs, we introduce OSAN elements 
and their graphical notations: 

1. Simple place. A simple place of OSANs is similar to 
ordinary SANs and Petri nets. A simple place holds black 
tokens of integer type. 

2. Token class. Coloured tokens that are held by coloured 
places are objects of a user-defined token class. A token class 
has one or more fields and zero or more methods. Methods of a 
token class are general functions. These methods can be called 
by functions of activities. It means that the treatment of tokens 
by activities can vary from one token to another, depending on 
their fields and methods. The visibility of each field or method 
is determined by private, public or protected keywords. The 
syntax for the token class definition is quite similar to C++ or 
Java. The formal definition of token class is as follows: 

Definition 1. Token class is defined as a tuple TC = (ID, 
DF1, …, DFn, M1, …, Mm), where: 

 ID is a unique identifier of the token class, 

 DF1, …, DFn are fields of the token class, where n ≥ 1 and  
each field is defined as a 4-tuple (FID, FT, FC, FV), where 
FID is a unique identifier for the field; FT is a data type; FC 
is a field constraint for the values to be bound to the field; 
and FV is the visibility of the field. 
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 M1, …, Mm are methods of the token class, where m ≥ 0 and 
each method is defined as a 4-tuple (MID, T, G, MV), where 
MID is a unique identifier for the method; T is the data type 
of method's return value; G is the function of the method; 
and MV is the visibility of the method. 

3. Coloured place. A coloured place holds a list of tokens 
of a specified token class. To each coloured place is associated 
a selection policy, which specifies the order of tokens to be 
taken from the coloured place. The possible selection policies 
are {NSP1, FIFO, LIFO, PRI}. If the selection policy of a 
coloured place is NSP, the list of tokens is unordered; 
otherwise, it is an ordered list. For FIFO and LIFO selection 
policies, the temporal order of tokens is used. For PRI selection 
policy, a user-defined order function determines the order of 
tokens inside the coloured place. 

Both the number of tokens inside a coloured place (i.e. the 
size of the token list) and the values of its fields can be read in 
predicates and functions or can be read or manipulated by 
functions of activities. The following is the formal definition of 
coloured place: 

Definition 2. A coloured place is defined as a triplet CP = 
(TC, SP, OF), where: 

 TC is the identifier of a token class, 

 SP ∈ {NSP, FIFO, LIFO, PRI} is a selection policy for the 
place, and 

 OF is the order function of the place and is defined if SP = 
PRI. 

The graphical representation of a coloured place is shown 
in Fig. 1, where TCName is the name of a token class and sp is 
the selection policy of the place. 

 

 

 

Figure 1.  The graphical notation of a coloured place 

4. Timed activity. Timed activities represent activities of 
the modeled system whose durations impact the system's 
ability to perform. Timed activities represent parallelism in the 
modeled system. A timed activity in OSANs is an 
encapsulation of timed activity, input gate and output gate of 
the original SANs. A timed activity is linked directly to some 
input and output places. To each timed activity is associated an 
activity function that behaves like functions of input/output 
gates.  

The graphical representation of a timed activity with m 
inputs and n outputs is shown in Fig. 2.  

5. Instantaneous activity. Instantaneous activities describe 
events, which occur instantaneously and are completed in a 
negligible amount of time. Case probabilities associated with 
instantaneous activities permit the probabilistic modeling 
nondeterminacy. An instantaneous activity in OSANs is an 

                                                        
1 NSP is abbreviation for no-selection-policy 

encapsulation of instantaneous activity, input gate and output 
gate of the original SANs. To each instantaneous activity is 
associated an activity function.  

The graphical representation of an instantaneous activity 
with m inputs and n outputs is shown in Fig. 3. 

 

 

 

 

Figure 2.  The graphical notation of timed activity 

 

 

 
Figure 3.  The graphical notation of instantaneous activity 

B. Definition of Flat OSAN Models 
A flat OSAN model is composed of the above elements and 

some data fields and methods. Data fields of an OSAN model 
may be used as variables in activity functions. Methods of an 
OSAN model are private and local functions that can be called 
by activity functions.  

