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 

Abstract-- Demand-side management technology is a key 

element of the proposed Smart Grid, which will help utilities 

make more efficient use of their generation assets by reducing 

consumers’ energy demand during peak load periods. However, 

while some modern appliances can respond to price signals from 

the utility companies, there is a vast stock of older appliances 

which cannot. For such appliances, utilities must infer what 

appliances are operating in a home, given only the power signals 

on the main feeder to the home (i.e. the home’s power 

consumption must be disaggregated into individual appliances). 

 We report on an in-depth investigation of multi-label 

classification algorithms for disaggregating appliances in a power 

signal. A systematic review of this research topic shows that this 

class of algorithms has received little attention in the literature, 

even though it is arguably a more natural fit to the disaggregation 

problem than the traditional single-label classifiers used to date. 

We examine a multi-label meta-classification framework 

(RAkEL), and a bespoke multi-label classification algorithm 

(MLkNN), employing both time-domain and wavelet-domain 

feature sets. We test these classifiers on two real houses from the 

Reference Energy Disaggregation Dataset. We found that the 

multi-label algorithms are effective, and competitive with 

published results on the datasets. 

 
Index Terms—Smart grids, Non-intrusive load monitoring, 

Machine learning, Blind source separation, Multi-label classifiers 

I.  INTRODUCTION 

ESIDENTIAL customers consume approximately 32% of 

the total electrical energy produced in Canada [199], and 

37% of total production in the United States (the latter is 

roughly 1.4 billion kWh per year) [198]. Thus, residential 

users must be part of any effort to rein in the growth of power 

consumption in North America. Numerous authors have 

suggested that sending a price signal to consumers (via time-

of-use or demand pricing, etc.) would be an effective 

mechanism. However, the current power metering and billing 

infrastructure (a monthly aggregate bill) is simply inadequate 

for this task. What is needed is the time-of-use cost of 

operating the individual appliances in a home. Such detailed 

feedback would allow the consumer to plan their energy usage 

in order to reduce their monthly bill, while not suffering an 
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unacceptable disruption to their daily lives. The literature 

indicates that such feedback can lead to a 10-15 percent saving 

in energy costs [50], or a savings of about $1.6 billion each 

year in the Canadian economy. (The provision of effective, 

easy-to-use tools supporting a behavior is known to promote 

the adoption of that behavior [87]). From the utilities’ side, 

meanwhile, formulating demand side management and demand 

response strategies such as changing the time-of use price 

schedule or load shedding requires detailed information about 

the mix of appliances in operation [30]. Load component 

details are used for both short-term and long-term load 

prediction, and help to determine when conventional and 

renewable generation asserts must be added to the power grid 

[118]. 

While some modern appliances are equipped to 

communicate with utilities, older ones have no such 

capabilities. Thus, the electricity consumption for an appliance 

must be inferred by monitoring the appliance’s power 

consumption over time. The simplest approach to this 

monitoring – placing a sensor on the appliance circuit – is an 

expensive and invasive process, which is unlikely to achieve 

widespread adoption in North America due to privacy 

concerns. The alternative is for a utility to disaggregate the 

electricity load for a home into the individual appliance loads. 

This well-known problem is referred to as Non-Intrusive Load 

Monitoring (NILM). Current approaches to NILM require 

either a database of appliance power signals that a load will be 

matched against, or training an inductive algorithm to 

disaggregate the appliances. We have conducted a systematic 

review of the NILM literature, in order to determine what 

inductive algorithms have been employed for this problem, 

and categorize them according to their theoretical foundations 

and the feature sets they employ. A key finding of this review 

is that the family of multi-label classification algorithms has 

only ever been applied to NILM by a single research group in 

the last few years. This in spite of the fact that their 

fundamental characteristic (predicting a vector of categorical 

variables instead of a single class) is on its face a better fit to 

the NILM problem than single-label classifiers. The goal of 

this paper is thus to explore this new approach to NILM. 

We will conduct an extensive experimental investigation of 

multi-label NILM approaches. The fact that multi-label 

classifiers have only recently been applied to NILM implies 

that a number of familiar questions from inductive are once 

again laid open. The relative merits of supervised versus 

unsupervised learning (plus the possibility of semi-supervised 
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learning); the feature sets to be employed; the performance 

measures used to compare different algorithms; all of these 

questions have previously been investigated for single-label 

classifiers as applied to NILM. However, they have not been 

examined in depth for multi-label NILM approaches, and our 

work is intended to help fill this void. Plainly, we cannot 

investigate every open question in this paper, and so we focus 

on comparing two major multi-label approaches to supervised 

learning. We compare their performance on time-domain and 

wavelet-domain feature sets, drawn from two real houses from 

the Reference Energy Disaggregation Dataset (REDD) [125]. 

We provide performance comparisons against the literature 

using both specialized NILM metrics (in particular the energy 

error), and general metrics for multi-label classification 

(especially the micro-averaging and macro-averaging of the 

familiar F-measure). 

Our contributions in this article are, firstly, a systematic 

review of the NILM field, from which we build a taxonomy of 

NILM techniques. Our second contribution is a detailed 

evaluation of multi-label classifiers, trained in both the time 

and wavelet feature domains, on the benchmark REDD 

dataset. 

 The remainder of this paper is organized as follows. In 

Section 2, we review related work and essential background on 

NILM, multi-label classification, time series analysis and 

wavelet analysis. We discuss our experimental methodology in 

Section 3, and present our experimental results in Section 4. 

