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Highlights

 A photovoltaic/wind turbine/battery system is simulated and optimized in Tehran.
  The cost-reliability optimization is carried out by the GAPSO method. 
 Net present cost of the hybrid system is 300200 $ for 2% loss of power supply.
 The levelized cost of energy for hybrid unit is obtained as 0.502.
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12 Abstract

13 In this paper, a hybrid genetic algorithm with particle swarm optimization (GA-PSO) is applied 

14 for the optimal sizing of an off-grid house with photovoltaic panels, wind turbines, and battery. 

15 The GA-PSO is one of the most powerful single-objective optimization algorithms. In the other 

16 hand, the multi-objective PSO (MOPSO) can solve the optimization problems considering all 

17 objectives without transforming them. Minimizing the total present cost including initial cost, 

18 operation and maintenance cost, and replacement cost with satisfying the load demand is the main 

19 goal of this study. In this optimization problem, the considered reliability factor is a loss of power 

20 supply probability, which specifies the subtraction of the load power and generated power. The 

21 wind velocity, solar irradiance, and load demand are simulated in 12 months of a year by the 

22 HOMER software for a suburbs of Tehran. Then, the optimal size of PV and WT are obtained with 

23 both GA-PSO and MOPSO methods, and compared with the HOMER results. At last, the strengths 

24 and weaknesses of each method are explained. The results show that the proposed approach with 

25 0.502 of the levelized cost of energy for the PV/WT/BAT system has the best result through the 

26 compared methods.

27
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Nomenclature

𝐴 Wind turbine rotor swept area ( )𝑚2          𝑃𝐵𝐴𝑇(𝑡) Battery charge at t(kW)

𝐶 Power coefficient of wind turbine 𝑃𝑖𝑛 Power injected by PV and WT 
(kW)

c Constant weighting parameter 𝑃𝐿𝑜𝑎𝑑(𝑡) Load demand at t (kW)

𝐶𝐵𝐴𝑇 Per unit cost of battery ($) 𝑃𝑃𝑉 PV panel capacity (kW)

𝐶𝐼𝑁𝑉 Per unit cost of inverter ($) 𝑃𝑃𝑉(𝑡) PV power at t (kW)

𝐶𝑀,𝐵𝐴𝑇 Maintenance cost of batteries 
($/kWh)

𝑃𝑃𝑉 𝑟𝑎𝑡𝑒𝑑 PV rated power for G=1000 𝑤/𝑚2

𝐶𝑀,𝑃𝑉 Maintenance cost of PV panel 
($/kW)

𝑃𝑊𝑇 Wind turbine capacity (kW)

𝐶𝑀,𝑊𝑇 Maintenance cost of wind turbine 
($/kW)

𝑃𝑊𝑇(𝑡) Wind turbine power at t (kW)

𝐶𝑃𝑉 Per unit cost of PV panel ($/kW)  𝑃𝑊𝑇 𝑟𝑎𝑡𝑒𝑑 Wind turbine rated power

𝐶𝑊𝑇 Per unit cost of wind turbine ($/kW) 𝑃𝐹 Penalty factor

𝐶𝐼 Initial cost ($) R Random parameter

𝐶𝑀 Maintenance cost ($) 𝑇

TC

Life cycle of system

Terminal criterion 

𝐶𝑅 Replacement cost ($) 𝑉 Wind speed (m/s)

𝐶𝑇 Total cost V Particle speed vector

𝐸𝑡 Total energy generated by the 
system in one year

𝑉𝐶𝑖 Cut-in wind speed (m/s)

𝐺 solar radiation at the PV surface (𝑤/
)𝑚2

𝑉𝐶𝑜 Cut-out wind speed(m/s)

gbest Global best position W Weighting parameter

pbest

𝐻

Particle best position

Height (m)

X

𝜌

Particle position

Air density

𝐼𝑛𝑓𝑅 Inflation rate 𝛼 Hellman coefficient
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34 1. Introduction 

35

36 The technology development, population growth and increasing energy demand and consequently 

37 increasing the cost and greenhouse gas emissions, all resulted from fossil fuels, have led to more 

38 attention to renewable energy resources. The wind and solar energies are the most accessible and 

39 important renewable resources which can be integrated together to construct a hybrid energy 

40 system with higher quality and reliability than the single resources [1-3]. In fact, the wind and 

41 solar energies are the base resources in a hybrid energy system. The batteries energy storage, fuel 

42 cells (FC) and diesel generators can be applied to hybrid systems to increase the efficiency and 

43 remove the shortcomings.  In fact, when the wind speed or solar radiation decreases or a peak 

44 demand occurs, the existence of these storage units becomes essential [4, 5]. Hybrid energy 

𝐼𝑛𝑡𝑅 Interest rate 𝜎 Battery self-discharge rate

LPS

LPS𝑃

𝐿𝐶𝐸

𝑁𝐵𝐴𝑇

𝑁𝐼𝑁𝑉

𝑁𝑃𝑉

𝑁𝑓𝑎𝑖𝑙
𝑃𝑉

𝑁𝑊𝑇

Loss of power supply

Probability of loss of power supply

Levelized cost of energy ($/kWh)

Number of batteries

Number of inverters

Number of PV panels

Number of failed PV panels

Number of wind turbines

𝜂𝑚𝑝𝑝𝑡

𝜂𝑅𝐸𝐶

𝜂𝐵𝐴𝑇

    𝜂𝐶𝑂𝑁          

             𝜂𝐼𝑁𝑉

GA

EMS

PSO

PV module efficiency

Rectifier efficiency

Charge efficiency of battery system

Converter efficiency

 Inverter efficiency

genetic algorithm

Energy management system

Particle swarm optimization

𝑁𝑓𝑎𝑖𝑙
𝑊𝑇

Number of failed WT GA-PSO Genetic algorithm particle swarm 
optimization

   𝑁𝑃𝐶

OF

         𝑃𝐵𝐴𝑇(𝑡)

Net present cost

Objective function

Battery charge at t

MOPSO

WT

Multi-objective particle swarm 
optimization

Wind turbine 
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45 systems can operate both stand-alone and grid-connected, and also, a control unit can be added for 

46 connecting the hybrid system to the power generation circuit at any particular time.  The design 

47 optimizing and effective sizing of hybrid energy systems are essential to increase the performance 

48 and reliability, meet the external load demand, reduce the energy cost and net present cost (NPC), 

49 and minimize the greenhouse gas emissions [6]. Therefore, designing a hybrid energy system, 

50 which is economically and technically justified, requires the multi-objective optimization stages. 

51 In general, the sizing methodologies for the optimal designing of hybrid PV/WT generating 

52 systems can be divided into four categories including probabilistic, analytical, iterative, and hybrid 

53 methods [6]. The literature study indicates that these methods have been developed, as single-

54 objective and multi-objective, in the form of numerical, analytical and optimization means or 

55 through different commercial software.

56 The studies show that in different single objective problems the total cost is the most applied cost 

57 function. Yang et al. [7]  optimized the design variables (number of the PV modules, number of 

58 wind turbines, number of batteries, the PV module slope angle, and the wind turbine installation 

59 height) of a hybrid Solar/Wind/Battery system to achieve the desired loss of power supply 

60 probability (LPSP) with minimum annualized cost of system (ACS) concepts through the GA. 

61 Kornelakis and Marinakis [8] used PSO as a single objective optimization algorithm for optimizing 

62 different design parameters of PV grid-connected systems, such as the PV modules number, in 

63 order to achieve to the maximum net economic benefit during the period of the system usage. 

64 Khoury et al. [9] designed a PV/Battery system as a backup during the power outage times in a 

65 residential building and minimized the cost of the unit via the GA and PSO optimization 

66 algorithms. Maleki et al. [10] investigated different optimization algorithms in order to optimize 

67 the size of a PV/WT/FC  hybrid system for achieving the minimal total annual cost.  

