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Abstract—With the explosive development of communication
technologies, more customer friendly services have been designed
for the next generation of cellular technology, that is, fifth-
generation (5G) communication. However, such services require
more computing resources and energy. Thus, the development
of green and energy-efficient 5G application systems has become
an important topic in communications. In this paper, we focus
on high-performance multi-label classification methods and their
application for medical recommendations in the domain of 5G
communication. In machine learning, multi-label classification
involves assigning multiple target labels to each query instance.
The vast number of labels poses a challenge for maintaining
efficiency. Several related approaches have been proposed to
meet this challenge. In this paper, we propose two label selection
methods for multi-label classification: clustering-based sampling
(CBS) and frequency-based sampling (FBS). We apply our
proposed multi-label classification methods as an innovative 5G
application to predict doctor labels for doctor recommendations.
We perform experiments on real-world datasets. The experi-
mental results show that our methods achieve state-of-the-art
performance compared with baselines. In addition, we develop a
mobile application of a doctor recommendation system based on
our proposed methods.

Index Terms—Multi-label, Classification, Clustering, Recom-
mendation.

I. INTRODUCTION

Currently, the development of green computing and energy-
efficient 5G applications has become one of the core topics
in communications [1]. Considering the heavy demand for
this field, advanced mobile applications with high-performance
algorithms attract the attention of researchers [2], [3]. Rec-
ommendation systems are widely used to predict the “rating”
or “preference” that a user would give to an item. For 5G
applications, a great recommendation system can retain and
attract users to the service. In the four generations of cellular
technology, a large amount of recommendation systems have
been proposed. However, the limitations of data rates and
resources significantly affect the user experience. Label-based
methods, such as label ranking and label classification, play
important roles in mobile recommendation systems. In this
paper, we focus on high-performance multi-label classification
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methods and their applications for medical recommendations
in the domain of 5G communication.

Multi-label classification is a variant of the classification
problem in which multiple target labels must be assigned
to each instance. This method has been widely employed in
recent years [4], particularly in the domain of next-generation
(5G) communication, e.g., image annotation [5], text catego-
rization [6], music categorization [7], and web advertising [8].
These applications typically involve a considerable number
of labels, and the amount of labels continues to increase in
new applications [9]. Thus, describing samples with labels is
challenging [10]. In this paper, we address the multi-label clas-
sification problem in the context of a doctor recommendation
system in which doctor labels must be assigned with high
efficiency.

Improving the performance of multi-label classification is a
considerable challenge. The traditional approach, referred to
as binary relevance (BR) [11], consists of training different
classifier prediction labels separately. This approach exhibits
low training and testing efficiency and reasonable memory
usage when the number of labels is quite large. In recent
years, some methods and algorithms have been proposed to
develop a label hierarchy system or to allow dimensionality
reduction using label correlations. The traditional methods of
hierarchical label architecture construction [12] are generally
transferred to the problems of complex optimization to address
the efficiency challenge; however, the training procedure is not
fast enough.

Label space conversion and selection are the two main is-
sues in the domain of dimensionality reduction [13]. Mapping
the original label set to an additional controllable label set
is the main concept of label space conversion, that is, the
original vector with dimensionality d is mapped to a vector
with dimensionality k, and the training process is conducted on
the k-dimensional label vector. However, mapping labels from
one space to another is generally difficult. The label selection
method can remove the limitation of the space conversion,
whose main objective is to select a small portion of the typical
labels from the original set as the training data label and restore
the original label space through the selected label during
prediction. It is clear that these types of methods assume that
the label that has not been selected can be easily restored
from the selected label. There are limitations of the above
methods, which mainly consist of (1) sampling experiments
using uncertain numbers of samples and (2) low computational
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efficiency.
This paper proposes two multi-label classification methods

based on label screening, namely, a multi-label classification
method based on cluster sampling and one based on frequency
sampling, to solve these problems. The frequency sampling
method needs to cluster the labels first. Then, we cluster
all labels into k clusters with K-means. Subsequently, each
cluster has one label. This method only requires k sampling
experiments to screen out k labels. The frequency sampling
method is an efficient method that only needs to use the
frequency information of labels to conduct the label selection.
In contrast to other methods, the frequency sampling method
does not define the problem as the selection of a general
matrix column subset. This method can exploit the unique
attributes of the label matrix: (1) sparseness, that is, there are
few nonzero entries in each row, and (2) the matrix has only
two possible values, 0 and 1. Both methods do not require the
use of the singular value decomposition, and they also do not
need to solve complex optimization problems.