We offer a summary and discussion of future work in Section 

5. 

II.  RELATED WORK 

The technique of non-intrusive load monitoring was first 

developed by G. Hart at MIT in the 1980s [100]. In this work, 

appliance signatures were the height of rising and falling edges 

in the power waveform. Home appliances were divided into 

three groups of signatures [100]:  single state, multi-state, and 

continuously varying appliances. Fig. 1 depicts examples of 

each group [157]. Hart proposed both a supervised 

classification method, as well as a clustering method in the P-

Q plane (a plot of active versus reactive power) to identify 

appliances.  

 
Fig. 1. Different type of appliances [157]  

 

. After Hart’s seminal paper, numerous investigations have 

attempted to improve upon his results, and NILM is now 

accepted as an important facet of Smart Grid technology. The 

main differences between published NILM methods are the 

models and features that they have used for appliance 

identification. Classification methods such as support vector 

machines (SVM), k-nearest neighbor (k-NN), and clustering 

methods such as k-means are commonly applied models in 

NILM. Active power, reactive power, current and voltage 

transients and harmonics, duty cycles, and/or combinations 

thereof are commonly used as features. 

A.  A Systematic Review of NILM Research 

Our objective in reviewing the NILM field is, in general, to 

identify what avenues in inductive NILM have not been 

thoroughly investigated. Plainly, this meant that we needed a 

comprehensive overview of the field, telling us what has been 

done, so that we can infer what has not. Systematic reviews 

[123] are a well-known and respected framework for 

assembling such an overview. Our research questions for the 

review are: Q1: What inductive learning algorithms have been 

applied to NILM? Q2: What feature sets were employed to 

develop those classifiers? 

We identified candidate primary research reports from the 

papers citing Hart’s seminal work [100], according to the 

Google Scholar citation database. We selected this database 

for its superior coverage; as of March 2016, Google Scholar 

identifies 954 citations for this paper, while Bing Academic 

finds 309, and Scopus 554. Our inclusion criterion for these 

reports were that the paper must propose an inductive learning 

approach for NILM, and must evaluate it on residential power 

consumption data. We exclude approaches requiring additional 

sensors beyond the main power circuit, as the point of non-

intrusive monitoring is to avoid burdening the consumer with 

installing additional sensors in their household. We also 

exclude studies focused on commercial buildings, as their 

power consumption characteristics tend to be very different 

from residential buildings, and thus findings from either class 

of buildings cannot be assumed to transfer to the other [17]. 

Finally, we exclude reports whose primary objective is activity 

identification or privacy preservation rather than appliance 

identification, as these are not congruent to our objectives in 

this paper. Since publicly-available benchmark datasets for 

NILM have only been available in the roughly the last five 

years, we do not exclude reports that focus on simulated or 

confidential data. Each candidate report was manually 

reviewed, and categorized according to our two research 

questions. From this categorization, we have synthesized 

taxonomies of algorithms and feature sets in the NILM field.  

B.  Inductive Learning Algorithms for NILM 

We first examine research question Q1, identifying 

inductive methods used for NILM. Learning algorithms are 

either supervised or unsupervised. Supervised learning 

methods require a ground truth of input and output data for 

each class label to build a prediction model for new unknown 

data. Thus, supervised NILM methods require labelled 

instances of each appliance to train the algorithm. This ground 

truth is collected by recording appliance features with the help 

of the customer [157] or installing extra sub-meters inside the 

home [124]. We can further group these algorithms into 

parametric and non-parametric models. A parametric model 

assumes that the data has a type of probability distribution with 
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a finite number of parameters [49, 114, 128, 133, 164], and 

“fitting” the model consists of determining the parameter 

values for which the model best matches the training data. 

Non-parametric models, on the other hand, do not assume a 

probability distribution  a priori; the model is instead induced 

from the data. Non-parametric models include k-nearest 

neighbor (k-NN) [18, 20, 21, 32, 78, 83, 86, 98, 179-181, 218, 

221], neural networks [23, 34-38, 40, 41, 141, 178, 187, 188, 

193, 195, 202]. Deep neural networks are examined in [119, 

152]. Support vector machines have been used quite frequently 

[61, 62, 90, 104, 108-112, 129, 136, 139, 158, 170, 194, 237]. 

Some researchers have attempted to inductively build a 

signature database and then match the power signal to it (we 

view these proposals as distinct from simply querying a 

predefined signature database) [8, 16, 25, 29, 45, 48, 56, 132, 

150, 154, 174, 203, 219]. Decision trees are explored in [22, 

77, 93, 147, 163], and hierarchical Bayesian models in [191]. 

Graph signal processing is employed in [200]. Supervised self-

organizing maps are examined in [58, 59, 103], and 

nonparametric optimization techniques are explored in [10, 79, 

80, 137]. Multi-label classification approaches are studied in 

[12-15] (these will be discussed in-depth in Section II.B). 

Combinations of multiple classifiers are often superior to 

individual ones. NILM researchers have investigated boosted 

decision trees [6], bagging ensembles of support vector 

machines and KNN classifiers [126], random forests [126, 

155], and a majority-voter meta-classifier using Naives Bayes 

and KNN base classifiers [145].  

 Combinatorial search is also a key approach. In addition to 

deterministic approaches such as integer and regularized linear 

programming [44, 115], derivative-free search strategies such 

as ant colony optimization [140], genetic algorithms [66, 68, 

213], and differential evolution [101] are employed. 

