
Survey on Fault-Tolerance-Aware
Scheduling in Cloud Computing

Chesta Kathpal and Ritu Garg

Abstract Nowadays, to a large extent, clients look at cloud not just as service
provider but also as partner. So, they want cloud to deliver timely and accurate
services. Cloud nodes must be reliable in order to provide quality of services as per
the customer requirements. Further, physical size of high-performance computing
environment is also increasing day by day. Larger the system, more failures are
likely to occur that eventually results in the poor reliability of the system which is
highly undesirable for the time-critical applications. To deal with the reliability,
service provider must know the failure characteristics of the cloud computing nodes
in order to better handle the failure using fault-tolerance-aware techniques at the
time of scheduling the application tasks. Thus, in this paper, we presented the
survey of fault-tolerance-aware techniques which are classified as proactive and
reactive fault tolerance. This survey provides the foundation for the researchers to
work in the area of fault-tolerance-aware scheduling in order to have better
scheduling decisions with the aim to enhance the performance and reliability of
application execution.

Keywords Reliability ⋅ Fault tolerance ⋅ Virtualization

1 Introduction

Cloud is an Internet-based computing paradigm that provides basic services as
Infrastructure as a Service (IaaS), Software as a Service (SaaS), Platform as a
Service (PaaS) [1]. Different types of cloud providers, i.e., public, private, or
hybrids, are responsible for providing above services to user. Nowadays, usage of

C. Kathpal (✉) ⋅ R. Garg
Department of Computer Engineering, National Institute of Technology, Kurukshetra,
Kurukshetra, Haryana, India
e-mail: Chestakathpal93@gmail.com

R. Garg
e-mail: ritu.59@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
S. Fong et al. (eds.), Information and Communication Technology
for Competitive Strategies, Lecture Notes in Networks and Systems 40,
https://doi.org/10.1007/978-981-13-0586-3_28

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0586-3_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0586-3_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0586-3_28&domain=pdf

cloud computing is increasing because of its enormous features such as sharing of
resources, on-demand resource provisioning and virtualization. As users need to
pay for required resources on basis of pay as you go model, cloud service provider
must provide reliable services as per the QoS [2] requirements of the users.
Although cloud computing makes the computing very reliable, dynamic, fast, and
easy, it is still facing numerous challenges due to its large-scale and complex
architecture. Reliability is the key challenge that needs careful attention.

Reliability and performance of applications in cloud environment depend upon
many factors like scheduling of application tasks on resources and occurrence of
failure of resources. Aim of scheduling algorithm is to assign the tasks to the
available resources with the objective to maximize the execution performance and
reliability of an application. To achieve these goals, numerous research works have
been carried out in the past on scheduling problems. As we know, scheduling
problem is NP-hard in nature, different approaches like heuristics, meta-heuristics,
or approximations are the possible solutions. Because of failure of resources, reli-
ability of application execution is decreasing that affects the financial losses to both
service providers and users. For performance improvement, it is essential to max-
imize the reliability of a system. For the same purpose, understanding of foundering
and rectifying attributes of cloud resources is very crucial. Garraghan et al. [3] put
efforts in knowing the failure characteristics of wide-scale cloud applications. They
investigated on the Google Cloud Trace Log for measuring the failure character-
istics of cloud servers and tasks, comprising more than 12,500 servers that took
29 days to operate. They observed that the failures’ rate of application tasks follow
different theoretical distribution like Lognormal or Weibull. Further, analysis on
distributed systems [4–6] indicates that the computing resources have Poisson
failure distribution.

2 Fault-Tolerance-Aware Techniques in Cloud

To improve the reliability of application execution, failures [7] can be handled
either in proactive manner or reactive manner. In case of proactive fault tolerance, it
is handled before the occurrence of fault.

