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Abstract—Maximal automation of routine IT maintenance
procedures is an ultimate goal of IT service management. System
monitoring, an effective and reliable means for IT problem detec-
tion, generates monitoring ticket. In light of the ticket description,
the underlying categories of the IT problem are determined, and
the ticket is assigned to the corresponding processing teams for
problem resolving. Automatic IT problem category determination
acts as a critical part during the routine IT maintenance
procedures. In practice, IT problem categories are naturally
organized in a hierarchy by specialization. Utilizing the category
hierarchy, this paper comes up with a hierarchical multi-label
classification method to classify the monitoring tickets. In order to
find the most effective classification, a novel contextual hierarchy
(CH) loss is introduced in accordance with the problem hierarchy.
Consequently, an arising optimization problem is solved by a
new greedy algorithm named GLabel. Furthermore, as well
as the ticket instance itself, the knowledge from the domain
experts, which partially indicates some categories the given ticket
may or may not belong to, can also be leveraged to guide the
hierarchical multi-label classification. Accordingly, a multi-label
inference with the domain expert knowledge is conducted on the
basis of the given label hierarchy. The experiment demonstrates
the great performance improvement by incorporating the domain
knowledge during the hierarchical multi-label classification over
the ticket data.

Index Terms—System monitoring, Classification of monitoring
data, Hierarchical multi-label classification, Domain Knowledge

I. INTRODUCTION

A. Background

CHANGES in the economic environment force companies
to constantly evaluate their competitive position in the

market and implement innovative approaches to gain com-
petitive advantages. Without solid and continuous delivery of
IT services, no value-creating activities can be executed. The
complexity of IT environments dictates usage of analytical
approaches combined with automation to enable fast and
efficient delivery of IT services. Incident management, one
of the most critical processes in IT Service Management
[1], aims at resolving the incident and quickly restoring the
provision of services while relying on monitoring or human
intervention to detect the malfunction of a component. Thus,
it is essential to provide an efficient architecture for the IT
routine maintenance.
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Fig. 1: The overview of the IT routine maintenance procedure.

A typical architecture of the IT routine maintenance is
illustrated in Fig. 1, where four components are involved. (1)
In the case of detection provided by a monitoring agent on
a server, alerts are generated and, if the alert persists beyond
a predefined delay, the monitor emits an event. (2) Events
coming from an entire account IT environment are consoli-
dated in an enterprise console, which analyzes the monitoring
events and determines whether to create an incident ticket
for IT problem reporting. (3) Tickets are collected by IPC
(abbr. Incident, Problem and Change) system and stored in
the ticket database [2]. (4) A ticket accumulates the symptom
description of an IT problem with a short text message and
a time stamp provided. According to the description of a
ticket, the system administrators (i.e., sysAdmins) perform
the problem category determination and assign the ticket to
its corresponding processing teams for problem diagnosis and
resolution. The last component gets involved with much labor-
intensive effort to resolve each ticket.

The efficiency of these transient resources is critical for the
provisioning of the services [3]. Many IT Service Providers
rely on a partial automation for incident diagnosis and res-
olution, with an intertwined operation of the sysAdmins and
an automation script. Often the sysAdmins’ role is limited
to executing a known remediation script, while in some sce-
narios the sysAdmin performs a complex root cause analysis.
Removing the sysAdmin from the process completely where it
is feasible would reduce human error and speed up restoration
of service. The move from partially to fully automated problem
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Fig. 2: A hierarchical multi-label classification problem in the IT environment. A ticket instance is shown in (a). (b) presents
the ground truth for the ticket with multiple class labels. (c), (d), (e) and (f) are four cases with misclassification. Assuming the
cost of each wrong class label is 1, Zero-one loss, Hamming loss, H-loss, HMC-loss are given for misclassification. Notably,
to calculate the HMC-loss, the cost weights for FN and FP are α and β, respectively. The misclassified nodes are marked
with a red square. The contextual misclassification information is indicated by the green rectangle.

remediation would elevate service delivery to a new qualitative
level where automation is a complete and independent process,
and where it is not fragmented due to the need for adapting
to human-driven processes. The sysAdmin involvement is
required due to the ambiguity of service incident description
in a highly variable service delivery environment.

B. Motivation
In order to enhance the efficiency of the routine IT mainte-

nance procedure, our work focuses on the labor-intensive com-
ponent and tries to reduce human involvement by maximizing
the automation of the problem category determination. In this
paper, we come up with a domain knowledge guided hierarchi-
cal multi-label classification method to facilitate the problem
determination with both problem hierarchy preservation and
domain knowledge integration from system administrators.

As shown in Fig.2.(a), a sample ticket describes a failure of
an application to write data to NAS (Network-Attached Stor-
age) [4] file system. To identify a root cause of the problem,
it is rational to limit a search space by classifying the incident
tickets with their related class labels. Based on the message in
Fig.2.(a) the ticket presents a problem related to FileSystem,
NAS, Networking and Misconfiguration. Therefore, root cause
analysis should be limited to four classes. Moreover, the
collection of class labels is hierarchically organized according
to the relationship among them. For example, as shown in
Fig.2.(b), because NAS is a type of FileSystem, the label
FileSystem is the parent of the label NAS in the hierarchy. This
taxonomy could be built automatically ([5], [6]) or it could
be created with the help of domain experts [7]. In IT envi-
ronments, hierarchical multi-label classification could be used
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Fig. 3: Knowledge guided ticket hierarchical multi-label clas-
sification.
not only for the problem diagnosis ([8], [9], [10], [11]), but
also for recommending resolutions ([12]) or auto-check scripts.
The ticket in our example could have a solution that addresses
FileSystem, NAS, Networking and/or Misconfiguration - a
highly diversified action recommendation. Furthermore, based
on the hierarchical multi-label classification, actions with
different levels of the hierarchy are recommended, where the
actions from NAS category are more specific than the ones
from FileSystem.

In real practice, as well as the text description of a given
ticket, the prior knowledge from the domain experts is involved
into the ticket classification by additional check (shown in
Fig.1). For example, in Fig.3, given a ticket with its text
description, the domain expert, based on his expertise in the
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system management, claims that the problem presented in
the ticket is probably (e.g., with 60% confidence) a MisCon-
figuration problem, and definitely not a Database problem.
Intuitively, the prior knowledge from the domain experts
should also contribute to the ticket hierarchical multi-label
classification for performance improvement. It is abrupt to
employ the traditional hierarchical multi-label classification al-
gorithms to deal with the ticket classification problem without
taking any prior knowledge into account. However, the prior
knowledge integration is not a trivial task in the hierarchical
multi-label classification problem. The prior knowledge, about
the likelihood that a given ticket should be assigned with a
particular label, also contributes to the decision on whether
the ticket belongs to those class labels which are highly
correlated to the particular label. For example, in Fig.3, given
the ticket description, each label in the hierarchy is assigned
with a probability to be positive. After inspecting the ticket
description, the domain expert further confirms that this ticket
is not MisConfiguration problem. Then the probabilities for
labels DNS and IP Address being positive become 0, and the
probability to be a Networking problem changes accordingly.
It is challenging to determine the probability change for each
label in the hierarchy, provided with the prior knowledge. To
incorporate the prior knowledge, Kilo (Knowledge guided
hierarchical multi-label classification), a sum-product based
algorithm, is proposed for hierarchical multi-label inference.
Existing work in [13], takes the known hierarchical rela-
tionship between categories as knowledge and integrates the
hierarchy for multi-label classification, where the knowledge
is different from the one discussed in this paper. The work of
this paper makes use of the prior knowledge, which partially
indicates some categories that a given ticket may or may not
belongs to. To the best of our knowledge, this is first work to
utilize such prior knowledge to guide the hierarchical multi-
label classification.