68 Also, the literature survey shows that the HOMER program, for the use of optimization algorithms 

69 and the ability to analyze the sensitivity of stand-alone and grid-connected hybrid systems, is the 

70 most common software in this field. Kamel and Dahl [11] compared the economic potential and 

71 greenhouse gas emissions reduction of the use of a stand-alone hybrid Solar/Wind/Diesel generator 

72 case with an alone-diesel generator, using a hybrid optimization model in the HOMER software. 

73 After that, Bernal-Agustín et al. [12] investigated the Strength Pareto Evolutionary Algorithm 

74 using the HOMER program to the optimal design of a PV/WT/Diesel system for reducing the total 

75 cost and greenhouse gas emissions. Also Hafez and  Bhattacharya [13] investigated and compared 
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76 several cases containing a diesel-only, a fully renewable-based, a diesel renewable mixed, and an 

77 external grid-connected microgrid configuration by the HOMER software in terms of economy 

78 and emissions for optimizing the system design parameters and minimizing the life cycle cost. 

79 Bhattacharjee and Acharya [14] carried out a techno-economic analysis by the HOMER software 

80 for a PV/WT hybrid unit in an educational building located in the north-east Indian with a low 

81 wind topography. Baghdadi [15] evaluated the possibility of a PV/WT/Diesel/Battery hybrid unit 

82 under the climate of southern Algeria and optimized it by the HOMER software taking into account 

83 renewable resources potential and energy demand; while maximizing renewable electricity use 

84 and fuel saving are the purpose Singh et al. [16] performed a detailed simulation by HOMER 

85 considering manufacturing cost and efficiency for optimizing the size and location of  a 

86 PV/WT/Battery system. This optimal hybrid unit was able to provide some advantages like lower 

87 emission, lower cost of energy and elimination of dummy load over the existing system. Amrollahi 

88 et al. [17] investigated the ability of demand response programming in the case of component size 

89 optimization of hybrid PV/WT/Battery system in a stand-alone micro-grid. For this purpose, in 

90 order to reduce the number of required batteries, the required inverter and the photovoltaic cells 

91 capacity, the optimization program was performed by the HOMER software together with the 

92 GAMS software via the CPLEX solver. Mohammadi et al. [18] provided an optimal planning 

93 approach, by examining different scenarios, in order to select  a hybrid  power generation system 

94 based on 100% renewable energy system (RES) for a residential house located in Tehran, Iran.  

95 This study, by using HOMER software, aimed to reduce the energy supply cost and increase the 

96 reliability. Halabi et al. [19] studied and compared the use of different power generation systems 

97 including all possible standalone diesel generators, hybrid PV/diesel/battery, and 100% PV/battery 

98 scenarios for two decentralized power stations in Sabah, Malaysia by HOMER.  Recently, 

99 Hemmati [20] has already conducted an economic study for home energy management system 

100 (HEMS), by applying wind turbine and battery energy storage. The results show that installing 

101 wind turbine with battery storage allows home to make profit through selling energy to the grid, 

102 when the energy price is high.

103 The studies on the use of various optimization algorithms for optimization of hybrid energy 

104 systems indicate that minimizing the costs of energy are common objectives in the multi-objective 

105 optimization. Bilal et al. [21] optimized a hybrid Solar/Wind/Battery system by multi-objective 

106 GA for an isolated site, located in the northern coast of Senegal, and investigated the influence of 

http://www.sciencedirect.com/science/article/pii/S0306261917306207#!
http://www.sciencedirect.com/science/article/pii/S014206151730827X#!
http://www.sciencedirect.com/science/article/pii/S0196890417303928#!
http://www.sciencedirect.com/science/article/pii/S0960148110001060#!


ACCEPTED MANUSCRIPT

6

107 the load profiles on the optimal configuration. The objective functions (OF) in this study were 

108 minimization of the annualized cost and minimization of LPSP. Also, in another study, Bilal et al. 

109 [22] optimized the size of a hybrid PV/WT/Diesel/Battery unit through different data such as wind 

110 speed, air temperature, and solar radiation. They conducted the optimization for the Levelized Cost 

111 of Energy (LCE) and CO2 emission by using the Multi-Objectives GA approach. Daud et al. [23] 

112 presented a backup control unit for a grid-connected hybrid PV/battery system and optimized the 

113 control parameters through the input data of Malaysia for mitigating PV farm output power 

114 fluctuations by the GA-based multi-objective optimization.  Dufo-López et al. [24] optimized a 

115 PV/WT/Diesel/Battery unit in for minimizing the energy cost and CO2 emissions using a multi-

116 objective optimization. The analysis of different Pareto fronts revealed that applying the diesel 

117 generator to the hybrid system is better than gasoline generator, in aspects of the economy and 

118 reducing CO2 emissions. Also, the best Pareto fronts showed that the PV panel is necessary for 

119 reducing the emissions and also the wind system without PV panel is not optimal. Tahani et al. 

120 [25] applied a hybrid FPA/SA ( Flower Pollination Algorithm and Simulated Annealing algorithm) 

121 algorithm as a new optimization technique to maximize the reliability and minimize the costs of a 

122 hybrid PV/WT/Battery unit for a three-floor building, located in Tehran. Mohamed et al. [26] 

123 applied an Artificial Bee Colony algorithm (ABC) to maximize the output power and minimize 

124 the life cycle cost of a PV system including photovoltaic, a battery bank, a battery charger 

125 controller, and inverter. The ABC algorithm results for the Helwan city (Egypt) were compared 

126 with the results of the use of GA for another case in the Zagazig city, and it was found that the 

127 ABC was more efficient than the GA. Clarke et al. [27] analyzed a stand-alone desalination 

128 renewable energy system with the aim of sizing and power management, by comparing the 

129 MOPSO and the HOMER results.  Finally, it was found that the optimization by MOPSO showed 

130 better results in reducing the NPC and CO2 emissions. Baghaee et al. [28] have designed a hybrid 

131 PV/WT/FC generating system and presented a MOPSO algorithm to minimize the three objective 

132 functions namely the annualized cost of the system, the loss of load expected and the loss of energy 

133 expected, with maximum reliability. The results reveal that the cost and reliability are under the 

134 direct effect of three main components of the unit including a wind turbine, PV array, and AC/DC 

135 converter. 

136 In this paper, the main objectives are minimizing the total present cost and maximizing the 

137 reliability of a hybrid PV-wind turbine system with energy management (EMS) or battery bank, 

http://www.sciencedirect.com/science/article/pii/S0196890415009322#!
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138 for a place in Tehran, Iran. Based on the literature, this is the first time that such an optimization 

139 is conducted. In this work, the hybrid method of GA-PSO is applied as the single-objective 

140 algorithm; while the MOPSO is utilized as the multi-objective algorithm for the optimal system 

141 sizing. Since the GA-PSO is a single-objective algorithm, and cost is the main objective in the 

142 single-objective optimizations, therefore the reliability factor is converted to cost by an optional 

143 penalty factor. Then, in order to achieve satisfying load demand, the sizing results of these two 

144 methods are compared, and their strengths and weaknesses are determined.  