The remainder of this paper is organized as follows. We
begin by presenting the two proposed label selection methods
(CBS and FBS) for multi-label classification. We subsequently
present the doctor label prediction method. This is followed
by the experimental results and analysis. A mobile doctor rec-
ommendation system is also introduced in this paper. Finally,
we offer a conclusion to this paper.

II. MULTI-LABEL CLASSIFICATION ALGORITHMS

Traditional supervised learning is one of the broadest canon-
ical forms used in machine learning, in which each real-
world sample is expressed by a vector and a corresponding
single label [14]. The task of traditional supervised learning
is to learn a function, g : A → B, from the training set
{(ai, bi)}ni=1, where A represents the sample space and B
represents the label space. Here, ai ∈ A is the eigenvector of
a sample, and bi ∈ B is the corresponding label that is used to
express the semantic feature. The aforementioned question is
that of traditional classification. From the above description,
we can observe that the assumption of traditional classification
is that each sample only belongs to one concept, which means
that it possesses only one semantic label.

In real life, the aforementioned assumption is not applicable
to many of the more complicated questions of machine learn-
ing. One primary reason is that the samples from real life are
extremely complicated, and one sample can simultaneously
contain several pieces of semantic information. To overcome
this real-life issue regarding how one sample could contain
multiple pieces of semantic information, one straightforward
method is to assign an appropriate label set for one sample to
represent its semantics. This type of classification problem of
models is called multi-label classification. In contrast to tradi-
tional classification, in multi-label classification, one sample
is represented by an eigenvector and a label set rather than by
one label exclusively. The task of multi-label classification is
to train a function to forecast the unknown sample and return
a label set.

The formal definition of multi-label classification is as fol-
lows: assume that A = Rm is an m-dimensional eigenvector

space and that B = {b1, . . . , bd} is the label space containing
d labels. The specific task of multi-label classification is to
learn a function, h : A → 2B , from the training dataset
D = {(ai, bi)}ni=1. For each multi-label sample (ai, bi), ai is
an m-dimensional eigenvector, and bi is a label set connected
to ai (denoted by a k-dimensional vector; namely, the label
set contains d labels). For each unknown sample a ∈ A, the
multi-label classifier h(·) forecasts an appropriate label set
h(a) ⊆ B.

Early studies on multi-label classification primarily focused
on the multi-label classification problem of text. Over the past
ten years, multi-classification has gradually received attention
from the machine learning community and other relevant fields
and has been widely applied to various areas, ranging from the
denotation of multimedia content to fields of biological infor-
mation, webpage mining, rule mining, information indexing,
and label recommendation.

In recommendation applications, such as text classification,
internet advertising, and music classification, the number of
labels is generally tens of thousands to hundreds of thousands,
and this number is still growing. Therefore, it is important
to propose an efficient method for accomplishing these tasks.
In multi-label classification, because each sample can be
assigned multiple labels, the task becomes extremely chal-
lenging. Therefore, researchers have proposed many methods
to solve this problem.

The traditional method for solving the multi-label problem
is called binary connection [15], and its primary function
is to train a binary classifier for each label to independent-
ly forecast each label. Its disadvantage is its low training
and forecasting efficiency. Furthermore, when the number of
labels is large, memory usage also becomes a bottleneck.
Recently, researchers have proposed many new methods to
solve this problem. These researchers have primarily explored
the correlation between labels, have established a hierarchical
model for the labels [16], or have reduced the dimensions
of labels [17]. At present, the method for establishing the
hierarchical structure generally consists of transforming it into
a complicated optimization problem, in which the primary goal
is to improve the forecasting efficiency; however, the training
efficiency has not improved. In this paper, we investigate how
to use the intrinsic connection between labels to reduce the
dimension in the label space.