A number of papers compare a multiple learning algorithms 

when some other aspect of the NILM problem is being 

manipulated. [151] compares the performance of Naïve Bayes, 

SMO regression, Br-Trees and MLP when appliance 

categories are merged into larger groups. [102] compares 

neural networks, evolutionary neural networks, SVM, and 

AdaBoost over decision stumps when using shape features of 

the V-I trajectory as NILM features. [186] investigate how two 

NILM systems (KNN and Gaussian mixture models) deal with 

generalizing to appliances that did not appear in the training 

set (i.e. a covariate shift). [211] explores the Instantaneous- & 

Memory- Proportional Fit, Gaussian, and Minimum-Mean 

Squares algorithms along with Markov chains, with or without 

side information (features beyond just the power signal). [57] 

explores the use of supervised self-organizing maps, Bayesian 

inference, support vector machines and finite-state machines 

trained on shape features of the V-I trajectory. [67] focus on 

metaheuristics, testing evolutionary algorithms, differential 

evolution, particle swarm optimization, simulated annealing, 

cuckoo search, and firefly optimization for NILM. [4] explore 

the use of powerlets versus an HMM for NILM with extremely 

low-frequency sampling (one sample per 15-minute interval).  

Time series classification algorithms for NILM can be 

further categorized into three groups: distance-based 

classification, feature-based classification, and model-based 

classification. Distance and feature-based classification both 

work with the actual time series data [122, 204, 228]. Feature 

based methods such as [157] split the signal into small 

sequences or windows and then extract features  to classify 

each sequence, while distance based methods use raw 

sequences directly [71]. Model based methods, on the other 

hand, convert time-series data into statistical and probabilistic 

models such as Hidden and Semi- Markov Models, and then 

identify appliance signature from those models. Symbolic 

Aggregate approXimation is a related technique in which 

subsequences of a time series are converted to symbols, and a 

probabilistic model of the symbols is built [134] Furthermore, 

within all three groups, there are two possible approaches for 

developing a classification algorithm. The first approach is to 

design a whole new algorithm that works with a raw time 

series, usually by creating a new distance measure for 

sequential data. The other approach is to design a 

transformation that turns sequential data into a set of 

independent feature vectors (e.g. lagged inputs). These feature 

vectors can then be passed to any standard machine-learning 

algorithm.  

Conventional classification algorithms that work with 

sequential data usually require a distance metric between two 

sequences. The selection of a distance (similarity) measure 

plays a significant role in the quality of the classification 

algorithm [226]. Euclidean distance is a widely adopted 

measurement; it requires the two series in comparison to be of 

equal length [120, 183]. In additions it is sensitive to 

distortions in time. Distortion in the time axis is common in 

applications such as speech recognition where speech rates are 

not constant [189]. Similar problems have been noted in 

applications such as web logs and biomedical data [33]. Some 

researchers have tried to overcome the time distortion by pre-

processing the acquired signal, however such approaches are 

not practical in most cases [161].  Thus, elastic similarity 

measures such as Dynamic Time Warping (DTW) have been 

employed. [183] describes DTW as a non-linear mapping 

between two sequences that minimizes the distance between 

them relative to a cost matrix; it is essentially a relative of the 

Levenshtein distance for strings. Unlike a Levenshtein 

distance, however, the cost matrix defines a cost associated 

with matching one point of the first sequence with one of the 

second, rather than a fixed cost per operation. Although many 

researchers [1, 9] agree that DTW solves many of the 

problems of the Euclidean distance, its computational 

inefficiency limits its adoption [184]. DTW is calculated using 

dynamic programming, hence has a quadratic time complexity 

(O(n*m), where n and m are the lengths of the time series).   

An NILM technique based on Dynamic Time Warping (DTW) 

is proposed in [69, 127].  
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Fig. 2.  A semantic network of inductive learning methods for NILM 

 

In contrast, unsupervised learning algorithms discover 

regularities in measured data, and group data points based on 

their common properties (proximity in feature space). The 

main benefit of unsupervised methods is that they do not need 

a ground truth for training; however, the accuracy of 

unsupervised methods is generally less than supervised 

methods. In some investigations, clustering has been used to 

extract appliance features to build a database of appliances for 

classification purpose [7, 11, 46, 51, 53, 55, 84, 94, 106, 107, 

142, 162, 196]. Clusters were associated with finite state 

machine models in [217]. Alternatively, clustering has 

sometimes been used been used to detect groups of similar 

appliances instead of a single appliance [130]. Statistical 

methods such as Hidden Markov models [97, 113, 121, 124, 

166, 168, 229] [2, 63-65, 81, 97, 116, 121, 131, 144, 148, 159, 

165, 167, 169, 173, 185, 190, 224, 233, 236] or Bayesian 

inference [149, 197, 223, 232]. Rising and falling edges are 

paired in [95, 210], while the Hilbert transform is used for the 

same purpose in [91]. Likewise, formulations treating NILM 

as a blind source separation problem or one of its relatives [82, 

206-208, 227] also employ unsupervised learning, as does the 

information-theoretic analysis in [175] and kernel Fisher 

discriminant analysis technique in [222]. 