145

146 2. Methodology

147 This paper aims at providing an optimal cost/reliability sizing for a PV/WT/Battery system. The 

148 variables in this optimization method are the power of PVs, the wind turbines power, and the 

149 batteries capacity. Table 1 shows the estimated cost of the components. It shall be notified that 

150 since the problem is solved for a small scale of residential application, the maintenance cost of a 

151 wind turbine would be higher than the large-scale turbines [29].The total cost includes all the 

152 costs throughout the useful life of the system (20 years), which are translated to the 

153 initial moment of the investment

154

155 Insert Table 1

156

157 2.1. System modeling

158 The system consists of a wind turbine, a PV source and a battery for energy storage (Fig. 1). There 

159 are many different configurations for an electrical generator, but the generator which can be used 

160 in a wind power system is the Permanent Magnet DC Generator or PMDC Generator. The same 

161 PMDC machine may be driven electrically as a motor to move a mechanical load, or it may be 

162 driven mechanically as a simple generator to generate an output voltage. This case makes the 

163 PMDC generator ideal to be used as a simple wind turbine generator. The load profile, solar 

164 radiation, and wind speed data are simulated by the HOMER for 8760 h in a year. The PV and 

165 wind turbine supply the load power. If there is extra power, it must be stored in the battery bank 

166 and, in the case of lacking generated power; the batteries must supply the power shortage. A charge 

167 regulator regulates the voltage and current going to the batteries and keeps them from 
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168 overcharging. Since electrical devices mostly need AC power to work, the inverter converts the 

169 DC to the AC so that the renewable system can supply the electrical load demand.

170

171 Insert Fig. 1

172

173  Photovoltaic array

174 The power, generated by a PV, depends on the cell temperature and solar radiation. The power 

175 generation of a PV array is shown by Eq. 1:

176 𝑃𝑃𝑉 = 𝑃𝑃𝑉 𝑟𝑎𝑡𝑒𝑑 ×
𝐺

1000 × 𝜂𝑚𝑝𝑝𝑡                                                                                                             (1)

177

178 where G is solar radiation at the PV surface ( ),  is the PV rated power for G=1000𝑤/𝑚2 𝑃𝑃𝑉 𝑟𝑎𝑡𝑒𝑑 𝑤/

179 , and  is the module efficiency. Usually, the PV generation stays around maximum power 𝑚2 𝜂𝑚𝑝𝑝𝑡

180 point, because of a charge controller which uses the maximum power point tracking system [30].

181

182  Wind turbine generator

183 The wind turbine generates power when the wind velocity (wind speed) is within the cut-in and 

184 cut-out velocity, and it depends on the wind velocity, air density, and windmill area. The power, 

185 generated by a wind turbine, is shown by Eqs. (2.a) and (2.b) [30-32].

186

187 (2.a)𝑃𝑊𝑇 = {0                 𝑉 < 𝑉𝐶𝑖, 𝑉 > 𝑉𝐶𝑜 
1
2𝜌𝐶𝐴𝑉3𝑉𝐶𝑖 ≤ 𝑉 ≤ 𝑉𝐶𝑜 

                                                                                                     �
188 where,  is the air density ( ), A is the windmill area perpendicular to the wind ( ), C is 𝜌 𝐾𝑔/𝑚3 𝑚2

189 the power coefficient of the wind turbine, and V is the wind velocity (m/s) at the height of turbine 

190 hub, which is calculated according to:

191

192                                                                                                                                    (2.b)
𝑉2

𝑉1
= (

𝐻2

𝐻1
)

𝛼

193 Having V1 as the wind velocity at a reference height denoted by H1, and α is the Hellman 

194 coefficient. In this study  , C=0.42, =0.25, =10 m and =40 m.,  𝜌 = 1.08 𝛼 𝐻1 𝐻2



ACCEPTED MANUSCRIPT

9

195

196  Battery energy storage system

197 Energy management system is widely used for renewable energy generators, especially in PV and 

198 WTs, because of the unpredictable nature of the wind and solar irradiation. The extra electricity, 

199 generated by PV and WT, is stored in the battery bank and, in the case of electricity deficiency; it 

200 supplies the required load demand. The power of the battery in charge and discharge state is 

201 obtained by Eq.  (3) [33]:

202

203

𝑃𝐵𝐴𝑇(𝑡)
= 𝑃𝐵𝐴𝑇(𝑡 ‒ 1) × (1 ‒ 𝜎)

+ [(𝑁𝑃𝑉 × 𝑃𝑃𝑉(𝑡) × 𝜂𝐶𝑂𝑁 + 𝑁𝑊𝑇 × 𝑃𝑊𝑇(𝑡) × 𝜂𝑅𝐸𝐶) ‒
𝑃𝐿𝑜𝑎𝑑(𝑡)

𝜂𝐼𝑁𝑉
] × 𝜂𝐵𝐴𝑇     (3)

204

205 where  is the battery charge at time, , and represents the charge amount at time 𝑃𝐵𝐴𝑇(𝑡) 𝑡 𝑃𝐵𝐴𝑇(𝑡 ‒ 1)

206 . Also,   is the battery self-discharge rate,  is the converter efficiency,  is the  𝑡 ‒ 1 𝜎 𝜂𝐶𝑂𝑁 𝜂𝑅𝐸𝐶

207 rectifier efficiency, is the inverter efficiency,   is the charge efficiency of the battery 𝜂𝐼𝑁𝑉 𝜂𝐵𝐴𝑇

208 system, and is the load demand.   and  are the numbers of PV panels and wind 𝑃𝐿𝑜𝑎𝑑(𝑡) 𝑁𝑃𝑉 𝑁𝑊𝑇

209 turbines.

210 If the generated power by renewable resources is less than the power demand, discharging begins. 

211 In this paper, the discharge efficiency is supposed to be unity. Then, the power of the battery in 

212 the discharge state is shown by Eq. (4) [30]:

213

𝑃𝐵𝐴𝑇(𝑡)
= 𝑃𝐵𝐴𝑇(𝑡 ‒ 1) × (1 ‒ 𝜎)

‒ [𝑃𝐿𝑜𝑎𝑑(𝑡)

𝜂𝐼𝑁𝑉
‒ (𝑁𝑃𝑉 × 𝑃𝑃𝑉(𝑡) × 𝜂𝐶𝑂𝑁 + 𝑁𝑊𝑇 × 𝑃𝑊𝑇(𝑡) × 𝜂𝑅𝐸𝐶)] 𝜂𝐵𝐴𝑇            (4)

214

215  Energy management strategy

216 The PV power and wind power depend on the solar radiation, wind velocity, and temperature, so 

217 these are uncertain and changed hour by hour. The load demand also varies according to the user 

218 energy demand. The power injected by PV and WT is defined by Eq. (5) [34]:
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219 𝑃𝑖𝑛(𝑁𝑓𝑎𝑖𝑙
𝑃𝑉 ,𝑁

𝑓𝑎𝑖𝑙

𝑊𝑇) = (𝑁𝑃𝑉 ‒ 𝑁𝑓𝑎𝑖𝑙
𝑃𝑉 ) × 𝑃𝑃𝑉 + (𝑁𝑊𝑇 ‒ 𝑁𝑓𝑎𝑖𝑙

𝑊𝑇) × 𝑃𝑊𝑇                                               (5)

220

221 where,  and   are the total installed PV panels, and WTs, , and  are the failed PV NPV NWT Nfail
PV Nfail

WT

222 panels and WTs; the failures indicate the unavailability of power sources. Then, the output power 

223 is distributed between the load and the battery storage system through the following strategy:

224  If is equal to the power demand, all the load demand is supplied by the power sources, 𝑷𝒊𝒏 

225 and there is no storage and extraction from the batteries. 

226  If is higher than the required power demand, all the load demand is fulfilled by the 𝑷𝒊𝒏 

227 power sources, and the excess power is stored by the storage system. If the excess power 

228 is more than the batteries rated power, a portion of the power will be lost.

229  If is less than the required power demand, the storage system supplies the shortage 𝑷𝒊𝒏  

230 power. If the shortage power is more than the batteries rated power, a part of the load will 

231 be lost.