2.1 Proactive Fault Tolerance

In cloud computing environment, to minimize the effect of failure in proactive
manner, tasks are scheduled to reliable virtual machines according to prior failure
information. Various reliability-aware scheduling techniques are proposed in lit-
erature for scheduling the tasks in order to maximize the reliability of application
execution as shown in the Fig. 1.

276 C. Kathpal and R. Garg

Predictive-Based Reliability-Aware Techniques.

Historic Log Basic. In Ref. [5], authors proposed the scheduling of tasks consid-
ering reliability of processors and communication links under the Poisson failure
distribution [8] of networks. In Ref. [9], proactive approach is proposed for
resource reliability considering three parameters: CPU (MIPS), memory (RAM),
and bandwidth (BW). The system model finds out the reliability of each virtual
machine and then assigns the cloudlets to best reliable VM using prior information
like available memory, available MIPS ratio, and available bandwidth ratio.Weibull
failure distribution is considered in Ref. [10] for maximizing the reliability by
scheduling the tasks to reliable VM.

Monte Carlo Estimation Technique. Monte Carlo Failure Estimation algorithm is
developed to investigate the future patterns for scheduling the tasks by estimating
the failure of virtual machines using Weibull failure distribution in cloud. In Ref.
[11], to schedule the tasks to various virtual machines, Failure-Aware Resource
Scheduling (FARS) algorithm is proposed in which the reliability is taken into

Criteria
based

Fault Tolerance
aware Scheduling

Proactive
Fault Tolerance

Reactive
Fault Tolerance

Predictive
based

Strategy
based

Checkpointing
based

Replication
based

Historic log

Monte-Carlo
Estimation

Heuristic
approach

Meta-Heuristic
approach
Single
 Objective

Multi
Objective

Full Checkpointing

Incremental Checkpointing

Uncoordinated & Coordinated

User- level Checkpointing

Active Replication

Passive Replication

Primary/ back-up

Fig. 1 Taxonomy of fault tolerance aware scheduling techniques

Survey on Fault-Tolerance-Aware Scheduling in Cloud Computing 277

consideration to map the tasks in workflow application. This mechanism reduces
the schedule length of FARS because more reliable virtual machines are always
selected for execution.

Mapping Strategy-based Reliability-Aware Techniques. As the problem of
scheduling in cloud belongs to the class of NP-Hard problems, heuristic and
meta-heuristics are the preferred choices. The heuristic-based approaches [10] are
problem specific and may not find near-optimal solution. Meta-heuristic approaches
are used to handle problem of local optima.

Heuristic Approach. In Ref [12], a heuristic algorithm is developed to achieve one
objective, i.e., maximizing reliability under the constraint of another objective, i.e.,
minimizing end-to-end delay (EED) for distributed computing systems. The relia-
bility is maximized under time bound constraint for mapping the task to processor.
Mapping scheme is different from previous centralized mapping scheme where only
one central server collects all the information related to networks and decides about
mapping, but in this approach all the distributed severs participate in taking the
decision of mapping to achieve scalability while keeping the status of failure rates.
In Ref. [4], a simulated annealing algorithm is developed for scheduling the tasks to
processors to maximize the system reliability and evaluated its performance in
comparison with branch-and-bound technique with satisfactory results.

Meta-Heuristic Approach. In Ref. [5], authors developed a scheduling algorithm
using meta-heuristic approach along with the maximization of the reliability.
NSGA-II approach is used with ENLU technique to avoid applying the
non-domination sorting from scratch, and ENLU helps in sorting the solution by
taking the advantages of existing knowledge of current population for scheduling
the applications on system. Also maintain the energy consumption and reliability of
system. The main advantage of the proposed algorithm is that if we scale up then it
improves the performance of the system.

Criteria-Based Reliability-Aware Technique.

Single Objective. In Ref. [10], hill-climbing heuristic approach is applied within
particle swarm optimization (PSO) in order to maximize the system reliability. This
algorithm outperforms the genetic algorithm (GA) because particles can commu-
nicate with each other which is the main feature of PSO.