In real-world deployment scenarios, we expect that ground-

truth data will be difficult to come by. Unsupervised learning 

methods are plainly appropriate for this situation, but it would 

be desireable to take advantage of the often-greater accuracy 

of supervised learning. A middle ground between the two 

exists; semi-supervised learning refers to using a small amount 

of labeled observations to improve the classification of a much 

larger unlabeled dataset. This idea has been explored for 

Hidden Markov Models in [19, 135]. Another alternative, 

contextual supervision, uses no actual labels, but associates the 

unlabeled data wide side-channel information known to be 

correlated with the actual labels [225]. Our findings for Q1 are 

presented in Figure 2, a semantic network of the inductive 

learning approach to NILM in the literature. The directed 

arrows indicate an “IS-A” (inheritance) relationship between 

concepts.  

C.  Feature Sets for NILM 

We now examine our results for research question Q2. In our 

review of inductive NILM methods, we found that a wide 

variety of features have been evaluated as independent 

variables for them. First and most obvious are the time series 

of the actual power measurements; current and voltage, 

apparent power, active and reactive power, the power phase 

angle and power factor, have all been employed in NILM, 

including both steady-state and transient signals. Apparent 

power (directly measured, or computed from measured current 

and voltage) is perhaps the single most common feature in 

NILM research, being used exclusively in [22, 45, 46, 48, 63-

69, 71, 75, 80, 81, 88, 91, 95, 97, 115, 116, 128, 131, 132, 

142, 144, 152, 159, 165, 167, 169, 173, 175, 181, 190, 191, 

197, 200, 211, 224, 231-233]. Edge (event) detection is a 

common intermediate processing stage for these approaches 

(e.g. [24, 157]),  as well as for papers employing active & 

reactive power signatures [11, 23, 38, 62, 106, 119, 163, 180, 

223]. [156] is one example of a deterministic event-detection 

scheme, as is [55]. A number of papers fuse the various time 

series together in different ways; some simply accept the 

various time series [7, 77, 79, 82, 126, 148, 149, 218, 220, 

227], some extract chosen statistical moments [12, 104, 145, 

236], some apply time-domain transformations [8, 16, 35, 51, 

158, 179, 185, 186, 210]. 

Beyond the time domain, a number of transforms have been 

applied to the time series of power readings. Fourier analysis 

(frequently of the current waveform, but also of other data 

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2016.2584581, IEEE
Transactions on Smart Grid

 5 

streams) seems to be the most common, used on its own or in 

combination with some of the time domain features above [31, 

37, 44, 58, 59, 61, 103, 136, 147, 154, 174, 177, 193, 213, 

217, 222]. Multiple frequency bands are summarized using 

information entropy in [26, 27]. 

 

 
 

Fig. 3.  A semantic network of feature sets used in NILM

Discrete wavelet transforms of the power measurements are 

also frequently employed, as in [6, 34, 36, 42, 76, 93, 194, 

202] [39]   The signal is differenced before the DWT is 

applied in [5]. However, the high frequency transient features 

extracted from the wavelet transform are not constant across 

different duty cycles of the same appliance (i.e. they change on 

each usage of the appliance) so learning algorithms using the 

raw wavelet coefficients tend not to generalize well. 

An oft-cited advantage of wavelet transforms is that they 

preserve temporal locality in the signal, while the Fourier 

transform does not. A variation called the short-time Fourier 

transform attempts to remedy this deficiency; it has been used 

for NILM in [107-111]. Other complex-valued transforms also 

attempt time and frequency localization, such as the Stockwell 

transform [25, 112, 140] and others [53]Combinations of 

selected transforms are used in [138, 151, 155, 160]. 

One more feature set cropped up repeatedly: the V-I 

trajectory is a plot of the instantaneous current and voltage (as 

an ordered pair) in the current-voltage plane. The time 

evolution of the current/voltage waveform is thus captured as a 

(possibly very complex) periodic orbit in this plane. Shape 

features from this orbit are captured as independent variables 

in  [57, 101, 102].  

Several other feature sets appear occasionally in NILM 

research. [134] takes the time series of apparent power, and 

then selects converts sub-sequences of it into symbols. A 

probabilistic model is then built for the symbol sequence. 

[219] creates a sparse-matrix representation of the current 

waveform. [96] uses electromagnetic interference conducted 

by the powerline as appliance signatures; different appliances 

have been shown to generate distinctive interference patterns.  

[176] uses recurrence plots (a visualization of autocorrelation 

in a time series after a delay embedding) to recognize 

appliances, distinctive power usage then maps to distinctive 

patterns in the recurrence plot. [60, 75] extract finite-state-

machine models from current waveforms; and then extract 

statistical features from those FSMs as the independent 

variables for NILM. [3] computes the S-transform, then plots 

its magnitude against time and frequency (with both quantized 

to form a square matrix). A PCA analysis is then done, and the 

resulting eigenvectors are considered the orthonormal basis 

(“eigenloads”) for the appliance signature space. [47] explores 

random filtering and random demodulation of the current 

waveform. These are essentially undersampling approaches 

that allow for signal reconstruction even after sub-Nyquist 

sampling. [72] decompose a power signal into “powerlets.” 

Each appliance is represented as a mixture of ARX models, 

and many short sequences of observations from these mixutres 

are identified. Powerlets are the minimal set of those 

sequences that represent the dataset; a bespoke subset selection 

algorithm is used to find them. Shapelets [172] are similar, in 

that each shapelet is a small subsequence of a time series. 

However, shapelets are used only in labeled time series, 

because the selection criteria for a shapelet is that it maximizes 

the information gain with respect to the label sequence.  