The Kilo algorithm is not only capable of fully exploring
both domain knowledge and the data itself, but also provides
an effective way for interactive hierarchical multi-label learn-
ing. Concretely, based on the current hierarchical multi-label
classification result, the experts provide expertise to hint Kilo
for further refinement. Kilo takes the hints from the experts
as an input to refine the hierarchical multi-label inference.
This iterative process continues until the domain experts are
satisfied with the hierarchical multi-label classification result.

In summary, the contribution of our work comprises:
1) We define a new loss function, which takes into the

consideration the contextual misclassification information
for each label into consideration and is a generalization
of Hamming-loss, H-loss and HMC-loss function.

2) Using Bayes decision theory, we develop the optimal
prediction rule by minimizing the conditional risk in
terms of proposed loss function.

3) We propose the novel GLabel algorithm to efficiently
search the optimal hierarchical multi-labels for each data
instance in a greedy way.

4) Knowledge from the experts during the IT routine main-
tenance procedure is explicitly formulated, aiming at
facilitating the problem determination.

5) Further, we come up with the Kilo algorithm that allows
to integrate the domain knowledge for hierarchical multi-
label inference improvement.

6) Extensive empirical studies are conducted on real ticket
data to verify both the efficiency and effectiveness of our
proposed methods.

Our work has significantly extended our NOMS conference
paper [14]. Comparing with the NOMS conference paper, the
new contribution of this paper lies in 4) and 5), with essential
difference that we are now able to take the domain expertise
into account and integrate it with hierarchical multi-label clas-
sification inference. This paper adds ample experimentation on
real ticket data to show the performance improvement after
knowledge integration.

The rest of this paper is organized as follows. In section
II, we describe related work and identify limitations of ex-
isting methods. In section III, a new loss function for better
evaluation of the performance of the hierarchical multi-label
classification is proposed and the knowledge from domain
experts is formulated. In section IV, the optimal prediction
rule is derived with respect to our loss function. Section V
describes the algorithm for hierarchical multi-label classifica-
tion. Section VI illustrates the empirical performance of our
method. The last section is devoted to our conclusions and
future work.

II. RELATED WORK

In this section, we highlight existing literature studies re-
lated to our work. In the literature of IT management, a large
number of analytical methodologies based on data mining and
machine learning have been explored to optimize the routine
IT maintenance and deal with problem detection, determina-
tion, diagnosis and resolution ([15], [16], [17], [18], [19],
[20]). Particularly, the problem detection is implemented by
system monitoring, where monitoring situations are configured
and alerts are triggered if monitoring situations are violated.
Some popular commercial products such as IBM Tivoli [21],
HP OpenView [22], LogicMonitor [23], Zenoss [24], Man-
ageEngine [25], provide system monitoring. Numerous studies
about problem detection focus on the improvement of mon-
itoring situation setting ([26], [27], [28]). Besides, anomaly
detection facilitates the problem detection ([29], [30], [31])
as well.

The hierarchical classification problem has been extensively
investigated in the past ([32], [33], [34], [35], [8], [36], [37],
[38], [39], [40]). As a more general case, the hierarchical
multi-label classification, where an instance can be labeled
with nodes belonging to more than one path or a path without
ending on a leaf in the hierarchy, has received much attention.

Recent literature considers several approaches to addressing
the hierarchical multi-label classification problem. The first
employs existing classification algorithms to build a classifier
for each class label independently without any consideration
of the hierarchical dependencies of labels. This approach leads
to difficult interpretation of the classification result due to
the hierarchical inconsistency when an instance is labeled
as positive on child label but labeled as negative on parent
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label. A second approach is to adapt existing single label
classification algorithms, such as decision tree ([41], [42]).
A third approach is based on the first approach but applies
some post-process to automatically guarantee the hierarchical
consistency ([9], [10], [11], [43]). We focus on the third
approach in this paper.

Cesa-Bianchi et al. [9] introduce an incremental algorithm
to apply a linear-threshold classifier for each node of the
hierarchy with performance evaluation in terms of H-loss.
Moreover, the Bayes-optimal decision rules are developed by
Wei in [32]. And Cesa-Bianchi et al. [10] extend the decision
rules to the cost-sensitive learning setting by weighting false
positive and false negative differently. Wei and James [43]
propose the HIROM algorithm to obtain the optimal decision
rules with respect to HMC-loss by extending the CSSA
algorithm in [11], which has a strong assumption that the
number of classes related to each instance is known.

When considering hierarchical multi-label classification
problem, adoption of a proper performance measure for a spe-
cific application domain is of the most importance. Zero-one
loss and Hamming loss that were one of the first loss functions
proposed for multi-label classification, are also commonly
used in hierarchical multi-label classification problem ([44],
[45]). As shown in Fig.2, it is abrupt to adopt the zero-one
loss measurement since all the imperfect predictions suffer the
same penalty without any distinction. Although much more
informative than zero-one loss, Hamming loss suffers a major
deficiency since it does not incorporate hierarchy information.

Taking hierarchy information into account, hierarchical loss
(H-loss) has been proposed in [9]. The main idea is that any
mistake occurring in a subtree does not matter if the subtree is
rooted with a mistake as well. As illustrated in (f) of Fig.2, the
H-loss only counts once for the label Database even though
a mistake also takes place in label DB2 and Down (i.e., db2
is down). This idea is consistent with the scenario of problem
diagnosis, since there is no need for further diagnosis in the
successive children labels if the reason for the problem has
already been excluded in the parent label. However, H-loss
could be misleading. Considering for example (f) in Fig.2,
after the solution related to Database is wrongly recommended,
it is bad to refer the solutions belonging to the successive
categories, such as DB2 and DOWN.

The HMC-loss [43] loss function is proposed by weighting
the misclassification with the hierarchy information while
avoiding the deficiencies of the H-loss. It also differentiates
the misclassification between the false negative (i.e., FN) and
the false positive (i.e., FP) with different penalty costs. In
Fig.2, assuming α and β are the misclassification penalties
for FN and FP respectively, (c) and (d) have 2 FN mis-
classification errors, so both of them incur 2α HMC-loss.
Moreover, (e) and (f) suffer 3β HMC-loss since they get
3 FP misclassification errors. However, HMC-loss fails to
show the distinction between (c) and (d). In the scenario of
the resolution recommendation, based on (c), more diverse
solutions are recommended since the ticket is related to both
FileSystem and Networking, while only the solutions related
to Networking are considered as the solution candidates in (d).
However, HMC-loss can not differentiate predictions in (e) and

(f). In the scenario of problem diagnosis, intuitively, we prefer
(e) to (f) because the minor mistakes in multiple branches are
not worse than the major mistakes in a single branch. Based on
the discussion above, the main problem of HMC-loss is that it
does not hierarchically consider the contextual information for
each misclassification label (the contextual misclassification
information is indicated with a green rectangle in Fig.2). The
concept of the contextual information for each misclassified
label is given in section III.