Multiobjective. Various multiobjective algorithms [13, 14] have been developed
based on multiple QoS parameters that include reliability, energy consumption,
makespan, deadline, scalability. In Ref. [15], the bi-objective genetic algorithm
(BOGA) is developed for heterogeneous systems to minimize the energy con-
sumption and maximize the reliability of system by executing the tasks concur-
rently as a combinatorial optimization problem. In Ref. [16], a double strategy was
developed to minimize the Euclidean distance between the generated solutions to a
set of user-specified constraints for four-objective problem, i.e., makespan,
economic cost, energy consumption, and reliability optimization. In Ref. [17],

278 C. Kathpal and R. Garg

authors developed a scheduling algorithm using meta-heuristic approach to opti-
mize the three conflicting objectives, i.e., minimization of energy consumption and
makespan of tasks along with the maximization of the reliability.

2.2 Reactive Fault Tolerance

Reactive fault tolerance policies handle the effect of failures on application exe-
cution when the failure effectively occurs. Reactive fault tolerance policies reduce
the effect of failures on application execution when the failure effectively occurs.
Various reactive techniques are proposed in the literature for handling the failure of
application tasks.

Checkpointing-Based Fault Tolerance Techniques. Checkpointing is a mecha-
nism that records the system state periodically to establish recovery points. At the
time of failure, computation restarts from the last saving state. For example, an
application needs to access 100 files to complete the execution, and after reading of
99 files, there is some failure and all the computation gets lost. Just to avoid the
restarting of application from the scratch, restart it from last saving state. Check-
pointing is the most popular technique for recovery of unreliable systems, but some
questions also arise: (i) How to optimize the number of checkpoints for each task?
(ii) Since the task failure rate is not fixed so how to dynamically tune the optimal
solution with the checkpoint/restart mechanism at run-time? (iii) How to know the
size of checkpointing interval, etc.? In checkpointing mechanism, storage of
snapshot of system state can be done locally or globally. On storing, checkpointing
in shared disk achieves higher reliability and degrades the implicit process
migration; in contrast, storing process status in local disk increases the cost of
process migration. Different kinds of checkpointing techniques have been intro-
duced by researchers like:

Full Checkpointing. It is a mechanism in which complete state of the process is
saved to some media after a fixed interval of time. It should be considered that
checkpoints should be applied after optimal interval so that it does not cost much
overhead that result in maximization of application execution time. In Ref. [18],
author developed an algorithm for optimal checkpointing by efficiently selecting
checkpointing storage and recovery server.

Incremental Checkpointing. This mechanism helps in reducing the checkpoint over-
head by saving those pages in which there have been any changes instead of saving the
whole process. In the scheme [19], firstly, save the state of system as full checkpoint,
and after that, some mechanism is applied to update the pages which have been
modified since the last checkpoint. In Ref. [20], they develop an approach of smart
checkpointing based on read-only and read–write part in VM image. During the time of
first checkpoint, it saves the state of read-only part only once while rest of checkpoints
will save modifications for read–write part. Checkpoints are logged into Hadoop

Survey on Fault-Tolerance-Aware Scheduling in Cloud Computing 279

Distributed File System and replication is made to each node of the service provider.
This mechanism is efficient when several tasks are recovering concurrently rather than
one task recovery because checkpoints can concurrently recover from different nodes.

Uncoordinated Checkpointing and Coordinated Checkpointing. Each process takes
its checkpoint independently; there is no synchronization among the processes to
form a consistent global checkpoint. Hence, there is a main drawback called the
domino effect. Coordinated checkpointing [21] is an approach for fault tolerance in
distributed applications because all the processes come to an agreement to syn-
chronize their checkpoints to make system consistent. This consistent set can be
used to limit the rollback.