While the focus of our review is on NILM methods that 

only require access to the main power feeder of the house, we 

do need to acknowledge the extensive research in using side-

channel information to augment the main signal. Commonly 

(although not exclusively), these works focus on sensors that 

are already widely deployed in households. Variables such as 

time of use and duration of use for a given rising/falling edge 

pair can obviously be inferred just from the main power sensor 

and a time signal [70]; dependencies between appliances, 

however, would require expert knowledge [2], so their 

combination cannot just be automatically inferred [121]. The 

power rating of an appliance may be found in its manual – but 

this assumes a very precise identification of the appliance 
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[206-208]. A household’s monthly power bill, and 

disaggregated power signals from homes with similar monthly 

usage and demographics, however, would be available to a 

utility [18]. Exterior temperature is also obviously available 

[225]. [196] suggest exploiting power and water meters, and 

light and motion sensors for NILM; the latter is part of most 

home security systems. Voltage fluctuations alone are used in 

[85]. However, the method requires that one reference load in 

the building be under the analyst’s control, to act as a 

reference signal by switching a known power draw at known 

times. 

Given the momentum behind adopting the “Internet of 

Things,” future NILM researchers may well have a plethora of 

sensors to employ (e.g. the smart thermostat is often mooted as 

the central consumer-side hub for demand-response pricing 

schemes [99]). Given the widespread interest in voice-

command interfaces (Apple’s Siri, Microsoft’s Cortona, 

Amazon’s Echo) those sensors will obviously include audio 

pickups, so the acoustic noise produced by an appliance could 

be used in NILM [171, 237]. Our findings for Q2 are again 

summarized in a semantic network in Figure 3, Again, arrows 

indicate an “IS-A” relationship, while plain lines edges 

generally indicate a functional relationship (i.e. a transform 

being applied). The two exceptions are when feature sets are 

being fused together; when side-channel information is added 

to the power signal, and for the “Fusion” concept. This latter 

represents a many-to-many relationship in which several 

feature domains can be combined together. 

Considering all the sources of information used in NILM, 

and the extensive progress made in appliance identification, it 

is fairly clear that this technology can now be used to infer 

human behaviours within a private home. This matter is 

outside the scope of our review, but we will note that the idea 

of behaviour fingerprinting, possible socially acceptable uses 

for it (health & safety monitoring of live-at-home seniors, for 

instance), the security and privacy concerns raised by this 

technology, and the development of privacy-preserving NILM 

approaches, have all received considerable attention in the 

NILM literature. 

D.  NILM as a Multi-Label Classification Problem 

The classifier algorithms we have discussed are single-label 

approaches, in which instances are mapped to one element of a 

set of class labels L. The classification problem is termed 

binary when L contains two elements, or multi-class when 

there are more. More generally, we could map instances to a 

vector of labels; these are termed multi-label classifiers.   

Multi-label classification was initially developed for 

automatic text categorization and medical diagnosis. However, 

a number of other prediction tasks can also be conveniently 

described as multi-label problems [215]. For example, articles 

on medical science can belong to both a science and a health 

category; genes may be associated with multiple diseases [54, 

73]; images can belong to many categories depending on their 

content [28, 234]; a movie can belong to e.g. the action, crime, 

thriller, and drama genres [105]; an email message can be 

tagged as both work and research project [146, 153]. Clearly, 

traditional binary and multi-class problems both can be posed 

as special cases of the multi-label problem [230]. 

The two main approaches to creating multi-label classifiers 

are problem transformation and algorithm adaptation [214]. 

Problem transformation maps a multi-label problem to an 

equivalent single-label problem, solved by single-label 

classifiers. E.g. the Label Power set (LP) maps each element of 

the power set of L to a new label, and trains a single-label 

classifier on the LP labels. This is conceptually simple, but 

leads to a large set of LP labels, most of which are rarely 

encountered. RAkEL (RAndom k-labELsets), is an improved 

version of LP. The RAkEL algorithm draws a subset of LP 

labels of size k without replacement and constructs an LP 

classifier for it. Many of these classifiers are combined in an 

ensemble [216]. Algorithm adaptation refers to modifying 

existing algorithms to handle multi-label problems. E.g. 

MLkNN is a multi-label learning approach derived from the 

popular k-Nearest Neighbor (kNN) algorithm [230].  MLkNN 

finds the label set for a given test instance using the maximum 

a posteriori (MAP) technique [52], based on prior and 

posterior probabilities of the k nearest neighbor instances.  

 In general, NILM can reasonably be considered a multi-

label problem. At each sample instant, the power draw is 

almost always associated with a mixture of appliances. Each 

appliance is furthermore an independent “concept” that can 

occur simultaneously with others. Multi-label classification 

method was first explored in NILM in [12]. Power draw at 

each sample instant, and its change over sliding windows, were 

used to disaggregate three specific appliances.   

E.  Delay Coordinate Embedding 

A dynamical system consists of a state space and a map 

defining transitions between states. These describe the system 

at any given time, including (for a deterministic system) its 

future evolution under known inputs [117]. Assuming the 

system is dissipative, over time the system state will converge 

to a specific subset of states, known as an attractor [192]. In a 

time series, the state of the underlying system that generated it 

cannot be measured directly. A time series is only a sequence 

of measurements, forming a nonlinear projection of a d-

dimensional state trajectory. In order to forecast the evolution 

of a time series, we need to reverse this projection (or find a 

mapping that is equivalent to doing so). This state space 

reconstruction, is commonly done via delay embedding. The 

idea is to transform the time series into a multi-dimensional 

time-lagged state space. We concatenate the current 

observation and a number of past observations (lags) into a 

“delay vector.” If the number of lags is sufficient, then this 

embedding space is equivalent to the actual state space. Hence, 

we can forecast the next observation using the current delay 

vector. This also implies that the delay vectors may be used as 

feature vectors in any standard machine learning algorithm, 

which can be trained to forecast the time series [117]. 