Flat OSAN models are formally defined as follows: 

Definition 3. Object stochastic activity network (OSAN) is 
defined as a 13-tuple OSAN = (Σ, DF, M, SP, CP, IA, TA, IR, 
OR, C, F, Π, ρ), where: 

 Σ is a finite set of token types. 

 DF is a finite set of data fields. Data fields are defined like 
Definition 1. 

 M is a finite set of methods. Data fields are defined like 
Definition 1. 

 SP is a finite set of simple places. 

 CP is a finite set of coloured places. 

 TA is a finite set of timed activities. To each timed activity, a, 
with m inputs and n outputs is associated: 

o A computable predicate, e, called the enabling 
predicate of a, 

e: MI → {true, false}, 

where MI = M1× ... × Mm, × stands for Cartesian 
product and Mi for i = 1, …, m is defined as follows:  

− If Pi ∈ SP: Mi = N, where N denotes the set of 
positive integer numbers. 

− Otherwise (i.e. Pi ∈ CP): Mi = L(Pi), where L(Pi) 
is the set of all possible occurrences (closure) of 
the token list of Pi. 

:(TCName, sp) 

CP-Name 

OP1

OPn

    IP1

   IPm

output placesTA-name input places

OP1

OPn 

    IP1

   IPm

output placesIA-name input places
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o A computable partial function, G, called the activity 
function of a, 

G: MI  → MO, 

where MI is defined as before and MO = M1× ... × Mn, 
where Mi for i = 1, …, n, and n is the number of 
activity outputs and is defined as before.  

 IA is a finite set of instantaneous activities. To each 
instantaneous activity, a, is associated an enabling predicate, 
e, and an activity function, G, that are defined as before. 

 IR ⊆ (SP ∪ CP) × {1, …, |SP ∪ CP|} × (IA ∪ TA) is the 
input relation2. IR satisfies the following conditions: 

− For any (P1, i, a) ∈ IR such that a has m inputs, i ≤ m, 

− For any a ∈ TA ∪ IA with m inputs and i ∈ N, i ≤ m, there 
exist P1 ∈ (SP ∪ CP) such that (P1, i, a) ∈ IR,  

− For any (P1, i, a1), (P1, j, a2) ∈ IR, i = j and a1 = a2. 

 OR ⊆ (IA ∪ TA) × {1, …, |SP ∪ CP|} × (SP ∪ CP) is the 
output relation3. OR satisfies the following conditions: 

− For any (a, i, P1) ∈ OR such that a has m outputs, i ≤ m, 

− For any a ∈ (IA ∪ TA) with m outputs and i ∈ N, i ≤ m, 
there exist P1 ∈ (SP ∪ CP) such that (a, i, P1) ∈ OR,  

− For any (a1, i, P1), (a2, j, P1) ∈ OR, i = j and a1 = a2. 

 C: M × IA → [0, 1] is the case probability function, where M 
= M1× ... × Mn, n = |SP ∪ CP| and Mi for i = 1, …, n is 
defined as before.  

 F = {F(.|µ, a); µ ∈ M, a ∈ TA}, where M is defined as before 
is the set of activity time distribution functions, where n = 
|SP ∪ CP| and, for any µ ∈ M, and a ∈ TA, F(.|µ, a) is a 
probability distribution function, 

 Π: M × TA → {true, false} is the reactivation predicate, 
where M is defined as before, 

 ρ: M × TA → R+ is the enabling rate function, where M is 
defined as before and R+ denotes the set of positive real 
numbers. 

Similar to a new definition of SANs [26], in addition to the 
above stochastic setting, two other settings, namely 
nondeterministic and probabilistic settings can be defined as 
follows: 

Definition 4. The nondeterministic setting of OSANs, that 
is called object activity network (OAN) is derived from 
Definition 3 and is defined as an 8-tuple OAN = (Σ, DF, M, SP, 
CP, IA, TA, IR, OR), where Σ, DF, M, SP, CP, IA, TA, IR and 
OR are defined as before. 