232

233 2.2. The system cost and reliability model

234 The total cost (CT) of the system includes the initial cost (CI), maintenance cost (CM) and 
235 replacement cost (CR), which are obtained from equations (6-9) [35-37]:

236 𝐶𝑇 = 𝐶𝐼 + 𝐶𝑀 + 𝐶𝑅                                                                                                                                   (6)

237
𝐶𝐼

= (𝑁𝑃𝑉𝐶𝑃𝑉) + (𝑁𝑊𝑇𝐶𝑊𝑇) + (𝑁𝐵𝐴𝑇𝐶𝐵𝐴𝑇) + (𝑁𝐼𝑁𝑉𝐶𝐼𝑁𝑉)
                                                              (7)

238 Where,  is per unit cost of  component and  is the number of ith component. 𝐶𝑖 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑁𝑖

239 𝐶𝑀 = (𝑁𝑃𝑉𝐶𝑀,𝑃𝑉 + 𝑁𝑊𝑇𝐶𝑀,𝑊𝑇 + 𝑁𝐵𝑎𝑡𝐶𝑀,𝐵𝐴𝑇)
𝑇

∑
𝑡 = 1

(1 + 𝐼𝑛𝑓𝑅
1 + 𝐼𝑛𝑡𝑅)𝑡

                                                    (8)

240 where,  is per unit maintenance cost of  component,  is the inflation rate,  is 𝐶𝑀,𝑖 𝑡ℎ𝑒 𝑖𝑡ℎ 𝐼𝑛𝑓𝑅 𝐼𝑛𝑡𝑅
241 the interest rate, and t is the life cycle of the components which is 20 years. 

242 In this study, it is assumed that only batteries and inverter need replacement, so the replacement 
243 cost is obtained by:
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244 𝐶𝑀 = (𝑁𝐵𝐴𝑇𝐶𝐵𝐴𝑇 + 𝑁𝐼𝑁𝑉𝐶𝐼𝑁𝑉)
𝑇

∑
𝑡 = 1

(1 + 𝐼𝑛𝑓𝑅
1 + 𝐼𝑛𝑡𝑅)𝑡

                                                                                (9)

245 The subtraction of the load power at each hour and the generated power from the renewables, 
246 expressed by the loss of power supply (LPS) and LPSP, would the probability of the LPS's 
247 occurrence in a complete year (8760h), as shown in Eqs. (10.a,b):

248 LPS =
8760

∑
𝑡 = 1

[𝑃𝐿𝑜𝑎𝑑(𝑡) ‒ (𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇(𝑡) + 𝑃𝐵𝐴𝑇(𝑡))]                                                              (10.𝑎)

249 where  is the power quantity of  resource at time t.𝑃𝑖(𝑡) 𝑖𝑡ℎ

250

251                                                                                                                (10.b)LPSP =
∑8760

t = 1
LPSt

∑8760

t = 1
PLoad(t)

252

253 where is the loss of power supply at each hour, and  is the load demand at each  LPSk PLoad(t)

254 hour.

255

256 2.3. Optimization algorithms 

257

258  Particle swarm optimization (PSO)

259 PSO is a population-based stochastic approach for solving continuous and discrete optimization 

260 problems which arose from swarming behaviors were observed in schools of fish, flocks of birds, 

261 a swarm of bees and even human social behavior [38-40]. In PSO, a population of particles moves 

262 in the search space of an optimization problem. The position of a particle represents a candidate 

263 solution to the optimization problem at hand. Each particle searches for better positions in the 

264 search space according to its local best position and global best position [41, 42]:

265 vk(i + 1) = w(i) × vk(i) + c1 × r1(pbestk(i) ‒ xk(i)) + c2 × r2(gbest(i) ‒ xk(i))             (11)

266 xk(i + 1) = vk(i + 1) + xk(i)                                                                                                                (12)

267 k = 1,2,…,Np     and     i = 1,2,…,imax

268
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269 where,  and  represent the particle’s position and velocity, k is the particle’s index, i is the 𝑥𝑘 𝑣𝑘

270 iteration number, and are the randomly generated numbers between 0 and 1 and and  are 𝑟1 𝑟2 𝑐1 𝑐2

271 learning factors.

272 First of all, the PSO generates a random population and a random initial velocity for each particle 

273 in the search space. Then, the algorithm calculates the objective function for all particles. Here, 

274 pbest is the best experience of each particle, and gbest is the best experience of all particles in the 

275 population. The position and value of the objective function for gbest and pbest must be stored 

276 after each iteration, and after the initial evaluation, the iterative loop begins. The algorithm 

277 calculates the objective function for all particles and updates the pbest and gbest. If the termination 

278 criterion (TC) is satisfied, the optimal solution is gbest, and the algorithm is ended, otherwise the 

279 loop repeats. In this study, TC is the specific number of iterations (100 iteration). Also, a 

280 population size of 50 particles is defined for PSO approach.  Each particle has three variables as 

281 the PV power capacity, WT power capacity and battery energy storage capacity. The search space 

282 for the variables is 0 to 1000 kW for the PV and WT, and 0 to 1000 kWh for the battery. In the 

283 initialization step, random positions are assigned to each particle. Then, in the next 100 iterations, 

284 the positions and velocities are updated according to Eq. 11 and Eq. 12 to obtain the lowest cost 

285 function. 

286

287  Genetic algorithm

288 The genetic algorithm is a method, inspired by natural selection, to find the solution for 

289 optimization problems [43]. As Tomassini summarized [44], the idea is to adapt a population to 

290 environmental conditions like what happens for genes in nature. Each individual of the population 

291 has its own characteristic, and in this technique, the bad and ineffective traits must be eliminated, 

292 while the helpful behaviors must be improved. The genetic algorithm is an evolutionary algorithm 

293 with evolution strategies and evolutionary genetic programming. The solutions, found by this way, 

294 are similar to the real populations that are adapted to the natural environment. The algorithm starts 

295 with a randomly-generated individual. In this study, 50 randomly initialized individuals are 

296 considered as the population. Each individual has three variables with a search space similar to the 

297 proposed PSO approach. In each iteration, new populations are generated by applying certain 

298 stochastic operators through a loop, called the generation. These operators are as crossover and 

299 mutation. Crossover is the process of taking two parents and producing two children solution from 
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300 them. The crossover rate of 0.8 assigns the number of parents which are included in the crossover 

301 operation, and it means that in each iteration, 40 parents are taken in order to generate 40 children. 

302 The other operator, called mutation, is a randomly change in one gene value of an individual from 

303 its initial state. Mutation is a kind of error, and if the mutation rate is set low, it may lead GA to a 

304 better solution. Here, the mutation rate is 0.1 which means five individuals meet mutation 

305 operation in each iteration. After the generation, 50 best solutions are selected to continue the 

306 algorithm for 100 iterations. 

307 This iterative process can be summarized as followings [44]:

308 I. Iteration = 0

309 II. Seed population

310 III. While not (termination condition) do

311 IV. Iteration= Iteration+1

312 V. Calculate fitness

313 VI. Selection

314 VII. Crossover

315 VIII. Mutation

316 IX. End while

317  

318 Fig. 2 shows the optimization and simulations algorithm. The process of optimization by the GA-

319 PSO algorithm is described at the GA-PSO algorithm subsection in the following.

320

321 Insert Fig. 2 

322

323  GA-PSO algorithm

324 In this study, a hybrid GA-PSO method is proposed which executes the genetic algorithm and 

325 particle swarm optimization simultaneously, selects the best-evaluated population from the GA, 

326 and optimizes it by the PSO in any iteration [40]. The first step is initializing the GA and PSO 

327 subsystems. Then, both algorithms are executed simultaneously, and the best solution is 

328 memorized. After executing a specified number of iterations (termination criterion), the program 

329 running stops and the best solution are announced as the final solution. In this paper, the percentage 
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330 of using GA and PSO in the hybrid system is equal. Fig. 2 shows the GA-PSO flowchart, and the 

331 GA-PSO algorithm processes are summarized as followings [36]:

332

333 Step-1: Set population size (2*Ps), maximum number of generations (Mg), the probability of 
334 crossover (PC), the probability of mutation (Pm) and the bounds of decision variables.