 The key step in a delay embedding is to find the “best” 

dimensionality m and time delay ; there are only heuristic 

guidelines to findings these parameters in the literature[117]. 

In this research, the time-delayed mutual information method 
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determines the time delay, and the method of false nearest 

neighbors determines the dimensionality. 

F.  Discrete Wavelet Transform 

 

A times series tends to contain a great deal of redundancy, 

which increases the complexity of the resulting models, and 

may make them less accurate. One solution is to transform the 

data to a less-redundant form, which is also better-suited for 

pattern recognition techniques [235].  The Fourier transform 

and Discrete Wavelet Transform (DWT) are examples of such 

aproaches. We favor DWT as it has the multi-resolution and 

time-frequency localization properties. DWT analyzes the 

signal at different frequency bands with different resolutions; it 

decomposes the signal into a coarse approximation and fine 

detail at different levels of decomposition. Approximation 

coefficients represent the large-scale, low-frequency 

components of the signal, while detail coefficients are small-

scale, high-frequency components.  

 Dimensionality reduction in DWT is accomplished by 

selecting certain coefficients to retain, and discarding the 

others. This potentially makes a wavelet-domain classifier 

algorithm both faster and more accurate, as the discarded 

coefficients should be principally noise. The problem is how to 

select these coefficients; again, we must rely on heuristic 

criteria to do so.  

Wavelet feature selection method fall into two categories: 

supervised and unsupervised method [92]. Unsupervised 

feature selection methods try to find the optimum set of 

coefficients with maximum similarity to the original data while 

minimizing the number of coefficients.  Supervised features 

extraction evaluates the performance of coefficients based on 

class separability. Good quality class separation means 

maximum separation between classes and minimum data 

variation inside each class. We focus on unsupervised 

methods, as class separability in NILM is not a straightforward 

concept.  

 The simplest criterion for selecting DWT coefficients is 

simply to keep the first few and discard the rest. The first 

DWT coefficients tend to have higher standard deviations, 

contain more of the signal energy, and carry more information 

[74]. A more insightful method is to evaluate how similar 

coefficient sequences in different decomposition levels are to 

the original signal, by measuring how much energy from the 

original signal is preserved. Although increasing the 

decomposition level reduces the data dimensionality more, 

similarity to the original sequence usually decreases [143]. The 

amount of energy contained in a signal x(t) is expressed as: 

2

x(t)E ( )x t dt   

(6

) 

The energy content of a signal can be calculated from the 

DWT coefficients using Parseval's theorem [212]. DWT 

coefficients 

n
jx

 quantify the amount of energy associated with 

level of decomposition, n. The total amount of energy 

contained in the signal is equal to the sum of the energy in all 

coefficients [92]:  
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where Mn coefficients are available in the level. 

 The Haar wavelet is the simplest wavelet transform. It is a 

series of averaging and differencing operations on a discrete 

time function. Haar wavelets are popular because of their 

simplicity and interpretable output. The wavelet is defined as 

[209]: 

1 0.5 0

(u) 1 0 0.5

0

Haar

u

u
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   
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
   

 

(

8) 

Haar wavelets are not continuous, and so cannot smoothly 

follow a continuous signal, although this characteristic is 

beneficial when studying signals with sharp transitions. 

Moreover, it is a two element wide wavelet, which reduces its 

resolution. Haar wavelets are widely used in time series 

analysis and stream data mining [43, 89, 201, 205]. 

III.  METHODOLOGY 

A.  Datasets 

We evaluate our proposed multi-label classifiers on two of 

the houses (specifically, House 1 and House 3) monitored in 

the REDD dataset, which collects both whole-house and 

circuit-level power consumption at 1Hz and 0.33Hz, 

respectively. House 1 and house 3 have been selected for the 

tests because data are collected for a longer period of time for 

these houses. Furthermore, both active and reactive power can 

be determined for house 3 (via current and voltage 

measurements), while only active power is available for house 

1. The circuit-level data allows us to assign labels to the power 

signal; we do so in any sample instant where the power 

consumption is greater than 10W. Plainly, we are assuming 

that circuits will usually map to a limited group of appliances; 

for the larger appliances, this is plainly true. Results from the 

existing literature also indicate that the Bath GFI and Outlet 

circuits are reasonably predictable, although the Kitchen 

Outlet circuit seems to be exceptionally difficult.The dataset is 

available at http://redd.csail.mit.edu [125].  

B.  Delay Embedding, Wavelet Feature Extraction 

Our time domain experiments are conducted on a delay 

embedding of the power time series (active & reactive power 

in House 3, active power in House 1). Using the methods 

described in Section II.E, we find that House 1 is best 

embedded with 8 dimensions and a delay of 32 seconds, while 

House 3 requires 18 dimensions and a delay of 95 seconds. 

We label each delay coordinate with all of the circuits active at 

the chronologically latest lag in the delay vector 

Four our wavelet-domain experiments, we use the Haar 

wavelet to transform the power time series. In selecting our 

wavelet coefficients, we set a goal of retaining at least 95% of 
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the signal energy. In REDD House 3, only one circuit (Bath 

GFI) drops below 95% retained energy at decomposition level 

3, and so we employ those coefficients. In House 1, again only 

1 appliance drops below the 95% threshold at level 3,  but that 

one is the oven – a high-draw appliance with short, frequent 

duty cycles when in use. It seems unwise to allow this 

appliance to have less than 95% retained energy, and so we 

select decomposition level 2 for this dataset. Each vector of 

wavelet coefficients is labeled with appliances active at the 

temporal center of the wavelet.  