III. HIERARCHICAL MULTI-LABEL CLASSIFICATION

In this section, we formally define the hierarchical multi-
label classification problem as an optimization problem. No-
tations mentioned in this paper are summarized in Table I.

TABLE I: Important Notations

Notation Description

x a feature vector for each instance.
y a label vector for each instance.
k a vector for knowledge representation.
H the hierarchy relation of labels.
Ie the indicator function of a boolean expression e.
Ci the misclassification cost for the ith label according its

hierarchical information.
ŷ the estimated label vector for y.
ŷi the estimated value for yi.
ỹi the logical complement of yi.
pa(i) the index for the parent label of the ith label.
ch(i) the indices for the children labels of the ith label.
wi the weight for the ith case of the four in CH-loss.
ℓ(ŷ, y) loss function for estimating y.
LE(ŷ, x) the expected loss for estimating y given x.
ProdU→yj (ŷj) the message accumulated on node yj from its neighbors

when yj = ŷj .
µyi→yj (ŷj) the message passed from yi to yj when yj = ŷj .
N the length of label vector y.

A. Problem Description
Let x = (x0, x1, ..., xd−1) be an instance from the d-

dimensional input feature space χ, and y = (y0, y1, ..., yN−1)
be the N -dimensional output class label vector where yi ∈
{0, 1}. A multi-label classification assigns to a given instance
x a multi-label vector y, where yi = 1 if x belongs to the ith
class, and yi = 0 otherwise. We denote the logical complement
of yi by ỹi = 1− yi.

The hierarchical multi-label classification is a special type
of multi-label classification when a hierarchical relation H is
predefined on all class labels. The hierarchy H can be a tree,
or an arbitrary DAG (directed acyclic graph). For simplicity,
we focus on H being the tree structure and leave the case of
the DAG to future work.

In the label hierarchy H, each node i has a label yi ∈ y.
Without loss of generality, we denote root node by 0, and its
label by y0. For each node i, let pa(i) and ch(i) be the parent
and children nodes respectively of the node i . An indicator
function Ie of a boolean expression e is defined as

Ie =

{
1, e is true;

0, e is false.
(1)

A hierarchical multi-label classification assigns an instance x
an appropriate multi-label vector ŷ ∈ {0, 1}N satisfying the
Hierarchy Constraint below.
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Definition III.1 (Hierarchy Constraint). Any node i in the
hierarchy H is labeled positive (i.e., 1) if it is either the root
node or its parent labeled positive. In other words,

yi = 1 ⇒ {i = 0 ∨ ypa(i) = 1}. (2)

Definition III.2 (Knowledge). Given an instance x, the knowl-
edge about the N -dimensional output class label vector y from
the domain experts is represented by an N -dimensional vector
k. According to the domain knowledge, the ith component of
k can be assigned with 0, 1 and −1 for negative, positive
and unknown respectively.

Therefore, the knowledge guided hierarchical multi-label
classification takes x and k as inputs, and outputs the class
label vector y.

B. Hierarchical Loss Function

We denote the prediction vector by ŷ and the ground truth
by y. To take into account Hierarchy Constraint III.1 while
finding optimal prediction, we consider:

Definition III.3 (Contextual Misclassification Information).
Given a node i in hierarchy H, the contextual misclassification
information depends on whether the parent node of i is
misclassified when a misclassification error occurs in node i.
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Fig. 4: Four cases of contextual misclassification are shown
for node i. In each sub-figure, the left pair is the ground truth,
while the right pair is the prediction. The misclassified nodes
are marked with red squares.

We incorporate the following four cases of the contextual
misclassification information into the loss function to solve the
optimization problem, i.e. the best predicted value compatible
with the hierarchy H.
• case (a): False negative error occurs in node i, while the

parent node pa(i) is correctly predicted.
• case (b): False negative error occurs in both node i and pa(i).
• case (c): False positive error occurs in node i, while the

parent node pa(i) is correctly labeled with positive.
• case (d): Both node i and pa(i) are labeled with false

positive.
Particularly, we consider the case with a correct parent label
(e.g.,(a) and (c)), and the case with a wrong parent label

(e.g., (b) and (d)) differently. The reason can be illustrated
by the scenario in Fig. 4 where the parent node and the child
node represent FileSystem and NAS, respectively. If a ticket
is classified with correct FileSystem label but with wrong
NAS label, then the ticket will be re-assigned to the other
sub-categories of FileSystem. If a ticket is wrongly classified
with both FileSystem label and NAS label, then the ticket will
belong to sibling categories of FileSystem.

Referring to ([43], [10]), a misclassification cost Ci is given
according to the position information of node i in the hierarchy
H. And {wi|1 ≤ i ≤ 4} are the different penalty costs for
the above four cases, respectively. Accordingly, a new flexible
loss function named CH-loss (Contextual Hierarchical loss) is
defined as follows:

ℓ(ŷ, y) = w1

N−1∑
i>0

yiypa(i)˜̂yiŷpa(i)Ci︸ ︷︷ ︸
case (a)

+w2

N−1∑
i>0

yiypa(i)˜̂yi˜̂ypa(i)Ci︸ ︷︷ ︸
case (b)

+w3

N−1∑
i>0

ỹiypa(i)ŷiŷpa(i)Ci︸ ︷︷ ︸
case (c)

+w4

N−1∑
i>0

ỹiỹpa(i)ŷiŷpa(i)Ci︸ ︷︷ ︸
case (d)

.

(3)

Next we show that the popular loss functions, such as HMC-
loss, Hamming-loss and H-loss, are special cases of CH-loss
function. We formulate the exact results below.

By setting α and β to be the penalty costs for false negative
(FN) and false positive (FP) respectively, and noting that root
node, indicating all categories, is always correctly labeled, the
HMC-loss function defined in [43] can be expressed as

ℓHMC(ŷ, y) = α

N−1∑
i>0

yi˜̂yiCi + β

N−1∑
i>0

ỹiŷiCi. (4)

Proposition III.4. The HMC-loss function is the special case
of CH-loss function when w1 = w2 = α and w3 = w4 = β.

Proof. The HMC-loss function can be rewritten as follows.

ℓHMC(ŷ, y) = α

N−1∑
i>0

yiypa(i)˜̂yiŷpa(i)Ci + α

N−1∑
i>0

yiỹpa(i)˜̂yiŷpa(i)Ci

+α

N−1∑
i>0

yiypa(i)˜̂yi
˜̂ypa(i)Ci + α

N−1∑
i>0

yiỹpa(i)˜̂yi
˜̂ypa(i)Ci

+β

N−1∑
i>0

ỹiypa(i)ŷiŷpa(i)Ci + β

N−1∑
i>0

ỹiỹpa(i)ŷiŷpa(i)Ci

+β

N−1∑
i>0

ỹiypa(i)ŷi˜̂ypa(i)Ci + β

N−1∑
i>0

ỹiỹpa(i)ŷi˜̂ypa(i)Ci.