User-Level Checkpointing. The application programmer identifies program points
at which state, status of task must be captured from within the application. In
user-level checkpointing, explicit linking is required with the user-level library
which is responsible for recovery from failure. In Ref. [22], the algorithm user
specifies the different reliability requirements of each task. Each task synchronously
checkpointing all its VMs using coordinated checkpointing scheme. One advantage
of the algorithms is that it provides equal reliability to multiple users at same time
using peer-to-peer checkpointing.

Replication-Based Fault Tolerance Techniques. As compared to failure of
multiple resources simultaneously, a single resource is much more vulnerable to
failure. Replication works as a guard against single point of failure and widely used
as a fault-tolerant technique. The primary concern here is to decide the number of
replicas. In replication, as the number of replicas increases, the fault coverage
increases due to which management of backup systems is very costly. Various types
of replication approaches have been studied in cloud computing environment, i.e.,
job replication, component replication, and data replication.

Active Replication. Each job is replicated on several processors and all the
redundant processors are invoked simultaneously and the job will succeed if there is
at least one processor which executed the job completely. This technique handles
the f arbitrary faults by assigning the tasks to 3f + 1 replica. In Ref. [23], an
algorithm is developed for a Byzantine fault tolerance framework for a reliable
system. In BFTCloud, a BFT group is chosen which consists of one primary and 3k
replications of a task and response to current request will be committed or not
committed are judge by cloud module. In case of ‘k’ faulty nodes in BFT group,
execution of tasks will be done again on newly selected primary node and replicas.
After identification of k faults, faulty resources will be substituted with other
resources. BFTCloud achieves higher throughput where probability of failure of
BFT group members is very low. In Ref. [24], MaxRe algorithm is developed for
handling the fault during execution. The number of replicas of application tasks
depends upon execution time.

Passive Replication. Once there is a crash in primary processor, the task will be
scheduled on backup processor for completing their execution. In Ref. [25],

280 C. Kathpal and R. Garg

algorithm belongs to the category of rescheduling strategy. Compared to MaxRe
[24] algorithm, the number of replicas depends upon number of failures but in
former depends upon execution time. Problem with the algorithm is that it is not
suitable for multiple failures and costly also, because once the failure is detected
multiple replicas of tasks are executed. In Ref. [26], algorithm is developed using
double strategy. The backup copies are overlapped with the backup copy of their
precedence task on the same processors to further reduce schedule length and
eventually maximize the performance.

Checkpointing along with replication. In Ref. [27], algorithm dynamically
selects the most suitable reactive fault tolerance technique for task execution. The
proposed algorithm adaptively determines the length of checkpoint interval and
number of replicas of tasks based on previous history. In Ref. [28], an algorithm
Replication-based scheduling for Maximizing System Reliability (RMSR) is sug-
gested while considering the task communication. If the number of tasks increases,
reliability decreases, but the algorithm RMSR increases the reliability by dynami-
cally replicating the tasks according to threshold value (λ) determined by the user.

Primary-backup replication. In Ref. [29], an algorithm FASTER is developed for
real-time applications in virtualized cloud. The author has extended the
primary-backup (PB)-based scheduling by incorporating the cloud features like
elasticity and virtualization. In Ref. [30], algorithm considers response time and
replication cost for dependent tasks and independent tasks in the scheduling process
with primary-backup approach. For dependent tasks, backup copies are scheduled
with consideration of precedence tasks, and for independent tasks, backup copies
can be scheduled with any backup copy of another task on same processor with
minimum replication time and cost. In Ref. [6], the given algorithm first selects the
number of host servers for placing the replicas of application and then selects the
VM by considering the proximity of primary VM and backup VM, and if there is
requirement of recovery, then selects the best virtual machine for completion of task
as backup VM in the same subnet of hosts. The major aim is to moderate the
consumption of network resources by using fat-tree network structure when there is
a failure in primary virtual machine.