C.  Experimental Design and Performance Metrics 

For our experiments, we employ a chronologically ordered 

single-split design, with the training examples all earlier in 

time than the test examples; this is a commonly used in time 

series forecasting. Multi-label classification requires slightly 

different evaluation measures than those used in traditional 

single-label classification [215]. They are based on averaging 

traditional classification metrics over the different labels. 

Evaluation measures can be calculated using either macro-

averaging and micro-averaging. Macro-averaging takes the 

mean of a measure computed for individual classes, making it 

more sensitive to classes with few examples. Micro-averaging 

aggregates all the classes into one contingency  matrix. This 

tends to emphasize overall classification performance [182]. In 

this article, we select the F-measure as the base measure, as it 

is commonly used in NILM studies. 

In addition to the F-measure and its usual competitors, the 

NILM field also employs an additional measure called the 

energy error. The idea is to measure how closely the energy 

consumption of an appliance matches the energy consumption 

assigned to that appliance by a NILM technique. The problem, 

of course, is to translate a predicted label into predicted power 

consumption. Plainly, this cannot be done precisely, as labels 

can be associated with single-state, multi-state, or continuously 

varying appliances. Our approach is to assign each occurrence 

of each label the average power consumption of the appliance 

during a duty cycle. The total predicted energy is the sum of 

predicted energies for each label assigned to that sample 

instant. The energy error is the difference between the total 

predicted energy, and the total actual energy consumed by 

each active appliance in that sample instant. In the literature, 

one usually finds that relative energy error is reported: 


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where error is the relative energy error, pave,i is the average 

predicted  power for appliance i (i=1,2,…,k), and pactual,i is the 

actual power consumed by appliance i at that sample instant.  

IV.  EXPERIMENTAL RESULTS 

Table I presents our results on all four classifiers for House 

3 of the REDD dataset. We find that there is not much 

difference between RAkEL (using the SVM base classifier) or 

MLkNN. The performance of the classification methods is by 

some measures superior in the wavelet domain, and by others 

superior in the time domain. It is impossible to select one as 

the best method just from these overall results. 

Table II presents our results for House 1 of REDD, with 

RAkEL again using the SVM base classifier. dataset lacks 

reactive power measurements, which made appliance detection 

more challenging. From the results, it can be concluded that 

MLkNN classification in time domain has better performance 

among multi-label classification methods. 

A.  Circuit-Level Evaluation 

In this section, we analyze our experimental results at the 

level of individual appliances. We are interested in 

determining which methods accurately detect more appliances, 

and especially the large appliances that consume the most 

power.  

 

TABLE I 

Evaluation of Multi-Label Classification on REDD, House 3 
 Micro F-measure Macro  F-measure 

RAkEL 

(Time domain) 

0.923 0.492 

MLkNN 

(Time domain) 

0.921 0.471 

RAkEL 

(Wavelet domain) 

0.959 0.455 

MLkNN 

(Wavelet domain) 

0.943  0.472 

 

TABLE II 

Evaluation of Multi-Label Classification on REDD House 1 
 Micro F-measure Macro F-measure 

RAkEL 

(Time domain) 

0.587 0.393 

MLkNN 

(Time domain) 

0.776 0.619 

RAkEL 

(Wavelet domain) 

0.763 0.430 

MLkNN 

(Wavelet domain) 

0.597 0.524 

 

We present the results for our classifiers on REDD House 3 

in Table III. The results are quite mixed, with no one method 

standing out as performing the best across all appliances. All 

methods recognized the electronics well, and all utterly failed 

in detecting the furnace. Upon further examination of the 

house 3 dataset, we found that measurements of the houses in 

REDD was done in the beginning of summer, therefore the 

furnace rarely appears in the dataset. Furthermore most of 

those few occurences are in the early (training) portion of the 

dataset; during the period covered by the test set, the furnace 

has only been used for a few minutes. 

The performance of our classifiers on REDD house 1 is 

presented in Table IV. For this house, the time-domain 

MLkNN was superior to the other methods on all appliances 

except the microwave.  
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TABLE III 

Circuit-Level Performance on REDD, House 3 

 
RAkEL 

(Time domain) 

MLkNN 

(Time domain) 

RAkEL 

(Wavelet domain) 

MLkNN 

(Wavelet domain) 

 F-measure 
Energy 

Error 
F-measure 

Energy 

Error 
F-measure 

Energy 

Error 
F-measure 

Energy 

Error 

Electronics 1.0 0.009 1.0 0.009 1.0 0.009 1.0 0.009 

Furnace 0.001 0.954 0 0.456 0 0.322 0 0.469 

Washer dryer 0.947 0.105 0.989 0.027 0.97 0.050 0.98 0.046 

Microwave 0.377 0.759 0.628 0.012 0 1.0 0.15 6.267 

Bath GFI 0.627 0.344 0.430 0.813 0.76 0.011 0.59 0.305 

Kitchen outlet 0.017 0.983 0.133 0.824 0 1.000 0.12 0.898 

 

TABLE IV 

Circuit-Level Performance on REDD, House 1 

 
RAkEL 

(Time domain) 

MLkNN 

(Time domain) 