Based on expression (2), we can derive the following ex-
pression of HMC-loss by removing the terms that violate the
Hierarchy Constraint.

ℓHMC(ŷ, y) = α

N−1∑
i>0

yiypa(i)˜̂yiŷpa(i)Ci + α

N−1∑
i>0

yiypa(i)˜̂yi
˜̂ypa(i)Ci

+β

N−1∑
i>0

ỹiypa(i)ŷiŷpa(i)Ci + β

N−1∑
i>0

ỹiỹpa(i)ŷiŷpa(i)Ci.

The equation above is the exact one when w1,w2,w3 and w4

in equation (3) are substituted with α, α, β and β respectively.
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Proposition III.5. The Hamming-loss function is the special
case of CH-loss function when w1 = w2 = w3 = w4 = 1 and
Ci = 1.

It is established in [43] that the Hamming-loss function
is a special case of HMC-loss when α = β = 1 and
Ci = 1. Combining the result with the Proposition III.4, the
Proposition III.5 is obvious.

The H-loss function (see [43]) cannot be reduced to HMC-
loss function, while H-loss is a special case of CH-loss
function. Remember that the H-loss function is defined in [9]
as follows:

ℓH(ŷ, y) =
N−1∑
i>0

Iŷi ̸=yiIŷpa(i)=ypa(i)
Ci. (5)

Proposition III.6. The H-loss function is the special case of
CH-loss function when w1 = 1, w2 = 0, w3 = 1 and w4 = 0.

Proof. H-loss defined in (5) is equivalent to the following
equation:

ℓH(ŷ, y) =
N−1∑
i>0

yiypa(i)˜̂yiŷpa(i)Ci +

N−1∑
i>0

ỹiypa(i)ŷiŷpa(i)Ci

+

N−1∑
i>0

yiỹpa(i)˜̂yi
˜̂ypa(i)Ci +

N−1∑
i>0

ỹiỹpa(i)ŷi˜̂ypa(i)Ci.

Based on expression (2), the following expression of H-loss
is derived by removing the terms which violate the Hierarchy
Constraint:

ℓH(ŷ, y) =
N−1∑
i>0

yiypa(i)˜̂yiŷpa(i)Ci +

N−1∑
i>0

ỹiypa(i)ŷiŷpa(i)Ci.

The equation above is the exact equation (3) when w1 = 1,
w2 = 0, w3 = 1 and w4 = 0.

We summarize special cases of CH-loss in the Table II.

TABLE II: special cases of CH-loss

Goal CH-loss parameter settings

Minimize Hamming loss w1 = w2 = w3 = w4 = 1, Ci = 1

Minimize HMC-loss
w1 = w2 = α, w3 = w4 = β,

Ci is defined by user

Minimize H-loss w1 = w3 = 1, w2 = w4 = 0, Ci = 1

Increase recall w1 and w2 are larger than w3 and w4

Increase precision w3 and w4 are larger than w1 and w2

Minimize misclassification

errors occur in both

parent and children nodes

w2 > w1 and w4 > w3

IV. EXPECTED LOSS MINIMIZATION

In this section we use the previously defined CH-loss func-
tion to predict ŷ given instance x by minimizing expected CH-
loss. Let y be the true multi-label vector of x, and P (y|x) be
the conditional probability that y holds given x. The expected
loss of labeling x with ŷ is defined by the following equation:

LE(ŷ, x) =
∑

y∈{0,1}N
ℓ(ŷ, y)P (y|x). (6)

Let ŷ∗ be (one of ) the optimal multi-label vector(s) that
minimizes expected CH-loss. Based on Bayesian decision
theory, the problem is described as follows:

ŷ∗ = argmin
ŷ∈{0,1}N

LE(ŷ, x)

s.t. ŷ satisfies the hierarchy constraint III.1.
(7)

The key step in solving the problem (7) consists in how
to estimate P (y|x) in equation (6) from the training data. By
following the work in [9], [10], [43], in order to simplify the
problem, we assume that all the labels in the hierarchy are
conditionally independent from each other given the labels of
their parents. Since all the data instances are labeled positive
at root node 0, we assume that P (y0 = 1|x) = 1 and P (y0 =
0|x) = 0. Due to an independency assumption we have:

P (y|x) =
N−1∏
i=1

P (yi|ypa(i), x). (8)

Thus to estimate P (y|x), we need to estimate P (yi|ypa(i) for
each node i. The nodewise estimation may be done by utilizing
binary classification algorithms, such as logistic regression or
support vector machine. To deal with a significant compu-
tational load of the nodewise estimation, we parallelize the
calculation. The details of the parallelization step are discussed
in the next section.

The hierarchy constraint implies that P (yi = 1|ypa(i) =
0) = 0 and P (yi = 1|x) = P (yi = 1, ypa(i) = 1|x). In order
to simplify the notation, we denote:

pi = P (yi = 1|x) = P (yi = 1, ypa(i) = 1|x). (9)

Then pi can be computed based on P (yi = 1|ypa(i) = 1, x)
as:

pi = P (yi = 1|x) = P (yi = 1|ypa(i) = 1, x)ppa(i). (10)

By combining the definition of CH-loss with Equation (6)
and (9), the computation of loss expectation LE(ŷ, x) can be
rewritten using pi notation as follows:

Proposition IV.1 (Expected Loss).

LE(ŷ, x) = w1

N−1∑
i>0

˜̂yiŷpa(i)Cipi + w2

N−1∑
i>0

˜̂yi
˜̂ypa(i)Cipi+

w3

N−1∑
i>0

ŷiŷpa(i)Ci(ppa(i) − pi) + w4

N−1∑
i>0

ŷiŷpa(i)Ci(1− ppa(i)).

(11)

Proof. Combining both equation (3) and equation (6), we get:
LE(ŷ, x) = T1 + T2 + T3 + T4,

where

T1 =
∑

y

(w1

N−1∑
i>0

yiypa(i)˜̂yiŷpa(i)Ci)P (y|x),

T2 =
∑

y

(w2

N−1∑
i>0

yiypa(i)˜̂yi
˜̂ypa(i)Ci)P (y|x),

T3 =
∑

y

(w3

N−1∑
i>0

ỹiypa(i)ŷiŷpa(i)Ci)P (y|x),

T4 =
∑

y

(w4

N−1∑
i>0

ỹiỹpa(i)ŷiŷpa(i)Ci)P (y|x).
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we split the proof into four parts:
(a) T1 can be written as

T1 = w1

N−1∑
i>0

˜̂yiŷpa(i)Ci

∑
y

P (yi = 1, ypa(i) = 1, y|x).

Easily, we get:

T1 = w1

N−1∑
i>0

˜̂yiŷpa(i)CiP (yi = 1, ypa(i) = 1|x).

∴ T1 = w1

N−1∑
i>0

˜̂yiŷpa(i)Cipi.