3 Conclusion

Among all the major challenges in cloud computing, fault tolerance is significant
issue. Fault tolerance deals with errors and faults occurred in the system by
ignoring, tolerating, and fixing. This paper identified various types of
fault-tolerance-aware scheduling techniques. As we know, scheduling problem is
NP-hard in nature, so different approaches like heuristics, meta-heuristics, or
approximations are the possible solutions that are discussed in the survey. Nowa-
days, there are several mechanisms for fault tolerance but still there are number of
challenges which need to be considered.

Survey on Fault-Tolerance-Aware Scheduling in Cloud Computing 281

References

1. Sadiku, M.N., Musa, S.M., Momoh, O.D.: Cloud computing: opportunities and challenges.
IEEE Potent. 33(1), 34–36 (2014)

2. Patel, P., Ranabahu, A.H., Sheth, A.P.: Service Level Agreement in Cloud Computing (2009)
3. Garraghan, P., Townend, P., Xu, J.: An empirical failure-analysis of a large-scale cloud

computing environment. In: 2014 IEEE 15th International Symposium on High-Assurance
Systems Engineering (HASE), pp. 113–120. IEEE (2014)

4. Attiya, G., Hamam, Y.: Task allocation for maximizing reliability of distributed systems: a
simulated annealing approach. J. Parallel Distrib. Comput. 66(10), 1259–1266 (2006)

5. Rehani, N., Garg, R.: Meta-heuristic based reliable and green workflow scheduling in cloud
computing. Int. J. Syst. Assur. Eng. Manag. 1–10

6. Zhou, A., Wang, S., Cheng, B., Zheng, Z., Yang, F., Chang, R., Buyya, R.: Cloud service
reliability enhancement via virtual machine placement optimization. IEEE Trans. Serv.
Comput. (2016)

7. Heddaya, A., Helal, A.: Reliability, Availability, Dependability and Performability: A
User-Centered View. Boston University Computer Science Department (1997)

8. Qin, X., Jiang, H.: A dynamic and reliability-driven scheduling algorithm for parallel
real-time jobs executing on heterogeneous clusters. J. Parallel Distrib. Comput. 65(8), 885–
900 (2005)

9. Charity, T.J., Hua, G.C.: Resource reliability using fault tolerance in cloud computing. In:
2016 2nd International Conference on Next Generation Computing Technologies (NGCT),
pp. 65–71. IEEE (2016)

10. Zhou, A., Wang, S., Cheng, B., Zheng, Z., Yang, F., Chang, R., Buyya, R.: Cloud service
reliability enhancement via virtual machine placement optimization. IEEE Trans. Serv. Comput.

11. Rehani, N., Garg, R.: Reliability-aware workflow scheduling using monte carlo failure
estimation in cloud. In: Proceedings of International Conference on Communication and
Networks, pp. 139–153. Springer, Singapore (2017)

12. Cao, F., Zhu, M.M.: Distributed workflow mapping algorithm for maximized reliability under
end-to-end delay constraint. J. Supercomput. 66(3), 1462–1488 (2013)

13. Dongarra, J.J., Jeannot, E., Saule, E., Shi, Z.: Bi-objective scheduling algorithms for optimizing
makespan and reliability on heterogeneous systems. In: Proceedings of the nineteenth annual
ACM symposium on Parallel algorithms and architectures, pp. 280–288. ACM (2007)

14. Wang, X., Yeo, C.S., Buyya, R., Su, J.: Optimizing the makespan and reliability for workflow
applications with reputation and a look-ahead genetic algorithm. Fut. Generat. Comput. Syst.
27(8), 1124–1134 (2011)

15. Zhang, L., Li, K., Li, C., Li, K.: Bi-objective workflow scheduling of the energy consumption
and reliability in heterogeneous computing systems. Inf. Sci. 379, 241–256 (2017)