RAkEL 

(Wavelet domain) 

MLkNN 

(Wavelet domain) 

 
F-measure 

Energy 

Error 
F-measure 

Energy 

Error 
F-measure 

Energy 

Error 
F-measure 

Energy 

Error 

Oven 0 1.0 0.31 0.607 0.01 0.937 0.01 0.956 

Refrigerator 0.92 0.070 0.94 0.019 0.93 0.059 0.65 1.023 

Light 0.39 0.437 0.79 0.149 0.72 0.856 0.56 0.472 

Microwave 0.52 0.031 0.09 10.413 0.54 0.434 0.54 0.110 

Bath GFI 0 1.00 0.53 0.443 0 1.0 0.39 0.510 

Outlet 0 1.00 0.77 0.193 0 1.0 0.68 0.366 

Washer 0.92 0.145 0.90 0.093 0.80 0.025 0.84 0.112 

 

B.  Comparison with Previous Results on REDD 

We now compare our proposed methods with previous 

results from the literature on REDD. These prior results only 

measure performance on individual appliances; overall 

classification or energy error measures are not available. 

[124] uses a Factorial Hidden Markov Model to identify 

appliances in a home, after which AFAMAP convex 

optimization was used to estimate the appliances (states) from 

the model. The precision, recall, and F-measure of their 

method was determined for each appliance. As noted above, 

none of our classifiers offered consistently superior results on 

all of these appliances. We thus make the (arbitrary) choice to 

compare the results of [124] with our time-domain MLkNN 

classifier (see Table V). While our method was superior on 

some of the appliances (notably electronics and the 

washer/dryer), the FHMM method was superior on others.  

The method in [229] decomposes a set of appliance models 

into groups of appliances whose power signals overlap, and 

then disaggregates each group using the Viterbi algorithm. 

This method is evaluated on certain appliances from House 1 

of REDD, and compared against a Bayesian classifier using 

the F-measure. The results for both methods, as well as our 

time-domain MLkNN classifier are presented in Table VI.  

 

 

 

 

TABLE V   

Comparison with [124] on REDD 

 MLkNN (Time domain) Factorial HMM [10] 

Appliance Prec. 
Recal

l 

F-

measure 
Prec. 

Recal

l 

F-

measure 

Electronics  1.0 1.0 1.0 0.416 0.008 0.016 

Furnace 0 0 0 0.917 0.708 0.799 

Washer/Dry

er  
0.998 0.981 0.989 0.988 0.736 0.844 

Microwave 0.612 0.645 0.628 0.975 0.661 0.788 

Bath GFI  0.294 0.802 0.430 0.827 0.708 0.763 

Kitchen 

Outlet  
0.587 0.075 0.133 0.452 0.16 0.236 

 

TABLE VI 

Comparison with [229] on REDD 

Appliance 

Proposed 

MLkNN in 

time domain 

Bayesian 

method in 

[18] 

Proposed method 

in [18]  

 F-measure F-measure F-measure 

Oven 0.31 0.8 0.908 

Refrigerator 0.94 0.859 0.831 

Microwave 0.09 0.775 0.899 

Bath GFI 0.53 0.753 0.927 

Outlet 0.77 0.409 0.84 
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Table VII 

Comparison with [19] and [16] on REDD 

 Proposed method Results in [168] Results in [166] 

Appliance RAkEL MLkNN 
No 

training 

Aggregate 

training 

Sub -metered 

training 
No training 

Aggregate 

training 

Sub-metered 

training 

Refrigerator 0.07 0.019 0.550 0.150 0.140 0.380 0.210 0.550 

Washer- dryer 0.145 0.093 4.280 0.280 0.240 34.690 0.550 0.710 

Microwave 0.031 10.413 0.540 0.220 0.100 0.630 0.530 0.380 

 

HMM along with EM clustering and the Viterbi algorithm 

has been used to identify a few appliances from REDD in 

[168] and [166]. The idea of their research is to further 

develop the Factorial HMM method in [124]. They have 

evaluated their method by calculating the energy consumption 

error on a few appliances, averaged across multiple houses in 

REDD. Table VII shows the results of their two published 

articles, which we compare to our results on those appliances 

in House 1. For just these three appliances, the time-domain 

RAkEL classifier has better performance than the time-domain 

MLkNN, due to the poor result observed on the microwave. 

Both RAkEL and MLkNN performed better than the methods 

from [166, 168] on the refrigerator and washer, and RAkEL 

was also superior on the microwave.  

V.  SUMMARY AND FUTURE WORK 

In this paper, we have conducted the most in-depth study of 

multi-label classification for NILM that exists in the literature. 

We examined two different multi-label classification methods, 

applying them to both time-domain and wavelet-domain 

feature sets. We evaluated our methods on two real houses 

studied in the REDD dataset. Comparisons against the existing 

literature on the latter two datasets revealed that our multi-

label classifiers were competitive with the existing literature; 

while our classifiers were not consistently superior to the 

existing methods, they were also not consistently inferior. 

Thus, the principal conclusion of this work must be that multi-

label classification is a plausible approach for NILM. 

 Future work in this topic will involve further exploration 

of multi-label classifiers for NILM. In particular, we will 

investigate semi-supervised multi-label classification, a class 

of algorithms that has not previously been examined for 

NILM. Semi-supervised algorithms require only a small 

number of labelled training examples in a larger corpus of 

unlabelled ones. This may be a lower-cost approach to NILM, 

while still offering superior accuracy to unsupervised 

algorithms.  
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