335 Step-2:  Set . [t presents the generation/iteration number]𝑡 = 0

336 Step-3: Initialize the chromosomes/particles of the population P(t).

337 Step-4: Compute the fitness function for each chromosome of P(t).

338 Step-5: Find the global best chromosome/particles (Pg) having the best fitness value.

339 Step-6: Divide the chromosome/particles into two groups, viz. PGA(t) and PPSO(t) with equal 
340 population size.

341 Step-7: Repeat the following until the termination criterion is satisfied:

342 i. Increase the value of t by unity.

343 ii. Apply GA for population PGA(t).

344 iii. Apply crossover & mutation operators on PGA(t) to produce new population PGA(t).

345 iv. Find the best chromosome (P g) from the current population PGA(t).'

346 v. Compare P g  with earlier best chromosome Pg and store better one in P g.' '

347 vi. Set .𝑡 = 𝑡 + 1

348 vii. Select the population PGA(t) from the population PGA( ) of ( )-  generation 𝑡 ‒ 1 𝑡 ‒ 1  𝑡ℎ
349 using tournament selection. 

350 viii. Apply PSO for PPSO(t).

351 ix. Improve the best position of each particle by comparing the position of all chromosomes 
352 of PGA(t).

353 x. Compute the velocity of each particle.

354 xi. Obtain the new position of each particle.

355 xii. Improve the position of each particle and also find the global best particle (Pg).

356 Step-8: Print the position and fitness of global best particle.

357 Step-9: End.

358 The parameters of the algorithms used in this paper are summarized as follows:
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359 PSO : N=50 ; c1= 2 ; c2 = 2; β = 0.99 ; w =1; maximum iteration = 100;

360 GA: N=50; Mutation rate = 0.1; crossover rate = 0.8 maximum iterations = 100;

361

362 The search space for variables is 0 to 1000kW for PV and WT and 0 to 1000kWh for battery.

363 Since the GA-PSO is a single objective algorithm and the cost function is the final objective, the 

364 reliability factor must be converted to cost. The weighted summation method counts the primary 

365 cost function in addition to weighted cost, obtained from LPS, multiplied by an optional penalty 

366 factor. The total cost of the components plus the capacity shortage penalty factor, yield in the total 

367 net present cost (NPC). In this study, the penalty is considered as 5.6$ / kWh, which is an average 

368 capacity shortage penalty [29].

369 𝑁𝑃𝐶 = 𝐶𝑇 + 𝑃𝐹 × 𝐿𝑃𝑆     ($)                                                                                                                (13)

370 Moreover, the levelized cost of energy (LCE) term is used to find the cost of the generated unit of 

371 energy. This term is the ratio of the total yearly cost of the system components to the total yearly 

372 energy provided by the system [45]. The LCE can be calculated as:

373 ($/kWh)                                                                                                                   (14)𝐿𝐶𝐸 =
𝑁𝑃𝐶

𝐸𝑡
 

374 where (kWh/year) is the total energy, generated by the system in one year.𝐸𝑡 

375 In this study, the cost optimization has been implemented for 2%, 5% and 10% of the maximum 

376 LPSP. The  ,  and the number of batteries are the first positions in the PSO. So 𝑃𝑃𝑉 𝑟𝑎𝑡𝑒𝑑 𝑃𝑊𝑇 𝑟𝑎𝑡𝑒𝑑

377 that, after few iterations, the optimal cost of these variables are obtained. Also, the minimum and 

378 maximum bounds for the PV panels and wind turbines are 0 to 200, while these are 0 to 300 for 

379 the batteries. Three different scenarios are considered for the simulation:

380

381 - PV and battery bank system

382 - WT and battery bank system

383 - PV, WT and battery bank system

384

385  Multi-objective particle swarm optimization (MOPSO)

386 Many real world problems have two or more objectives to be obtained. In these problems, 

387 objectives may be in conflict, and a tradeoff between possible solutions is the optimal point [46-

388 48]. In this study, the system cost and risk are the objectives. The PSO algorithm is an inherent 
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389 single-objective optimizer while, in multi-objective problems, an absolute global optimum does 

390 not often exist. Thus, to make the PSO algorithm capable of dealing with multi-objective 

391 optimization problems, some modifications become necessary. The personal best performance 

392 (pbest) of each individual particle is replaced with the new solution, if and only if, it dominates 

393 the former pbest. Also, two major issues should be considered in the updating process of the global 

394 best performance (gbest). 

395 Firstly, the fitness assignment and selection should be addressed, such that a search can move 

396 towards the Pareto optimal set. Fitness is proportional to the dominance rank of solutions. The 

397 MOPSO, which is used in this study, is a dominance-based method.

398 Secondly, the diversity of the swarm should be maintained to prevent premature convergence and 

399 obtain an evenly distributed Pareto optimal front [28]. In this paper, an archiving mechanism was 

400 employed to form a repository, which may contain only a limited number of solutions. Compared 

401 to the conventional archiving, this approach shows a better performance in terms of both diversity 

402 and optimality and less complexity.

403

404

405

406 3. Results and discussion

407 3.1 Irradiance/wind/ load data

408 The simulated radiation for a house in Tehran by the HOMER software is shown in Fig.3. The 

409 latitude and the longitude are considered as 35° 6892' S and 51° 3890'E, respectively. As expected, 

410 the solar radiation varies in each hour, day and month. The average solar radiation for Tehran is 

411 5.2  and the maximum occurs in June with nearly 7.5  Also, the 𝑘 𝑊 ℎ ⁄ ( 𝑚 ^ 2 ⁄ 𝑑 𝑎 𝑦 ) , 𝑘 𝑊 ℎ
𝑚2

𝑑 𝑎 𝑦

.

412 month with minimum solar radiation is December with nearly 2.5 . Fig. 3(a,b) 𝑘 𝑊 ℎ ⁄ ( 𝑚 ^ 2 ⁄ 𝑑 𝑎 𝑦 )

413 shows the monthly radiations and the distribution of solar radiation in hours for one day in each 

414 month, respectively. 

415

416 Insert Fig. 3

417
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418 The wind velocity (v) data, obtained from the Renewable Energy Organization of Iran`s 

419 anemometric stations, is shown in Fig. 4(a,b). The average wind speed in Tehran is 7.5 m/s which 

420 can lead to generate power at nights, unlike solar radiation.

421

422 Insert Fig. 4

423

424 The load demand is simulated by the HOMER for a residential section with an average demand of 

425 210 kWh per day. As shown in Fig. 5(a, b), the electricity consumption in summer is more than 

426 other seasons. Two peaks occur in the load demands between 12 to 18 and 18 to 24 in summer. 

427 Also, the load demand in August and February is maximum and minimum, respectively.

428

429 Insert Fig. 5

430 3.2 The GA-PSO Results

431 The GA-PSO was the first algorithm which was used to optimize the problem, and the simulation 

432 results of GA-PSO are shown in Figs. 6 to 8. The algorithm starts with an initial evaluation and 

433 continues until the termination criterion (TC) is satisfied. The LPSP with three levels of 2%, 5%, 

434 and 10% is considered to have wider choices. Since the using a hybrid renewable energy system 

435 has a capital cost more than using PVs or wind turbines individually, the optimization is done for 

436 three different systems. The WT/Battery is considered as the first system and Fig.6 (a, b, c) shows 

437 the optimization results for the first system with three different levels of LPSP. As Fig. 6 (a, b, c) 

438 shows, the optimization is done for 100000 numbers of function evaluations (NFE). 