Definition 5. The probabilistic setting of OSANs, that is 
called object probabilistic activity network (OPAN) is derived 
from Definition 3 and is defined as a 9-tuple OPAN = (Σ, DF, 

                                                        
2 In a graphical representation, (Pk, k, a) ∈ IR means that place Pk is linked to 

k-th input of activity a. Pk is said to be an input place of a. 
3 In a graphical representation, (a, k, Pk) ∈ OR means that k-th output of 

activity a is linked to place Pk. Pk is referred to as an output place of a. 

M, SP, CP, IA, TA, IR, OR, C), where Σ, DF, M, SP, CP, IA, 
TA, IR, OR and C are defined as before. 

C. Hierarchical OSAN Models 
OSAN model as in Definition 3 are a flat network of 

elements. Now we define hierarchical object stochastic activity 
networks (HOSANs) as a hierarchical extension of OSANs. 
HOSAN models provide facilities for composing a hierarchy of 
OSAN submodels using a new element called super activity 
(SA). 

A super activity is a submodel of OSANs, which is 
composed of OSAN elements and other super activities. Place 
fusion provides a mechanism for interfacing super activities to 
other parts of an HOSAN model. A super activity may have 
some input and output fusion places that are a subset of the 
simple or coloured places of OSANs. Fusion places will be 
bound to the actual places of the container HOSAN model or 
super activity.  

Super activities are defined as super activity classes. Each 
super activity class can be instantiated to be used as an element 
of the container HOSAN model or super activity.  

HOSAN model is defined as follows: 

Definition 6. Hierarchical object stochastic activity 
network (HOSAN) is defined as a 4-tuple HOSAN = (OSAN, δ, 
SA, BF) where: 

 OSAN is defined as in Definition 3, 

 δ is a finite set of super activity classes, which will be 
defined later. 

 SA is a set of super activity instantiations, which is defined 
as follows: 

SA = {(sa, sac)| sa is an identifier for a super activity 
instantiation and sac ∈ δ}. 

 BF is a binding function that binds each input or output 
fusion place, fp,  of super activity, sa, to one of the places of 
the model (p ∈ SP ∪ CP) and is defined as follows: 

BF: FPSA → SP ∪ CP, 

where SP is the list of simple places, CP is the list of 
coloured places, SA is the list of super activities and FPSA is 
defined as follows: 

FPSA = )(∪
SAsa

sasa OFPIFP
∈

∪  

To bind a fusion place, fp, to a place, p, both of them must be 
of the same type (i.e. if fp is a simple place, p must be a 
simple place too. Also, if fp and p are coloured, their token 
classes must be same: TC(fp) = TC(p)).  

Now, we can define HOSAN super activity as follows: 

Definition 7. An HOSAN super activity class (SAC) is 
defined as a 6-tuple SAC = (ID, F, M, HOSAN, IFP, OFP) 
where: 

 ID is the identifier of the super activity class. 
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 F is a finite set of data fields. 

 M is a finite set of methods. 

 HOSAN is defined as in Definition 5. 

 IFP is a finite set of input fusion places, such that:  

IFP ⊆ SP ∪ CP, 

 OFP is a finite set of output fusion places, such that:  

OFP ⊆ SP ∪ CP, IFP ∩ OFP = ∅, and IFP ∪ OFP ≠ ∅. 

The above definition of super activity is a recursive 
definition. Therefore, we need to define the base case: 

Definition 8. An HOSAN with SA=∅ is equivalent to a flat 
OSAN model. Such a model is composed of no super activity.  

The graphical representation of super activity class is 
shown in Fig. 4. 

 

 

 

 

 

 

Figure 4.  The graphical representation of super activity 

D. An Example of OSAN Models 
As an example of OSANs and HOSANs, we model a 

queuing network of six tandem and parallel queues.. The 
resulting model is appeared in Fig. 5. In Fig. 5(a), we have 
defined a token class called TCustomer, which defined two 
fields ID of type char with length 2 and Pri of type byte and a 
method CheckCustomer. Then, we have defined an OSAN 
super activity called QSA in Fig. 5(b). QSA models an 
M/M/1/N queue, for customers of class TCustomer. We have 
defined the input and output fusion places (input and output) 
of QSA and a coloured place called QPlace of class 
TCustomer and with FIFO selection policy. Then, we have 
constructed, as shown in Fig. 5(c), a queueing network of six 
parallel and tandem queues of type QSA. 