The main concept of the multi-label classification algorithm-
s has been provided in [18]. In this paper, we expand the
concept of multi-label classification and apply it with a mobile
application in the next section of this paper. The framework
of the proposed multi-label classification algorithms is shown
in Figure 1.

A. Clustering-Based Sampling (CBS)
In this section, the cluster sampling method is based on

the selection of a label subset. In this method, we use the K-
means cluster. The primary concept of the cluster sampling
method is to cluster all the labels in the sample into k clusters
and select one label from each cluster. To cluster labels, we
should first generate a vector for each label. Our method uses
the following equation to calculate the vector of a label:
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Fig. 1. Framework of the proposed multi-label classification algorithms.

L(t) =

∑n
i=1 A

(i)Bi,t∑n
i=1 Bi,t

, (1)

where L ∈ Rn×d denote the vector matrix of label. L(t) is the
vector of the tth label. The overall flowchart of the algorithm
is shown in Algorithm 1.

Algorithm 1 CBS
1: Input: A, B, k.
2: Calculate the vector of label L.
3: Use K-means to cluster the label embedding L, generating

k clusters: clu1, clu2, ..., cluk.
4: C ← ∅
5: for i← 1 to k do
6: Sample one label l from clui

7: C ← C ∪ {l}
8: end for
9: Train a classifier f(a) on {A(n), B

(n)
C }Nn=1

10: For a new test sample a, obtain its prediction h = f(a)
and return ŷ by rounding hTB†

CY .

The aforementioned algorithm first uses the weighted aver-
age of sample features as the label vector. Then, it uses the K-
means clustering algorithm to cluster the labels into k clusters.
Because obtaining a high-quality vector with labels with too
few occurrences using the aforementioned method is difficult,
these labels will be placed in one cluster prior to clustering.
Because the aforementioned method only extracts one sample
from each cluster, we only need k sampling experiments.

B. Frequency-Based Sampling (FBS)

Multi-label classification based on frequency sampling is
also a classification algorithm based on the selection of the
label subset. The majority of the existing multi-label classifi-
cation algorithms based on the selection of a column subset are
all defined as a universal problem of column subset selection
and are unable to apply the intrinsic properties of a label
matrix. The label matrix of the legend is generally extremely
sparse and contains extremely few non-zero terms; the value

of each term in the label matrix can only be 0 or 1. Using
text classification as an example, one article can be classified
as the class of machine learning and can also belong to the
ML class (abbreviation for machine learning). Furthermore,
the ML-containing label sample is typically only a subset that
contains the label sample of machine learning. Based on this
fact, in this paper, we propose a frequency sampling method,
and in particular, the probability for each label to be selected
can be determined using the following equation:

pj =

∑n
i=1 Bi,j

Z
, Z =

n∑
i=1

d∑
j=1

Bi,j , (2)

where pj is the probability of the jth label to be sampled. In-
tuitively, a label with a high occurrence frequency is assigned
a higher probability to be sampled. The frequency sampling
method satisfies properties 1 and 2, as follows.

Proposition 1 The probability of the jth label to be sampled
is pj ≥ 1

cn (1 ≥ j ≥ d), where c is a constant c≪ d.
Proof. One property of the label matrix is that every row

only contains several non-zero terms. We use c to represent
the average number of non-zero terms on each row, and then
the total number of label occurrences is cn. Because each label
appears at least once, the probability for the jth label to be
sampled is pj ≥ 1

cn .
Proposition 1 When sampling k different labels, the re-

quired time of the sampling experiments is Ω(n · log d
d−k ).

Proof. Let pj denote the probability of the jth label to be
sampled, Ti denote the time of the experiments required to
sample i different labels, and Ci denote the sampled sets that
contain i labels. With these representations, we can derive the
following equations:

Ti = Ti−1 +
1∑

j /∈Ci−1
pj

,

T0 = 0 , C0 = ∅,
d∑

j=1

pj = 1 , pj > 0(1 ≤ j ≤ d) .