439 Approximately after 20 iterations, the optimal point for 2% and 5% of LPSP is obtained. For 10% 

440 of the LPSP, the optimal point is obtained after nearly 100 iterations. The detailed information is 

441 reported in Table 2(a).

442

443 Insert Fig. 6

444 Insert Fig. 7

445 Insert Fig. 8

446
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447 Fig. 8 (a,b,c) shows the optimization results for three different levels of the LPSP for this case. As 

448 Fig. 9 shows, nearly after 20000 NFEs, the optimal point for 2% and 5% of LPSP is obtained. For 

449 10% of the LPSP, the optimal point is obtained after about 100 iterations. The detailed information 

450 is represented in Table 2(c).

451 The first system with WT and battery cannot use suitable solar irradiance of the area, and the 

452 second system with PV and battery needs too much storage for the night since PV is not able to 

453 provide electricity to meet the load demand. The third system, with employing PV, WT, and 

454 battery, applies all the energy production capacity and obtains the minimum total cost.

455 The results of cost, power, and the capacity of the components are summarized in Table 2 (a,b,c). 

456 The total cost includes the investment cost, the operation and maintenance ( O&M) and 

457 replacement cost of PVs, also the costs of WTs, inverter, and batteries for 20 years, plus minor 

458 items like charge controller and installation costs.

459

460 Insert Table 2

461 3.3 The MOPSO Results

462 In the last section, the optimum cost function is evaluated for three systems with different penalty 

463 factors. In this part, both reliability and cost objectives are considered simultaneously. It is obvious 

464 that each point with lower cost and higher reliability (lower risk) is a better point than the others, 

465 but some points have lower cost and higher risk, while some points are vice-versa. Since there is 

466 no advantage for any objective, all points that make a curve combined with the best costs and 

467 reliabilities, are considered as the best points. This method’s name is the none-dominated sorting 

468 optimization, and the curve's name is the Pareto front.

469 The red stars in Fig.10are the Pareto front points and the black circles are the non-optimum points 

470 which are dominated by the Pareto front. Similar to the single objective optimization, three 

471 scenarios are considered and simulated. It is evident that the optimum results of the single objective 

472 optimization are procurable from the multi-objective optimization. The blue rectangles are the 

473 optimum points with 2%, 5%, and 10% of LPSP, which are obtained from single objective 

474 optimization too.

475 The multi-objective optimization, compared to the single objective optimization method, gives a 

476 wider choice of optimal point. By this method, it is possible to have the cost of the system for any 
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477 value of LPSP. For the first hybrid system, consisting PV/WT/Battery with 0% of LPSP, the total 

478 cost is nearly 800000$. If a lower cost is desired, the lower values of LPSP must be chosen, and 

479 there would be a tradeoff between the cost and the LPSP. For example, for 20% of LPSP, the total 

480 cost is 250000$, and it is about one-third of the previous choice, as shown in Fig. 9. Figs. 10 and 

481 11 show the other scenarios’ results. The black circles are the initial population, and the red stars 

482 indicate the Pareto front in Figs. 9 to 11. Also, the 2%, 5% and 10% of LPSP are marked with blue 

483 rectangles.

484

485 Insert Fig. 9

486 The MOPSO method was also applied to the hybrid WT/Battery system, and the Pareto front was 

487 obtained. If the loss of the load is not acceptable (LPSP=0), the total cost would be nearly 

488 1400000$, so 20% of the LPSP costs 500000$.

489 Insert Fig. 10

490 Fig.11 represents the Pareto front of the hybrid PV/Battery system. The costs of this case are less 

491 than that of the WT/Battery system. For 0% of LPSP, it costs 1100000$, and the total cost for 20% 

492 of LPSP is 300000$. As expected from the GA-PSO results, the hybrid PV/WT/Battery has a lower 

493 cost compared to the other two systems.

494

495 Insert Fig. 11

496 3.4. Comparison of the results 

497 For evaluating the validity of the proposed approach, the LCE factor is considered. Based on the 

498 average solar radiation and wind speed maps, the techno-economically optimized systems are 

499 designed by simulating the behavior of various combinations of renewable energy systems with 

500 different sizing. This is the same method by which, the HOMER software obtains the optimal 

501 sizing. As shown in Table3, the GA-PSO results have been compared with the HOMER software. 

502 Also,  with two cities of ref. [29], the comparison has been done for the LCE factor (shown in 

503 Table 4). The researchers in [29], have applied an optimization in four different cities, among 

504 those, the Moaleman and Nikouye cities have earned the best results for the hybrid PV/WT/battery 
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505 unit, and the maximum LPSP of 2%. It is shown that the cost of components is the same with [29]; 

506 nevertheless, the load data is different. For the proposed approach, ref. [29] and the HOMER 

507 optimization average daily loads are 210 kWh, 220kwh, 400kwh, for the GA-PSO method, 

508 HOMER optimization, and ref. [29]. The Nikouye and Moaleman cities are 5.2 kWh/ , 𝑚2/𝑑𝑎𝑦

509 5.2kwh/ , 5 kWh/ , and 5.77 kWh/ , respectively. The average wind 𝑚2/𝑑𝑎𝑦 𝑚2/𝑑𝑎𝑦 𝑚2/𝑑𝑎𝑦

510 velocity for the GA-PSO method and HOMER optimization is 7.5 m/s; this velocity is 7.2 m/s and 

511 6.1 m/s for ref. [29]. As shown in Table 3, even though the wind and solar resources in the GA-

512 PSO and HOMER are exactly equal and approximately equal to ref. [29], the GA-PSO has the best 

513 result among different methods. The deviation percentage between the proposed method’s LCE 

514 and the LCE of [29] for Moaleman and Nikouye is 6% and 10%, respectively. The difference 

515 between the algorithms like GAPSO and the HOMER optimization is that the HOMER must 

516 calculate all modes of variables without any history of variables` best global and personal results. 

517 It is actually like a try and error process. But, in the GAPSO method, the relationship between the 

518 variables cause more convergence rate and better result.

519

520 Insert Table 3

521 Insert Table 4

522

523 To show the impact of cost function, from the electrical load data, the LCE for different load data 

524 are also plotted in Fig.12

525 Insert Fig. 12

526 As shown in Fig.12 for different electrical load data between 150 (kWh/d) to 350 (kWh/d), the 

527 LCE is about 0.5 to 0.7 ($/kWh). The red foursquare is the load data, considered for simulations 

528 in this paper (210kWh/d).

529

530 4. Conclusion

531 In this paper, a hybrid PV-WT generating unit with a battery bank for storing extra electricity, 

532 generated by PV and WT, was designed and the load profile, solar radiation, and wind speed data 

533 were simulated by the HOMER for 8760 h in a year in an off-grid house in Tehran, Iran. The GA-
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534 PSO and MOPSO methods were applied for the optimal system sizing with two objectives 

535 including maximizing the system reliability and minimizing the total present cost. Then, the sizing 

536 results were compared to achieve the satisfying load demand. Three different scenarios were 

537 considered for the simulation, including PV panel and battery bank system, wind turbine and 

538 battery bank, and PV panel-wind turbine with battery bank system. In the optimization through 

539 GA-PSO, as a single objective algorithm, the LPSP was considered as the reliability factor, and 

540 5.6 $/kWh penalty factor was determined for the capacity shortage. 