E. Evaluation of OSAN Models 
OSAN models can be evaluated by state space analysis 

techniques or discrete-event simulation. Methods for the 
evaluation of OSANs are quite similar to CSAN models. 
Details are presented in our other publications ([2] or [6]).  

Analytic solution by deriving embedded continuous-time 
Markov chains (CTMCs) could not be always used even for 
ordinary SAN models. Since, if an SAN model includes a non-
exponential timed activity or if its state-space is infinite, it may 
not be solved analytically by transformation of state space into 
CTMCs. In such cases, discrete-event simulation may be 
employed to solve the model. Therefore, simulation is a general 
technique for the evaluation of OSAN models. 

 
 
 
 
 
 
 
 
 
 
 
 
 

I. Object Stochastic Activity Networks 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

 

    
 
 
 
 
Arrival 
 

 EnablingPredicate  ()     {  return Q1.Rejected < 100 && Q4.GetQueueSize() < 5;    } 
 ActivityFunction  ()        

     {    
 QBase.TCustomer *cust = new QBase.TCustomer; 
 cust->ID[0] = 'A'+random(26); 
 cust->ID[1] = 0; 
 cust->Pri = random(3); 
 Input1->Add(cust);       
    } 

 
 
 
Departure 

 EnablingPredicate  ()  {  return Output3->Size() > 0    } 
 ActivityFunction  ()    

     {    
 QBaseMA.TCustomer *cust; 
 cust = Output3->Remove(); 
 delete cust;    
    } 

 

(c) 
Figure 5.  HOSAN model of a queuing network: (a) TCustomer token class, 

(b) QSA super activity, (c) HOSAN model 

 

 

 

 
   type1 F1 
 … 
   typen Fn 

 
 M1 
 … 
 Mn 

OFP1

OFPn

IFP1 

IFPm 
HOSAN 

SACName 

 

   char ID[2]  
   byte Pri  
 public bool CheckCustomer  () 

      {    
          //Do some checking 
     };

QBase

TCustomer 

(a) 

 
 

 
 
 
 
 
Arrival 

 EnablingPredicate  ()     {  return input->Size() > 0;    } 
 ActivityFunction  ()     

      {    
 Arrivals++; 
 if (QPlace->Size() < N) 
  QPlace->Add(input->Remove()); 
 else 
  Rejected++; 
      } 

Service  EnablingPredicate  ()  {  return QPlace->Size() > 0;    } 
 ActivityFunction  ()    {   output->Add(QPlace->Remove());       } 

 
  public int N = 10  
  private int Arrivals = 0 
  private int Rejected = 0 
 public int GetArrivals ()   {   return   Arrivals; } 
 public int GetRejected ()  {   return   Rejected; } 
 public int GetQueueSize ()  {   return   QPlace->Size(); } 
 QBase.TCustomer  *GetQueue ()  {   return   QPlace->Token(); } 

QSA 
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V. CONCLUSIONS 
In this paper, we have presented the informal and formal 

definitions, graphical notations, and an example of object 
stochastic activity networks. OSANs are an object-oriented 
extension of SAN Models. Elements of OSANs and their 
submodels, called super activity, are defined as classes.  

The object-orientation of OSAN models helps them to be 
more useful for modeling and evaluation of software systems 
and business processes. As a case study and to demonstrate the 
application of OSANs on software systems, we have 
transformed the UML diagrams into analyzable OSAN models 
[18]. The derived models have been evaluated using 
SANBuilder modeling tool [5]. The results of this case study 
showed that OSANs can be used as a complement of UML on 
modeling and evaluation of software systems. The object-
orientation of OSANs and the flexibility of having functions 
for activities are the key benefits of OSANs over other 
extension of Petri nets for their applications in this area.  

To continue the current research, we have planned to work 
on the following topics in future: 

 Introduce efficient techniques for the reachability analysis 
and analytic solution of OSANs, 

 Introduce fast methods for simulation of OSANs, and 

 Do more case studies, which use OSANs for modeling and 
analysis of software systems. 
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