(b) Following (a), we can obtain:

T2 = w2

N−1∑
i>0

˜̂yi
˜̂ypa(i)Cipi.

(c) Following (a), we have:

T3 = w3

N−1∑
i>0

ŷiŷpa(i)CiP (yi = 0, ypa(i) = 1|x).

Since P (yi = 0, ypa(i) = 1|x) = P (ypa(i) = 1|x)
− P (yi = 1, ypa(i) = 1|x) = ppa(i) − pi, then

T3 = w3

N−1∑
i>0

ŷiŷpa(i)Ci(ppa(i) − pi).

(d) Following (c),

T4 = w4

N−1∑
i>0

ŷiŷpa(i)CiP (yi = 0, ypa(i) = 0|x).

Since P (yi = 0, ypa(i) = 0|x) = 1− P (ypa(i) = 1|x)
= 1− ppa(i), then:

T4 = w4

N−1∑
i>0

ŷiŷpa(i)Ci(1− ppa(i)).

After substituting T1, T2, T3, T4 into LE(ŷ, y), it is the exact
equation (11).

Based on the Expected Loss described in equation (11), the
problem (7) is re-formulated as follows:

Proposition IV.2. The minimization problem (7) is equivalent
to the maximization problem below.

ŷ∗ = argmax
ŷ∈{0,1}N

LEδ(ŷ, x)

s.t. ŷ satisfies the hierarchy constraint.
(12)

where

LEδ(ŷ, x) =
N−1∑
i>0

ŷpa(i)(w2 − w1)Cipi+

N−1∑
i>0

ŷi[w1Cipi − w3Ci(ppa(i) − pi)− w4Ci(1− ppa(i))].

Proof. Equation (11) is equivalent to:

LE(ŷ, x) = w1

N−1∑
i>0

(ŷpa(i) − ŷi)Cipi + w2

N−1∑
i>0

(1− ŷpa(i))Cipi

+w3

N−1∑
i>0

ŷiCi(ppa(i) − pi) + w4

N−1∑
i>0

ŷiCi(1− ppa(i))

⇒ LE(ŷ, x) =
N−1∑
i>0

w2Cipi − (

N−1∑
i>0

ŷpa(i)(w2 − w1)Cipi+

N−1∑
i>0

ŷi[w1Cipi − w3Ci(ppa(i) − pi)− w4Ci(1− ppa(i))]).

∴ LE(ŷ, x) =
N−1∑
i>0

w2Cipi − LEδ(ŷ, x).

So, the solution to minimize LE(ŷ, x) is equivalent to the one
to maximize LEδ(ŷ, x).

The problem (12) is still challenging since it contains two
free variables yi and ypa(i) under the hierarchy constraint.

To simplify the problem further, we introduce notations
σ1(i) and σ2(i) as follows:

σ1(i) =
∑

j∈child(i)

(w2 − w1)Cjpj . (13)

Particularly, if ch(i) = ∅, σ1(i) = 0, and

σ2(i) = w1Cipi − w3Ci(ppa(i) − pi)− w4Ci(1− ppa(i)). (14)

Let σ(i) be a function of node i defined as

σ(i) =

{
σ1(i), i = 0;

σ1(i) + σ2(i), i > 0.
(15)

The equation (15) implies:

Proposition IV.3.

LEδ(ŷ, x) =
∑
i

ŷiσ(i). (16)

Proof. Let T =
∑

i ŷiσ(i). Our goal is to prove LEδ(ŷ, x) = T .
According to equation(15), we have:

T =
∑
i

ŷiσ1(i) +
∑
i>0

ŷiσ2(i).

Let T1 =
∑

i ŷiσ1(i) and T2 =
∑

i>0 ŷiσ2(i). Then,
(a)

T1 =
∑
i

ŷi
∑

j∈child(i)

(w2 − w1)Cjpj

⇔ T1 =
∑
i

∑
j∈child(i)

ŷpa(j)(w2 − w1)Cjpj .

Since j is a child of node i, j > 0,

∴ T1 =
∑
j>0

ŷpa(j)(w2 − w1)Cjpj .

(b)T2 =
∑
i>0

ŷi(w1Cipi − w3Ci(ppa(i) − pi)− w4Ci(1− ppa(i))).

(c) Combining both T1 and T2, we prove T = LEδ(ŷ, x).

Based on the equation (16), the solution to the problem (12)
is equivalent to the one of problem (17).

ŷ∗ = argmax
ŷ∈{0,1}N

∑
i

ŷiσ(i)

s.t. ŷ satisfies the hierarchy constraint.
(17)

The solution of the problem (17) by a greedy algorithm is
described in the next section.
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V. ALGORITHMS AND SOLUTIONS

As discussed in previous sections, there are four key steps
to address the hierarchical multi-label classification, aiming at
minimizing CH-loss.

1) Estimate the probability pi for each node i based on the
training data.

2) Incorporate the domain knowledge k using the Kilo
algorithm, and adjust the probability pi for each node
i accordingly.

3) Use pis to compute the σ(i) defined by the equation (15).
4) Obtain the optimal predictor ŷ∗ using the GLabel algo-

rithm.
Kilo revises pis by accounting for prior knowledge, while
GLabel takes the revised pis as input to acquire the final
optimal label vector ŷ∗. If no prior knowledge is provided,
the hierarchical multi-label classification problem can be ad-
dressed with steps 1), 3) and 4), where Kilo is not applicable.

A. Estimating probability pi

According to the equation (10), pi can be computed by
estimating the probability P (yi = 1|ypa(i) = 1, x). For each
node i with positively labeled parent node, a binary classifier
is built based on existing methods, such as logistic regression
or support vector machine. Given an instance x, we apply
thresholding described in [46] to convert the real output of
the classifier to estimate P (yi = 1|ypa(i) = 1, x).

Building classifiers for all the nodes is a time-consuming
task.Since the building process of the classifier on each node
only relies on the related training data and all the classifiers
are mutually independent, we parallelize the task to improve
the performance [47].

Then, the values of pis are computed by applying Equation 9
while traversing the nodes in the hierarchy. Fig.5(b) illustrates
the marginal probabilities by considering the hierarchical label
tree in Fig.5(a). The time complexity of pi computation is
O(N), where N is the number of nodes in the hierarchy.

B. Incorporating prior knowledge k
In a probabilistic graphical model, each node represents a

random variable and the link between two nodes expresses
the probabilistic relationship between them [48]. The graph
captures the way in which the joint distribution over all of
the random variables can be decomposed into a product of
factors each depending only on a subset of the variables.
Accordingly, it is straightforward to interpret the hierarchical
tree H as a probabilistic graphical model where each label
node yi corresponds to a random variable taking value either
0 or 1 and each link from parent to child represents the
hierarchical constraint III.1. The label inference on a tree-
structured graph can be efficiently addressed by the sum-
product algorithm [48]. In this section, Kilo (Knowledge
guided hierarchical multi-label classification), a sum-product
based algorithm, is proposed to adjust the marginal probability
pi for knowledge incorporation.