541 The results show that the PV/WT/BAT system has lower cost, compared to the PV/BAT and 

542 WT/BAT systems in all three levels of LPSP. So, the PV/WT/BAT system is the best choice for 

543 this case. The best-obtained NPC for the PV/WT/BAT system was 787193$ for 2% of the 

544 maximum LPSP which is 42.17% less than the WT/BAT system and 17.17% less than the PV/BAT 

545 system. For 5% of the maximum LPSP, the total NPC of 644235$ is obtained as the best result for 

546 the PV/WT/BAT system; which is 29.91% less than the WT/BAT, and 16.68% less than the 

547 PV/BAT system. For 10% of the maximum LPSP, the best total NPC was 508540$ for the 

548 PV/WT/BAT system; which is 28.24% less than the WT/BAT and 20.22% less than the PV/BAT 

549 system. Through the MOPSO, the cost and reliability are optimized simultaneously, as the two 

550 objectives. Also, three Pareto fronts are obtained for the three systems, which can be used in order 

551 to find the sizing strategy with the lowest cost in every level of maximum LPSP.  The comparison 

552 results show that the proposed approach with 0.508 of LCE, represents a deviation between 7% 

553 and 10%.

554

555 References

556 1. Dalton, G., D. Lockington, and T. Baldock, Case study feasibility analysis of renewable energy 
557 supply options for small to medium-sized tourist accommodations. Renewable Energy, 2009. 
558 34(4): p. 1134-1144.
559 2. Kaldellis, J.K. and D. Zafirakis, The wind energy (r) evolution: A short review of a long history. 
560 Renewable Energy, 2011. 36(7): p. 1887-1901.
561 3. Fathabadi, H., Novel grid-connected solar/wind powered electric vehicle charging station with 
562 vehicle-to-grid technology. Energy, 2017. 132: p. 1-11.
563 4. Celik, A.N., Techno-economic analysis of autonomous PV-wind hybrid energy systems using 
564 different sizing methods. Energy Conversion and Management, 2003. 44(12): p. 1951-1968.
565 5. Dufo-López, R. and J.L. Bernal-Agustín, Design and control strategies of PV-Diesel systems using 
566 genetic algorithms. Solar energy, 2005. 79(1): p. 33-46.



ACCEPTED MANUSCRIPT

22

567 6. Luna-Rubio, R., et al., Optimal sizing of renewable hybrids energy systems: A review of 
568 methodologies. Solar Energy, 2012. 86(4): p. 1077-1088.
569 7. Yang, H., et al., Optimal sizing method for stand-alone hybrid solar–wind system with LPSP 
570 technology by using genetic algorithm. Solar energy, 2008. 82(4): p. 354-367.
571 8. Kornelakis, A. and Y. Marinakis, Contribution for optimal sizing of grid-connected PV-systems 
572 using PSO. Renewable Energy, 2010. 35(6): p. 1333-1341.
573 9. Khoury, J., et al., Optimal sizing of a residential PV-battery backup for an intermittent primary 
574 energy source under realistic constraints. Energy and Buildings, 2015. 105: p. 206-216.
575 10. Maleki, A. and A. Askarzadeh, Comparative study of artificial intelligence techniques for sizing of 
576 a hydrogen-based stand-alone photovoltaic/wind hybrid system. international journal of 
577 hydrogen energy, 2014. 39(19): p. 9973-9984.
578 11. Kamel, S. and C. Dahl, The economics of hybrid power systems for sustainable desert agriculture 
579 in Egypt. Energy, 2005. 30(8): p. 1271-1281.
580 12. Bernal-Agustín, J.L., R. Dufo-López, and D.M. Rivas-Ascaso, Design of isolated hybrid systems 
581 minimizing costs and pollutant emissions. Renewable Energy, 2006. 31(14): p. 2227-2244.
582 13. Hafez, O. and K. Bhattacharya, Optimal planning and design of a renewable energy based supply 
583 system for microgrids. Renewable Energy, 2012. 45: p. 7-15.
584 14. Bhattacharjee, S. and S. Acharya, PV–wind hybrid power option for a low wind topography. 
585 Energy Conversion and Management, 2015. 89: p. 942-954.
586 15. Baghdadi, F., et al., Feasibility study and energy conversion analysis of stand-alone hybrid 
587 renewable energy system. Energy Conversion and Management, 2015. 105: p. 471-479.
588 16. Singh, G., et al., Optimal sizing and location of PV, wind and battery storage for electrification to 
589 an island: A case study of Kavaratti, Lakshadweep. Journal of Energy Storage, 2017. 12: p. 78-86.
590 17. Amrollahi, M.H. and S.M.T. Bathaee, Techno-economic optimization of hybrid photovoltaic/wind 
591 generation together with energy storage system in a stand-alone micro-grid subjected to 
592 demand response. Applied Energy, 2017. 202: p. 66-77.
593 18. Mohammadi, M., et al., Optimal planning of renewable energy resource for a residential house 
594 considering economic and reliability criteria. International Journal of Electrical Power & Energy 
595 Systems, 2018. 96: p. 261-273.
596 19. Halabi, L.M., et al., Performance analysis of hybrid PV/diesel/battery system using HOMER: A 
597 case study Sabah, Malaysia. Energy Conversion and Management, 2017. 144: p. 322-339.
598 20. Hemmati, R., Technical and economic analysis of home energy management system 
599 incorporating small-scale wind turbine and battery energy storage system. Journal of Cleaner 
600 Production, 2017. 159: p. 106-118.
601 21. Bilal, B.O., et al., Optimal design of a hybrid solar–wind-battery system using the minimization of 
602 the annualized cost system and the minimization of the loss of power supply probability (LPSP). 
603 Renewable Energy, 2010. 35(10): p. 2388-2390.
604 22. Bilal, B.O., et al., Methodology to Size an Optimal Stand-Alone PV/wind/diesel/battery System 
605 Minimizing the Levelized cost of Energy and the CO2 Emissions. Energy Procedia, 2012. 14: p. 
606 1636-1647.
607 23. Daud, M.Z., A. Mohamed, and M. Hannan, An improved control method of battery energy 
608 storage system for hourly dispatch of photovoltaic power sources. Energy Conversion and 
609 Management, 2013. 73: p. 256-270.
610 24. Dufo-López, R., et al., Multi-objective optimization minimizing cost and life cycle emissions of 
611 stand-alone PV–wind–diesel systems with batteries storage. Applied Energy, 2011. 88(11): p. 
612 4033-4041.