16. Fard, H.M., Prodan, R., Barrionuevo, J.J.D., Fahringer, T.: A multi-objective approach for
workflow scheduling in heterogeneous environments. In: Proceedings of the 2012 12th IEEE/
ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012),
pp. 300–309. IEEE Computer Society (2012)

17. Zhang, L., Li, K., Xu, Y., Mei, J., Zhang, F., & Li, K.: Maximizing reliability with energy
conservation for parallel task scheduling in a heterogeneous cluster. Inf. Sci. 319, 113–131
(2015)

18. Zhou, A., Sun, Q., Li, J.: Enhancing reliability via checkpointing in cloud computing systems.
China Commun. 14(7), 1–10 (2017)

19. Paun, M., Naksinehaboon, N., Nassar, R., Leangsuksun, C., Scott, S.L., Taerat, N.:
Incremental checkpoint schemes for Weibull failure distribution. Int. J. Foundat. Comput. Sci.
21(03), 329–344 (2010)

20. Goiri, Í., Julia, F., Guitart, J., Torres, J.: Checkpoint-based fault-tolerant infrastructure for
virtualized service providers. In: 2010 IEEE Network Operations and Management
Symposium (NOMS), pp. 455–462. IEEE (2010)

282 C. Kathpal and R. Garg

21. Cao, G., Singhal, M.: On coordinated checkpointing in distributed systems. IEEE Trans.
Parallel Distrib. Syst. 9(12), 1213–1225 (1998)

22. Zhao, J., Xiang, Y., Lan, T., Huang, H.H., Subramanian, S.: Elastic reliability optimization
through peer-to-peer checkpointing in cloud computing. IEEE Trans. Parallel Distrib. Syst. 28
(2), 491–502 (2017)

23. Zhang, Y., Zheng, Z., Lyu, M.R.: BFTCloud: a byzantine fault tolerance framework for
voluntary-resource cloud computing. In 2011 IEEE International Conference on Cloud
Computing (CLOUD), pp. 444–451. IEEE

24. Zhao, L., Ren, Y., Xiang, Y., Sakurai, K.: Fault-tolerant scheduling with dynamic number of
replicas in heterogeneous systems. In: 2010 12th IEEE International Conference on High
Performance Computing and Communications (HPCC), pp. 434–441. IEEE (2010)

25. Mei, J., Li, K., Zhou, X., Li, K.: Fault-tolerant dynamic rescheduling for heterogeneous
computing systems. J. Grid Comput. 13(4), 507–525 (2015)

26. Chen, C.Y.: Task scheduling for maximizing performance and reliability considering fault
recovery in heterogeneous distributed systems. IEEE Trans. Parallel Distrib. Syst. 27(2), 521–
532 (2016)

27. Amoon, M.: Adaptive framework for reliable cloud computing environment. IEEE Access 4,
9469–9478 (2016)

28. Wang, S., Li, K., Mei, J., Xiao, G., Li, K.: A Reliability-aware task scheduling algorithm
based on replication on heterogeneous computing systems. J. Grid Comput. 15(1), 23–39
(2017)

29. Zhu, X., Wang, J., Guo, H., Zhu, D., Yang, L.T., Liu, L.: Fault-tolerant scheduling for
real-time scientific workflows with elastic resource provisioning in virtualized clouds. IEEE
Trans. Parallel Distrib. Syst. 27(12), 3501–3517 (2016)

30. Zheng, Q., Veeravalli, B., Tham, C.K.: On the design of fault-tolerant scheduling strategies
using primary-backup approach for computational grids with low replication costs. IEEE
Trans. Comput. 58(3), 380–393 (2009)

Survey on Fault-Tolerance-Aware Scheduling in Cloud Computing 283

	28 Survey on Fault-Tolerance-Aware Scheduling in Cloud Computing
	Abstract
	1 Introduction
	2 Fault-Tolerance-Aware Techniques in Cloud
	2.1 Proactive Fault Tolerance
	2.2 Reactive Fault Tolerance

	3 Conclusion
	References