Assuming yi and yj to be two label nodes in H where a
link occurs between them, µyi→yj (ŷj) denotes the message

passed from node yi to node yj , when the random variable yj
takes the value ŷj .

Definition V.1 (Accumulated Message). Given a node yj and
a node set U where any node yt ∈ U is a neighbour of
yj , ProdU→yj (ŷj) is referred as the message accumulated
on node yj from U when yj = ŷj . It is defined as follows:

ProdU→yj (ŷj) =
∏
yt∈U

µyt→yj (ŷj). (18)

Especially, when U = ∅, ProdU→yj (ŷj) = 1.

Definition V.2 (Passed Message). Given a node yj and
its neighbour yi, let Ui/j denote a set containing all the
neighbours of yi except yj . The message passed from yi to
yj when yj = ŷj is defined as follows:

µyi→yj (ŷj) ={∑
yi

p(yi|yj = ŷj)ProdUi/j→yi(ŷi), yi is child of yj ;∑
yi

p(yj = ŷj |yi)ProdUi/j→yi(ŷi), yj is child of yi.

(19)

Proposition V.3. Let U be the node set containing all the
neighbours of yj , then the marginal probability

p(yj = ŷj) = ProdU→yj (ŷj). (20)

This proposition can be simply verified by an example in
Fig.5. According to the D-separation property of probabilistic
graphical model [48], the joint probability of the label vector
in the example is given by

p(y0, y1, y2, y3, y4) = p(y0)p(y1|y0)p(y2|y0)p(y3|y1)p(y4|y1).

Therefore, the marginal probability p(y1 = ŷ1) can be com-
puted as follows:

p(y1 = ŷ1) =
∑
y0

∑
y2

∑
y3

∑
y4

[p(y0)p(y1 = ŷ1|y0)p(y2|y0)

p(y3|y1 = ŷ1)p(y4|y1 = ŷ1)]. (21)

According to the definition of accumulated message,
ProdU→y1(ŷ1) can be computed in the following.

ProdU→y1(ŷ1) = µy0→y1(ŷ1) · µy3→y1(ŷ1) · µy4→y1(ŷ1)

=
∑
y0

p(y1 = ŷ1|y0)µy2→y0(y0) ·
∑
y3

p(y3|y1 = ŷ1)

·
∑
y4

p(y4|y1 = ŷ1)

=
∑
y0

[p(y1 = ŷ1|y0) ·
∑
y2

p(y2|y0)] ·
∑
y3

p(y3|y1 = ŷ1)

·
∑
y4

p(y4|y1 = ŷ1)

=
∑
y0

∑
y2

∑
y3

∑
y4

[p(y1 = ŷ1|y0)p(y2|y0)p(y3|y1 = ŷ1)

p(y4|y1 = ŷ1)]. (22)

Since p(y0 = 1) = 1.0, p(y0 = 0) = 0.0, p(y1 = ŷ1|y0 =
0) = 0.0, p(y2 = 1|y0 = 0) = 0.0 and p(y2 = 0|y0 = 0) =
0.0, we get p(y1 = ŷ1) = ProdU→y1(ŷ1) based on Equation
(21) and (22).

So far, we have considered the label inference without any
knowledge. According to Definition III.2, the knowledge is
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y0

y1 y2

y3 y4

P(y0=1)=1.0

P(y1=1|y0=1)=0.3 P(y2=1|y0=1)=0.8

P(y3=1|y1=1)=0.2 P(y4=1|y1=1)=0.4

y0

y1 y2

y3 y4

P(y0=1)=1.0

P(y1=1)=0.3

P(y2=1)=0.8

P(y3=1)=0.06 P(y4=1)=0.12

(a) (b)

Prior Knowledge:
{y0:positive, y1:negative,y2:unknown,y3:unknown,y4:unknown}

P(y0=1) = 100% and P(y1=1) = 0%

(d)

(c)

y0

y1 y2

y3 y4

P(y0=1)=1.0

P(y1=1)=0.3 0.0

P(y2=1)=0.8

P(y3=1)=0.06 0.0

P(y4=1)=0.12 0.0

Fig. 5: This figure illustrates the marginal probability by
incorporating the domain knowledge.The label nodes in black
circle are observed. (b) can be inferred by marginalization
from (a), while (d) can be inferred by considering both (a)
and prior knowledge in (c). The prior knowledge in (c) can
be represented with a likelihood vector about being positive.

Algorithm 1 Kilo(H, k)
◃H is the label hierarchy tree, with P (yi = 1|ypa(i) = 1, x) on its
corresponding link.
◃k is the knowledge vector.

1: Initialize a 3-dimensional array T with size N×N×2, where N is the
number of labels. Tijk corresponds to the passed message µyi→yj (yj =
k), where k is either 0 or 1.
◃compute µyi→yj (yj = k) from bottom to top.

2: Starting from leaf nodes along the links between their parents, compute
µyi→yj (yj = k) and fill it in the Tijk .
◃compute µyi→yj (yj = k) from top to bottom.

3: Starting from root node along the links between their children, compute
µyi→yj (yj = k) and fill it in the Tijk .

4: Compute the marginal probability for each label according to Equation
(20).

5: Normalize all the marginal probability with the marginal probability of
root label.

6: return a vector containing all the marginal probabilities for all the labels.

represented as a vector k (shown in Fig.5 (c)). If ki = 0 or
ki = 1, it indicates that the ith label is observed as negative
or positive. While ki = −1, it means the ith label is hidden
as unknown. In order to incorporate the knowledge vector k,
an indicator function is defined as follows:

I(yi, ki) =

{
1, if ki = −1 ∨ yi = ki;

0, otherwise.
(23)

The knowledge k is incorporated by considering p(y|k),
i.e., the posterior probability of label vector given k. The
inference is implemented by multiplying the joint probability
p(y) with

∏
i I(yi, ki), where p(y|k) ∝ p(y) �

∏
i I(yi, ki).

After normalization by
∑

y p(y) �
∏

i I(yi, ki), the exact value
of p(y|k) can be obtained. The posterior distribution p(y|k) is
used to estimate p(yi|k), the marginal probability for node
i. Fig.5(d) shows the final marginal probabilities inferred
by incorporating knowledge vector in Fig.5(c). Specifically,
indicated by the knowledge, p(y1 = 1) is changed from
0.3 to 0.0. Accordingly, p(y3 = 1) and p(y4 = 1) are 0.0
because of the hierarchy constraint. In more general cases,

the likelihood vector about being positive, denotes the prior
knowledge, contains values ranging from 0.0 to 1.0.

In light of the above analysis, Kilo algorithm is proposed
for knowledge incorporation and shown in Algorithm 1. The
Kilo algorithm takes the hierarchical tree and the knowledge
vector as the inputs and return the marginal probability vector
after knowledge incorporation. It traverses the tree along the
links twice in both bottom-to-top and top-to-bottom directions.
It needs to normalize the marginal probability for each node.
Therefore, the overall time complexity is O(N + E), where
N and E are the number of nodes and number of links
respectively.

Fig. 6: It illustrates hierarchy with 9 nodes and steps of
Algorithm 2. Nodes labeled positive are green. A dotted ellipse
marks a super node composed of the nodes in it. In the table,
both the σ value and the labeling order for each node are
given. Nodes with the same order are labeled together as a
super node.