(3)

By combining these equations with Proposition 1, we can
derive the lower limit of the second term in the above equation:∑

j /∈Ci−1

pj ≥
d− i+ 1

nc
(4)

Then, we can derive the recursive equation for the expected
number of sampling experiments:

Ti ≤ Ti−1 +
cn

d− i+ 1
. (5)

From the above equation, we can derive:

Tk ≤ cn log
d

d− k
(6)

When k = 0.1d, then log d
d−k = 0.152, moreover, k ≪ d,

log d
d−k ≪ 1, thus, cn · log d

d−k ≪ cn. The overall flowchart
of the algorithm is shown in Algorithm 2.
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Algorithm 2 FBS
1: Input: A, B, k.
2: Calculate the sampling probability of each column pj .
3: C ← ∅
4: while |C| < k do
5: Select a column from {1, 2, ..., d} where the probability

of selecting the jth column is pj .
6: if j /∈ C then
7: C ← C ∪ {j}
8: end if
9: end while

10: Train a classifier f(a) on {A(n), B
(n)
C }Nn=1

11: For a new test sample a, obtain its prediction h = f(a)
and return b̂ by rounding hTB†

CY .

TABLE I
COMPLEXITY COMPARISON OF VARIOUS ALGORITHMS

time complexity sampling trials

CBS O(nm) +O(kdm) +O(k) O(k)

FBS O(nd) + Ω(n log d
d−k

) Ω(n log d
d−k

)

ML-CSSP O(ndk) +O(k log k) O(k log k)
PLST O(ndk) -
CPLST O(min{nm2, n2m}) +O(d3) -

C. Algorithm Complexity Analysis

The aforementioned algorithms use different label sampling
methods or transformations; however, their forecasting pro-
cesses are identical. Regarding the forecasting, a sample is
first conversed to k trained classifiers. Then, we can obtain
a k-dimensional vector h. The forecasting vector could be
reconstructed through h, namely, ŷ = Dh, where matrix D
is an algorithm-dependent decoding matrix.

Table I shows the comparison between the temporal com-
plexity of the relevant algorithms and the required num-
ber of sampling experiments. For the cluster sampling, the
complexity required to generate the label vector is typically
O(nmd). Furthermore, the complexity for generating the label
matrix can be reduced to O(nm). The frequency sampling
method only needs the frequency information of each label,
and the complexity is O(nd). To extract k labels from the
label set, the complexity of sampling times for ML-CSSP
is O(k · logk). The cluster sampling only needs k sampling
experiments, and the complexity of the frequency sampling
experiment is n·log d

d−k . In addition, PLST and CPLST do not
require the sampling experiment. Among these five methods,
the frequency sampling algorithm has the highest efficiency,
and CBS requires the least number of sampling experiments.

III. DOCTOR LABEL PREDICTION

We apply our proposed methods to predict labels corre-
sponding to doctor expertise. The labels can then be used
to match patients and doctors in the recommendation system.
The original doctor information requires preprocessing. Each
doctor has a corresponding feature vector x and a label vector
y. We select a group of doctors randomly and label each doctor
with the conditions with which they are most experienced.

After the labeling, we have d different labels in total. The
label vector can then be represented as a d-dimensional vector.
Each dimension of the vector represents whether a doctor is
skilled in treating a specific condition. If a doctor is skilled in
treating a specific condition, then the corresponding value in
the vector is set to 1; otherwise, it is set to 0.

The processing of the feature vector is more complicated.
We address three types of features, which are explained as
follows. (i) Classification features include information such as
the hospital name, department, title, or partner. Such features
must be encoded. For example, there are ci possible values
of doctor titles in total. Then, the title is represented as
a p-dimensional vector, with each dimension representing a
specific doctor title. Each specific doctor should only have one
title at a time. Thus, there is only one value in the vector set
to 1, with all of the others being set to 0. Thus, if there are p
different classification features, then there should be

∑p
i=1 ci

dimensions in the feature vector. (ii) Numeric features include
information such as the number of consultation options, the
number of ’likes’ from partners, the number of followers, and
the number of fans in a doctor’s social media. The value of
numeric features can be directly represented in the feature
vector. If there are q different numeric features, then there
should be a q-dimensional vector. (iii) Textual features include
resumes and introductions. In this paper, we employ the bag of
words model to extract such features. Each word is represented
as a dimension. In Chinese, we obtain r different words
following word segmentation. The resume of each doctor is
represented as an r-dimensional vector. For each dimension,
if a word appears in the doctor’s resume, then the value of the
corresponding dimension is set to the number of times that
the word appeared. Otherwise, the value of the corresponding
dimension is set to 0. Following the above process, each doctor
has a corresponding m =

∑p
i=1 ci+ q+ r dimensional vector.

The feature vectors of n doctors can be merged into an n×m
matrix X = [x1, . . . , xn]

T . The label vectors of n doctors can
be merged into an n× d matrix Y = [y1, . . . , yn]

T . Then, the
proposed multi-label classification algorithms can be used to
train and test the models.

IV. EXPERIMENTS

A. Experiment Design
In this paper, the experimental data come from some bench-

mark datasets, as shown in Table II. Dataset cal500 describes
500 popular western musical tracks with a large number of
human-generated musical annotations. Each annotation for
a certain song has a vocabulary with 174 tags inside [19].
Dataset corel5k consists of photo CD (PCD) format images.
Its vocabulary has a total of 371 words. There are four or
five keywords for every image [20]. delicious provides the
information of a webpage in text format and their tags, which
are extracted from the social bookmarking service provider
del.icio.us [21]. Dataset ESPGame contains 100,000 images
extracted from the ESP Game with their English labels [22].
To accelerate the data training process, the subset that we use
is randomly selected from the dataset ESPGame, and the tags
that occur at least twice in the subset are retained. We use a
905-D feature vector to represent an instance in ESPGame.
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TABLE II
DATA SUMMARY FOR THE EXPERIMENTS

data sets #samples #features #labels

cal500 502 68 174
corel5k 5000 499 374
delicious 16150 500 983
ESPGame 5000 905 1943

In addition, we use a doctor dataset for the label predic-
tion experiment. The dataset consists of 1, 132 gynecologists
in Beijing, accounting for almost all of the gynecologists
in Beijing. Because there is no ground truth, we used the
method of pooled relevance[23] judgments together with hu-
man judgments. To truly evaluate the quality of the label
prediction, we consulted a group of senior doctors from
gynecologist associations and women’s hospitals, as well as
medical representatives from pharmaceutical companies. The
human judgments of the labels were primarily conducted to
evaluate the professional activities and reputation of the doctor.
Following this evaluation, each doctor was assigned a set of
labels.

We compared our two methods with several baselines. In
this paper, we selected some of the latest relevant algorithms,
such as ML-CSSP [24], PLST [25], and CPLST [26], as the
baseline algorithms. All of these methods were implemented
as a classifier in python with linear regression. We present the
case of k = 0.1d as the number of labels because the value
of k has little impact on the performance of these methods.
However, we do provide the results for varying values of k
for cal500).

We employed RMSE [27] and AUPRC [28] as measures
for the performance evaluation. The squared RMSE is propor-

tional to the commonly used Hamming loss 1
nd

∥∥∥Y − Ŷ
∥∥∥2. We

performed 10-fold and cross-validation to obtain these metrics.

RMSE =
1√
n

∥∥∥Ŷ − Y
∥∥∥
F

. (7)

Prec =

∑
i TPi∑

i TPi +
∑

i FPi
, Rec =

∑
i TPi∑

i TPi +
∑

i FNi
.

(8)

Fig. 2. Variation of testing RMSE on cal500 by selecting different numbers
of labels

TABLE V
COMPARISON OF SAMPLING TRIALS FOR DIFFERENT METHODS.

data sets cal500 corel5k delicious ESPGame

CBS 17± 0[1] 37± 0[1] 98± 0[1] 194± 0[1]
FBS 19± 3[2] 51± 10[2] 129± 7[2] 307± 20[2]
ML-CSSP 19± 2[2] 57± 7[3] 138± 7[3] 310± 19[2]

TABLE VI
COMPARISON OF ENCODING TIMES FOR DIFFERENT METHODS.