C. Computing variable σ(i)

With pi available, σ can be computed based on equation (15)
by recursively traversing each node of the hierarchy. Since
each node in hierarchy needs to be accessed twice, one for
computing σ1 and the other for computing σ2. Therefore, time
complexity of σ(i) evaluation is also O(N) .

D. Obtaining label ŷ∗

The value ŷ∗ is obtained by solving the maximization prob-
lem (17). [11] proposed the greedy algorithm CSSA, based
on the work in [49] that allows for solving the problem (17)
efficiently. However, CSSA only works under an assumption
that the number of labels to be associated with a predicted
instance is known. That assumption rarely holds in practice. In
[43], the HIROM algorithm is proposed to avoid the deficiency
of CSSA by giving the maximum number of labels related to
a predicting instance. During the process of finding maximum
number of labels, HIROM gets the optimal ŷ∗ by comparing
all possible ŷs with different numbers of labels related to a
predicting instance.

We suggest a novel greedy labeling algorithm
GLabel(Algorithm 2) to solve the problem (17). This
algorithm finds the optimal ŷ∗ without knowing the maximum
number of labels for the predicting instance. It labels the
node (or super node) i with maximum σ(i) to be positive by
searching in the hierarchy. If the parent node of i is negative,
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then i and its parent are merged into a super node whose σ
value is the average σ value of all the nodes contained in the
super node (e.g., node 4 and node 8 in Fig.6). The labeling
procedure stops when the maximum σ value is negative or
all nodes are labeled positive.

Algorithm 2 GLabel(H)

◃H is the label hierarchy, with σ available
1: define L as a set, and initialize L = {0}
2: define U as a set, and initialize U = H\{0}
3: while TRUE do
4: if all the nodes in H are labeled then
5: return L
6: end if
7: find the node i with maximum σ(i)
8: if σ(i) < 0 then
9: return L

10: end if
11: if all the parents of i are labeled then
12: put i into L, and remove it from U
13: else
14: merge i with its parent as a super node i∗

15: σ(i∗) =average σ values of the two nodes
16: put the i∗ into U
17: end if
18: end while

Since the labeling procedure for each node may involve
a merging procedure, the time complexity is no worse than
O(Nlog(N)), the same as HIROM. However, as shown in
the experimentation section below, GLabel performs more
efficiently than HIROM while not requiring knowledge of the
maximum number of labels.

VI. EXPERIMENTATION

A. Setup

We perform the experiment over the ticket data set generated
by monitoring of the IT environments of a large IT service
provider. The number of tickets in the experiment amounts to
about 23,000 in total. The experiment is executed 10 times
and we use the mean value of the corresponding metric to
evaluate the performance of our proposed method. At each
time, 3000 tickets are sampled randomly from the whole ticket
data set to build the testing data set, while the rest of the
tickets are used to build the training data set. The class labels
come from the predefined catalog information for problems
occurring during maintenance procedures. The whole catalog
information of problems is organized in a hierarchy, where
each node refers to a class label. The catalog contains 98 class
labels; hence there are 98 nodes in the hierarchy. In addition,
the tickets are associated with 3 labels on average and the
height of the hierarchy is 3 as well.

The features for each ticket are built from the short text
message describing the symptoms of the problem. Prior to
the feature construction, we enhance the expression of the
domain-specific terms (e.g., NAS, DB2) or phrases (e.g.,
nas03a.host1.com/zzz) with their detailed descriptions from
domain experts. Then, natural language processing techniques
are applied to remove the stop words and build Part-Of-Speech
tags for the words in the rephrased text. The nouns, adjectives
and verbs in the text are extracted for each ticket. Second, we
compute the TF-IDF [50] scores of all words extracted from

the text of tickets. And the words with the top 900 TF-IDF
score are kept as the features for the tickets. Third, the feature
vector of each ticket has 900 components, where value of each
feature is the frequency of the feature word occurring in the
text of the ticket.

Based on the features and labels of the tickets, we build a
binary classifier for each node in the hierarchy with the SVM
algorithm by using library libSVM [51]. The training data for
each node i are the tickets with a positive parent label. To
speed up evaluation of the 98 SVM classifiers, we parallelize
the process of training classifiers, using the fact that all the
classifiers are independent.

The experiments are mainly conducted by comparing the
proposed the GLabel algorithm with state-of-the-art algo-
rithms such as CSSA and HIROM. Note, that in the end, we
also show benefits of hierarchical classification in comparison
to the “Flat” classification.

B. Hamming loss

The GLabel algorithm can obtain optimal ŷ∗ with minimum
Hamming loss by setting the parameters for Hamming loss,
since Hamming loss is a special case of CH-loss. Given
w1 = w2 = w3 = w4 = 1 for GLabel, α = β = 1
for HIROM and Ci = 1 for both of them, empirical results
are displayed in Fig. 7a - Fig. 7d. As shown in Fig. 7a,
the GLabel algorithm can automatically find the optimal
ŷ∗ with minimum Hamming loss, while both CSSA and
HIROM require the number of class labels and the maximum
number of class labels, respectively, to get the optimal ŷ∗.
Particularly, by increasing the value for setting the maximum
number of class labels, HIROM incurs smaller Hamming loss.
The HIROM algorithm does not reach the optimal ŷ∗ with
minimum Hamming loss until a sufficiently large value is used
for specifying the maximum number of class labels. Moreover,
CSSA may incur more Hamming loss as the number of class
labels increases and it is difficult to identify the correct number
of class labels for each ticket in practice. During the Hamming
loss minimization, we track the varying performance in terms
of precision, recall and F-Measure score, illustrated in Fig. 7b
- Fig. 7d. The conclusion is that the GLabel algorithm is
capable of achieving the minimum Hamming loss without
specifying the number of class labels in advance.

C. HMC-Loss

The HMC-Loss considers loss with respect to the node
position in the hierarchy. Following [43], we define the Ci
as follows.

Ci =

{
1, i = 0;

Cpa(i)

# of i’s siblings , i > 0.
(24)

To simplify the empirical study for HMC-Loss, we set w1 =
w2 = w3 = w4 = 1 for GLabel, and α = β = 1 for HIROM.
In Fig. 7e, it shows that the GLabel algorithm automatically
obtains the lowest HMC-Loss, which can be achieved by the
HIROM algorithm after choosing the proper value for the
maximum number of class labels.
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Fig. 7: Experiments involving tickets in terms of Hamming Loss, Precision, Recall, F-Measure, HMC-Loss, H-Loss, Parent-
Child error, and time cost.

D. H-Loss

In order to get the minimum H-Loss, we set w1 = w3 =
1,w2 = w4 = 0 for GLabel, α = β = 1 for HIROM, and
Ci = 1 for all the three algorithms, i.e., GLabel, HIROM,
CSSA. Fig.7f shows that GLabel is capable of obtaining the
lowest H-Loss, while both HIROM and CSSA cannot acquire
the optimal ŷ∗ with the minimal H-Loss, regardless of how to
tune the number of class labels.