data sets cal500 corel5k delicious ESPGame

CBS 0.08[3] 0.31[2] 7.32[2] 54.74[5]
FBS 0.01[1] 0.01[1] 0.07[1] 0.17[1]
ML-CSSP 0.04[2] 0.56[3] 9.65[3] 17.68[3]
PLST 0.03[2] 0.58[3] 9.62[3] 15.62[2]
CPLST 0.03[2] 3.52[4] 46.78[4] 23.92[4]

B. Accuracy of the Proposed Methods
We present the performance of the five methods (our two

proposed methods, ML-CSSP, PLST, and CPLST) on several
datasets using the RMSE in Table III. We use the pairwise
t-test to obtain the performance with 95% confidence. Our
proposed CBS method outperforms the other methods on three
of the four datasets, and FBS ties with CBS for two of
these datasets. Only the delicious dataset exhibits a slightly
higher performance using the PLST methods. In addition,
the variation of testing RMSE by selecting different numbers
of labels is shown in Figure 2 for cal500. The AUPRC
results are presented in Table IV. Our CBS and FBS methods
both outperform the other methods on one dataset. CPLST
outperforms the other methods on the other two datasets.

C. Sampling Trials and Encoding Time
Table V shows the numbers of sampling trials for each of

the five methods. CBS has the lowest number of sampling
trials for all of the datasets. ML-CSSP and FBS use slightly
more trials, and their numbers of trials are even far from
their bounds of Ω(n log d

d−k ) and O(k log k). Overall, FBS
has fewer sampling trials than ML-CSSP. PLST and CPLST
do not use a sampling process.

Table VI shows the encoding times of the five methods
for several datasets. Our FBS method achieves a significantly
higher encoding efficiency than the other methods. Compared
to ML-CSSP, CBS requires a longer total encoding time, and
the reason can be traced back to our embedding approach,
which results in high-dimensional embedding vectors that slow
the K-means process and leads to the decrease in efficiency.
This is particularly evident for the largest dataset. However,
this can be overcome by using other techniques to embed
the labels into low-dimensional vectors and thereby accelerate
the clustering process. Due to the SVD operation on a more
complicated matrix, CPLST has the lowest efficiency among
the five methods.

D. Comparison Results
Our FBS method uses a different strategy than the base-

line method of ML-CSSP for calculating the label sampling
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TABLE III
RMSE COMPARISON FOR DIFFERENT METHODS.

data sets cal500 corel5k delicious ESPGame

CBS 4.94± 0.09[1] 1.89± 0.02[1] 4.35± 0.02[2] 2.38± 0.10[1]
FBS 4.94± 0.09[1] 1.90± 0.02[1] 4.34± 0.02[2] 2.49± 0.12[2]
ML-CSSP 4.95± 0.10[2] 1.92± 0.03[2] 4.38± 0.03[3] 2.50± 0.13[2]
PLST 4.97± 0.10[3] 1.91± 0.02[2] 4.26± 0.03[1] 2.52± 0.12[3]
CPLST 5.01± 0.12[4] 1.92± 0.02[2] 4.25± 0.03[1] 2.57± 0.15[4]

TABLE IV
AUPRC COMPARISON FOR DIFFERENT METHODS.

data sets cal500 corel5k delicious ESPGame

CBS 0.441± 0.03[1] 0.075± 0.01[5] 0.285± 0.02[3] 0.033± 0.003[4]
FBS 0.438± 0.03[2] 0.091± 0.01[3] 0.282± 0.03[5] 0.067± 0.005[1]
ML-CSSP 0.437± 0.02[2] 0.088± 0.005[4] 0.283± 0.01[4] 0.061± 0.003[3]
PLST 0.439± 0.03[2] 0.098± 0.005[2] 0.301± 0.02[2] 0.066± 0.005[1]
CPLST 0.426± 0.04[3] 0.101± 0.01[1] 0.310± 0.02[1] 0.063± 0.003[2]

Fig. 3. KL-divergence comparison for four datasets

probability. The performance of FBS is comparable to that of
ML-CSSP in terms of RMSE and AUPRC.

In this section, the KL-divergence is employed to measure
the similarity between FBS and ML-CSSP:

DKL(p∥q) =
∑
i

p(i) log
p(i)

q(i)
, (9)

where p and q denote the distribution. Figure 3 shows that the
KL-divergence is low for all four datasets.

E. Doctor Label Prediction

In this section, we use a dataset of 1, 132 gynecologists in
Beijing. There are 103 different labels determined by experts.
The basic information and the resumes of the doctors are
included in the dataset. All of the classification experiments
are cross-validated 5 times. As much as 80% of the data is
used for training, and the remainder is used for prediction.
The average values of the results are adopted as the prediction
results. We use AUPRC to evaluate the performance.

Figure 4 compares the prediction performance of our two
methods with the baseline methods on the doctor dataset. All
of the methods use a linear regression classifier. To clearly
demonstrate the performance variation, we selected 0.05d,
0.1d, 0.2d, and 0.4d classifiers, as shown in Figure 4. We also

include the performance of BR with d classifiers for compar-
ison. Figure 4 shows that our CBS and FBS methods achieve
the best performance with most of the classifiers (except the
lower performance of CBS with the 0.4d classifier). ML-CSSP
is less accurate than our methods. BR uses the largest number
(d) of classifiers, but its performance is less accurate than
that of our methods and ML-CSSP with 0.1d classifiers. The
performance of PLST and CPLST with 0.1d classifiers is less
accurate than that of BR with d classifiers, but their training
and prediction performance is better than that of BR. The
results show that there is a correlation between labels in multi-
label classification. Thus, a label dimensionality reduction-
based multi-classification method can improve the efficiency
of training and predicting while increasing prediction accuracy.

Fig. 4. AUPRC with respect to different numbers of classifiers on doctor
dataset

F. System Application

To verify our proposed methods, we developed a doctor rec-
ommendation system. Our system produces recommendations
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for pharmaceutical companies and patients, and its web-based
front-end enables content analysis and recommendations for
users. Figure 5 shows screenshots of the web application and
the steps involved in doctor recommendation.

Figure 5a shows the front page of the web application that
allows for quick retrieval and filtering in terms of condition
classification. The query input is listed on the top of the screen.
We can enter either the name of a condition or a doctor
as a query. The classification of conditions is listed in the
bottom-left corner of the screen, and more filtering options
are listed in the bottom-right corner. The classification of
conditions is based on the international statistical classification
of diseases and related health problems, 10th revision (ICD-
10). We adjusted the complex classification to a simplified
version for easy understanding and deployment.

After users submit a query, the system can produce a list
of recommended doctors, as shown in Figure 5b. The result is
obtained using the methods shown in this paper. Each result
is designed to mimic the business card of a doctor. Clicking
on the card invokes the profile screen, as shown in Figure 5c.
This page shows the detailed information of that particular
doctor, including the title, specialty, social network informa-
tion, and patient comments. Our system provides secondary
doctor recommendations based on the network of doctors,
as shown in Figure 5d. These secondary results consist of
doctors who are related to the recommended doctor. Such a
relationship includes colleague status, academic collaboration
or following, and teacher-student relationships. The secondary
recommendation of doctors is also produced by our proposed
methods.

Figure 5e presents the data analysis screen designed for
pharmaceutical companies. Our system offers a range of data
analysis reports to identify, profile, update, track, and measure
the impacts of doctors. Because the traditional approach that
relies on traditional literature searches and doctor surveys
is not satisfactory to potential patients, our data analysis
involving ready-to-use actionable insights and periodically
updated information provides a robust platform for tracking
and reporting the client’s engagement. A report of the findings
is also presented in PowerPoint format, highlighting all of the
major results.

Our system provides a value-added service (as shown in
Figure 5f) for users and can be deployed as a mobile app
(as shown in Figure 5g). These services are designed to
allow individual users to set doctor appointments, purchase
medicine, and more. With the app on a smartphone, users
can access the system and benefit from the various services
whenever and wherever they want.

V. CONCLUSION

In this paper, two multi-label classification methods have
been proposed. Compared with the existing label selection
methods (CSSP), our methods do not require SVD. Based on
the proposed methods, we propose a method to predict doctor
expertise labels. This labeling process is then employed in our
doctor recommendation system. We present our experimental
results for label space dimensionality reduction with large-

scale real-world datasets. The proposed methods achieve state-
of-the-art performance compared with baselines. Our proposed
method and doctor recommendation system provide an effi-
cient value-added service to the end-user.
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and E. Hüllermeier, “Dependent binary relevance models for multi-label
classification,” Pattern Recognition, vol. 47, no. 3, pp. 1494–1508, 2014.