E. Misclassifications occurring in both parent and child labels

The worse error from the loss point of view is the mis-
classification of both parent and child nodes. We call such
misclassification a parent-child error. In terms of CH-Loss,
GLabel can minimize the number of such cases by setting
w1 = w3 = 1, w2 = w4 = 10 with more penalties in
parent-child errors. To compare, we set in CSSA and HIROM
α = β = 1, and Ci according to the equation (24). As shown
in Fig.7g, GLabel reaches the minimum average number of
parent-child errors, while CSSA and HIROM algorithms can
not minimize the parent-child errors since both of them do not
consider the contextual misclassification information in their
loss function.

F. Time complexity

In order to evaluate the time complexity, we fix the same
parameters but increase the number of classes labels, see
Fig.7h. We run three algorithms for 40 rounds and get the
average time consumed. Fig.7h shows that running time of
GLabel is independent from the number of labels, while

running time of other two algorithms require more time as
the number of labels increases. Hence, the GLabel algorithm
is more efficient than other two algorithms, especially in the
cases with large number of class labels.

G. Comparison study with “Flat” classifier

To set up a “Flat” classification, a classifier is built for
each label independently without considering the hierarchy
constraint. The SVM algorithm is one of the best performing
algorithms used to classify the ticket data with each binary
class label.

In order to decrease the parent-child error, we set w1 =
w3 = 1, w2 = w4 = 10, and Ci as the equation (24).
In addition, we define the hierarchy error as the average
number of violated hierarchy constraints. Table III shows

TABLE III: Comparison between GLabel and “Flat” SVM
classification in terms of CH-Loss, Parent-Child error and
Hierarchy error, where both the mean and the 95%-level
confidence interval of experiment results are provided.

Metric SVM GLabel

CH-Loss 4.2601± 0.07314 2.6889± 0.05717

Parent-child error 0.3788± 0.00679 0.1729± 0.00457

Hierarchy error 0.0102± 0.00090 0.0± 0.0

that the GLabel algorithm has better performance in terms
of CH-Loss and parent-child error. Furthermore, the “Flat”
SVM classification suffers on average 0.0102 hierarchy errors
with each ticket, while GLabel complies with the hierarchy
constraint and does not have hierarchy errors. We also conduct
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Fig. 8: Experiment with prior knowledge is conducted over the ticket data.“prior knowledge” denotes the hierarchical multi-
label classification with knowledge incorporation. “None” denotes the hierarchical multi-label classification without knowledge
incorporation.

TABLE IV: Performance comparison between GLabel and “Flat” SVM classification in terms of precision, recall and F-
Measure, where both the mean and the 95%-level confidence interval of experiment results are provided.

Metric
SVM

(incurring hierarchy errors)

GLabel (incurring no hierarchy errors)

w1 = w2 = w3 = w4 = 1 w1 = w2 = 2, w3 = w4 = 1 w1 = w2 = 1, w3 = w4 = 2

Precision 0.8844± 0.00374 0.8862± 0.00396 0.8675± 0.00249 0.9415± 0.00245

Recall 0.8232± 0.00333 0.8247± 0.00464 0.8425± 0.00281 0.7211± 0.00346

F-Measure 0.8527± 0.00347 0.8543± 0.00426 0.8548± 0.00256 0.8167± 0.00253

the performance comparison study in terms of precision, recall
and F-Measure for different parameter settings. The empirical
results are shown in Table IV. It indicates that the GLabel
algorithm, which takes the hierarchical constraint into account,
can acquire better performance in terms of precision, recall and
F-Measure by tuning the parameter setting. Additionally, the
experimental results illustrate that high recall can be achieved
by increasing values of w1 and w2, while high precision can
be obtained with larger values of w3 and w4.

H. Experiment with prior knowledge

1) Setup: In order to demonstrate the effectiveness of the
proposed Kilo algorithm for knowledge guided hierarchical
multi-label classification, we perform the experiments over
the same real ticket data set described in section VI-A. The
only difference lies in the additional knowledge construction.
Each ticket instance in the test data set are associated with
a knowledge vector k, where the ith component are exposed
with its ground true value randomly according to a predefined
prior knowledge ratio γ ∈ [0, 1]. The prior knowledge ratio
γ is the probability that true labels are observed as either

positive or negative, while 1−γ denotes the probability that
the label can not be observed before classification. Fig.8 shows
the performances in terms of different metrics in comparing
the GLabel algorithm without prior knowledge and the one
with prior knowledge incorporated by Kilo algorithm.

2) Hamming loss with changing prior knowledge ratio:
Similar to previous configuration, we obtain Hamming loss
by setting the CH-loss parameters w1 = w2 = w3 = w4 =
1, Ci = 1. As illustrated in Fig. 8a, Hamming loss drops as the
prior knowledge ratio increases, and reaches to zero as prior
knowledge ratio achieves one. Fig. 8b, Fig. 8c and Fig. 8d
illustrate the performance in terms of Precision, Recall and
Precision, respectively. It shows that the knowledge guided
algorithm gets better performance as prior knowledge ratio
increases.

3) HMC-Loss: The HMC-Loss is obtained by the same
settings as provided in section VI-C. As expected, HMC-
Loss decreases as more prior knowledge is provided, shown
in Fig. 8e.

4) H-Loss: The H-Loss is obtained by the same param-
eter settings as provided in section VI-D. By increasing the
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prior knowledge ratio, H-Loss caused by knowledge guided
algorithm decreases, shown in Fig.8f.

5) Parent-Child Error: The Parent-Child Error is obtained
by the same parameter settings as presented in section VI-E.
By increasing the prior knowledge ratio, Parent-Child errors
caused by knowledge guided algorithm decreases, shown in
Fig.8g.

6) CH-Loss: The CH-Loss is obtained by the same pa-
rameter settings as given in section VI-E. By increasing the
prior knowledge ratio, CH-Loss caused by knowledge guided
algorithm decreases, shown in Fig.8h.

VII. CONCLUSION AND FUTURE WORK

In this paper, we employ hierarchical multi-label classifi-
cation over ticket data to facilitate the problem diagnosis,
determination and an automated action, such as auto-resolution
or auto-check for enriching or resolving the ticket in the com-
plex IT environments. CH-loss is proposed by considering the
contextual misclassification information to support different
scenarios in IT environments. In terms of CH-loss, an optimal
prediction rule is developed based on Bayes decision theory.
This paper comes up with a greedy algorithm GLabel by
extending the HIROM algorithm to label the predicting ticket
without knowing the number or the maximum number of
class labels related to the ticket. Additionally, taking the real
scenario in practice into account, the Kilo algorithm is pro-
posed to utilize the knowledge from the domain expert during
routine IT maintenance procedure to effectively improve the
IT problem category determination.

Our work focuses on tree-based hierarchy, which can be
extended to DAG-based hierarchy in future work. In addition,
more domain expert knowledge can be automatically incorpo-
rated into the framework to reduce the system administrators’
involvement in the overall system proposed in this paper.
Based on Kilo algorithm, another direction is to propose an
framework which is capable of refining the category determi-
nation interactively with further knowledge.
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