[12] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical
features for scene labeling,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 35, no. 8, pp. 1915–1929, 2013.

[13] B. Wei, M. Yang, Y. Shen, R. Rana, C. T. Chou, and W. Hu,
“Real-time classification via sparse representation in acoustic sensor
networks,” in Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, ser. SenSys ’13. New York, NY,
USA: ACM, 2013, pp. 21:1–21:14. [Online]. Available: http:
//doi.acm.org/10.1145/2517351.2517357

[14] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning al-
gorithms,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 26, no. 8, pp. 1819–1837, 2014.

[15] E. L. Allwein, R. E. Schapire, and Y. Singer, “Reducing multiclass
to binary: A unifying approach for margin classifiers,” The Journal of
Machine Learning Research, vol. 1, pp. 113–141, 2001.

[16] A. J. Elliot and M. A. Church, “A hierarchical model of approach and
avoidance achievement motivation.” Journal of personality and social
psychology, vol. 72, no. 1, p. 218, 1997.

[17] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields,
R. Taylor, M. Towler, and J. v. d. Streek, “Mercury: visualization
and analysis of crystal structures,” Journal of Applied Crystallography,
vol. 39, no. 3, pp. 453–457, 2006.

[18] C. Sun, C. Zhou, B. Jin, and F. C. Lau, “Efficient methods for multi-label
classification,” in Advances in Knowledge Discovery and Data Mining.
Springer, 2015, pp. 164–175.

[19] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff,
“Semantic annotation, indexing, and retrieval,” Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 2, no. 1, pp. 49–79,
2004.

[20] P. Duygulu, K. Barnard, J. F. de Freitas, and D. A. Forsyth, “Object
recognition as machine translation: Learning a lexicon for a fixed image
vocabulary,” in Computer VisionECCV 2002. Springer, 2002, pp. 97–
112.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

http://www.who.int/classifications/icd/en/
http://www.who.int/classifications/icd/en/
http://doi.acm.org/10.1145/2517351.2517357
http://doi.acm.org/10.1145/2517351.2517357


2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2578638, IEEE Access

IEEE ACCESS 8

a. Web Entrancebb. Recommendation Listb d

f. Value-added Services

d. Optional Resultsd l l

e. Big Data Analysisl

g. APP

c. Doctor Profileff l

Fig. 5. Screenshots of our web application.

[21] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and efficient
multilabel classification in domains with large number of labels,” in
Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data
(MMD08), 2008, pp. 30–44.

[22] L. Von Ahn, “Games with a purpose,” Computer, vol. 39, no. 6, pp.
92–94, 2006.

[23] C. Buckley and E. M. Voorhees, “Retrieval evaluation with incomplete
information,” in Proceedings of the 27th annual international ACM
SIGIR conference on Research and development in information retrieval.
ACM, 2004, pp. 25–32.

[24] W. Bi and J. Kwok, “Efficient multi-label classification with many
labels,” in Proceedings of the 30th International Conference on Machine
Learning (ICML-13), 2013, pp. 405–413.

[25] F. Tai and H.-T. Lin, “Multilabel classification with principal label space
transformation,” Neural Computation, vol. 24, no. 9, pp. 2508–2542,
2012.

[26] Y.-N. Chen and H.-T. Lin, “Feature-aware label space dimension reduc-
tion for multi-label classification,” in Advances in Neural Information
Processing Systems, 2012, pp. 1529–1537.

[27] T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean
absolute error (mae)?–arguments against avoiding rmse in the literature,”
Geoscientific Model Development, vol. 7, no. 3, pp. 1247–1250, 2014.

[28] B. Ozenne, F. Subtil, and D. Maucort-Boulch, “The precision–recall
curve overcame the optimism of the receiver operating characteristic
curve in rare diseases,” Journal of clinical epidemiology, vol. 68, no. 8,
pp. 855–859, 2015.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html