ACCEPTED MANUSCRIPT

23

613 25. Tahani, M., N. Babayan, and A. Pouyaei, Optimization of PV/Wind/Battery stand-alone system, 
614 using hybrid FPA/SA algorithm and CFD simulation, case study: Tehran. Energy Conversion and 
615 Management, 2015. 106: p. 644-659.
616 26. Mohamed, A.F., M.M. Elarini, and A.M. Othman, A new technique based on artificial bee colony 
617 algorithm for optimal sizing of stand-alone photovoltaic system. Journal of advanced research, 
618 2014. 5(3): p. 397-408.
619 27. Clarke, D.P., Y.M. Al-Abdeli, and G. Kothapalli, Multi-objective optimisation of renewable hybrid 
620 energy systems with desalination. Energy, 2015. 88: p. 457-468.
621 28. Baghaee, H., et al., Reliability/cost-based multi-objective Pareto optimal design of stand-alone 
622 wind/PV/FC generation microgrid system. Energy, 2016. 115: p. 1022-1041.
623 29. Hosseinalizadeh, R., et al., Economic sizing of a hybrid (PV–WT–FC) renewable energy system 
624 (HRES) for stand-alone usages by an optimization-simulation model: case study of Iran. 
625 Renewable and Sustainable Energy Reviews, 2016. 54: p. 139-150.
626 30. Shanbedi, M., et al., Thermal performance prediction of two-phase closed thermosyphon using 
627 adaptive neuro-fuzzy inference system. Heat Transfer Engineering, 2015. 36(3): p. 315-324.
628 31. Yang, H., Z. Wei, and L. Chengzhi, Optimal design and techno-economic analysis of a hybrid 
629 solar–wind power generation system. Applied Energy, 2009. 86(2): p. 163-169.
630 32. Pishgar-Komleh, S., A. Keyhani, and P. Sefeedpari, Wind speed and power density analysis based 
631 on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran). Renewable and 
632 Sustainable Energy Reviews, 2015. 42: p. 313-322.
633 33. Maleki, A. and F. Pourfayaz, Optimal sizing of autonomous hybrid photovoltaic/wind/battery 
634 power system with LPSP technology by using evolutionary algorithms. Solar Energy, 2015. 115: p. 
635 471-483.
636 34. Nomura, S., et al., Wind farms linked by SMES systems. IEEE Transactions on Applied 
637 Superconductivity, 2005. 15(2): p. 1951-1954.
638 35. Abedi, S., et al., A comprehensive method for optimal power management and design of hybrid 
639 RES-based autonomous energy systems. Renewable and Sustainable Energy Reviews, 2012. 
640 16(3): p. 1577-1587.
641 36. Dufo-López, R. and J.L. Bernal-Agustín, Multi-objective design of PV–wind–diesel–hydrogen–
642 battery systems. Renewable energy, 2008. 33(12): p. 2559-2572.
643 37. Kaviani, A.K., G. Riahy, and S.M. Kouhsari, Optimal design of a reliable hydrogen-based stand-
644 alone wind/PV generating system, considering component outages. Renewable energy, 2009. 
645 34(11): p. 2380-2390.
646 38. Shukla, A. and S. Singh, Advanced three-stage pseudo-inspired weight-improved crazy particle 
647 swarm optimization for unit commitment problem. Energy, 2016. 96: p. 23-36.
648 39. Zhang, J., et al., A hybrid particle swarm optimization with small population size to solve the 
649 optimal short-term hydro-thermal unit commitment problem. Energy, 2016. 109: p. 765-780.
650 40. Sahoo, L., et al., An efficient GA–PSO approach for solving mixed-integer nonlinear programming 
651 problem in reliability optimization. Swarm and Evolutionary Computation, 2014. 19: p. 43-51.
652 41. Das, S., A. Abraham, and A. Konar, Particle swarm optimization and differential evolution 
653 algorithms: technical analysis, applications and hybridization perspectives, in Advances of 
654 computational intelligence in industrial systems. 2008, Springer. p. 1-38.
655 42. Ahmed, H. and J. Glasgow, Swarm intelligence: concepts, models and applications. School Of 
656 Computing, Queens University Technical Report, 2012.
657 43. Holland, J. and D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. 
658 ed: Addison-Wesley, Reading, MA, 1989.
659 44. Tomassini, M., Parallel and distributed evolutionary algorithms: A review. 1999.



ACCEPTED MANUSCRIPT

24

660 45. Ibrahim, I.A., T. Khatib, and A. Mohamed, Optimal sizing of a standalone photovoltaic system for 
661 remote housing electrification using numerical algorithm and improved system models. Energy, 
662 2017. 126: p. 392-403.
663 46. Doagou-Mojarrad, H., et al., Optimal placement and sizing of DG (distributed generation) units in 
664 distribution networks by novel hybrid evolutionary algorithm. Energy, 2013. 54: p. 129-138.
665 47. Khorasaninejad, E. and H. Hajabdollahi, Thermo-economic and environmental optimization of 
666 solar assisted heat pump by using multi-objective particle swam algorithm. Energy, 2014. 72: p. 
667 680-690.
668 48. Li, X. and A. Malkawi, Multi-objective optimization for thermal mass model predictive control in 
669 small and medium size commercial buildings under summer weather conditions. Energy, 2016. 
670 112: p. 1194-1206.

671 47.        Ahmadi, S. and S. Abdi, Application of the Hybrid Big Bang–Big Crunch algorithm for   optimal sizing 
672 of a stand-alone hybrid PV/wind/battery system. Solar Energy, 2016. 134: p. 366-374.

673 48. Website of Renewable Energy and Energy Efficiency Organization at    
674 http://www.satba.gov.ir/fa/regions/tehran

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693



ACCEPTED MANUSCRIPT

25

694

695

696

697

698

699

700

701

702

703

704 Table1. Cost of the components [29]

Item
PV

 Panel

Wind 

Turbine

Battery

 Bank

Inverter, 

Charge Regulator

Rated power 1 (kW) 1 (kW) 1 (kWh) 1(kW)

Lifetime (year) 20 20 5 10

Investment cost ($) 2000 3200 100 700

Maintenance

Cost ($/year)
33 100 5 0

705

706 Table 2. The optimum cost of components for PV/WT/Battery (a), WT/Battery (b), and

707 PV/Battery (c) 

708 A.

MAX LPSP   PV (kW)  WT (kW)  Battery 

(KWh)

Inverter 

(kW)

Total NPC 

($)

2% 82 25 190 33 787193

5% 62 25 148 33 644235

10% 47 25 98 33 508540

709 B.

MAX LPSP   PV (kW)  WT (kW)  Battery 

(KWh)

Inverter 

(kW)

Total NPC 

($)
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2% 0 166 370 33 1361403

5% 0 120 230 33 919202

10% 0 92 150 33 708695

710 C.

MAX LPSP   PV (kW)  WT (kW)  Battery 

(KWh)

Inverter 

(kW)

Total NPC 

($)

2% 144 0 241 33 950412

5% 104 0 224 33 773241

10% 81 0 192 33 637476

711

712 Table 3. Comparison with HOMER software

Method
PV 

(kW)

WT 

(kW)

BAT 

(kWh)

Wind 

Vel.

Irradiance 

(kWh/ )𝒎𝟐/𝒅

Inverte

r (kW)

LCE 

($/kWh)
NPC ($) LPSP

GA-PSO
82 25 190 7.5 5.2 33 0.508 787193 0.02

HOMER
165 54 350 7.5 5.2 65 0.511 1652300 0.02

713

714

715

716

717 Table 4. Comparison results

Method PV(kW) WT(kW) BAT(kWh) Wind 

Vel.

Irradiance LCE

GA-PSO 82 25 190 7.5 5.2 0.508

[29]

Moaleman

61 22 434 6.1 5.8 0.540
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[29]

Nikouye

35 30 360 7.2 5 0.560

718

719

720

721

722

723

724

725

726

727

728

729

730 Fig.1. Simple diagram of the PV/WT/Battery system

731
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732
733 Fig. 2. Optimization and simulation flowchart

734

735
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736

737 Fig. 3. The mean monthly (a) and hourly (b) solar radiation in one year in Tehran, Iran

738

739

740

741

742
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743

744

745

746 Fig. 4. The mean monthly (a) and hourly (b) wind velocity [48]

747

748

749
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751

752 Fig. 5. Monthly (a) and hourly (b) load demand diagram for a residential section

753

754

755

756    
757
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758

759 Fig. 6. Single objective optimum solution for the hybrid PV/WT/Battery system with 2% (a), 5% 

760 (b), and 10% (c) of LPSP

761

762

763

764    
765
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766

767

768 Fig. 7. Single objective optimum solution for the hybrid PV/Battery system with 2% (a), 5% (b), 

769 and 10% (c) of LPSP

770

771    
772
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773

774

775 Fig. 8. Single objective optimum solution for the hybrid WT/Battery system with 2% (a), 5% (b), 

776 and 10% (c) of LPSP

777

778

779

780

781

782 Fig.9. MOPSO simulation results for hybrid PV/WT/Battery system

783

784
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786

787 Fig. 10. MOPSO simulation results for hybrid WT/Battery system

788
789 Fig.11. MOPSO simulation results for hybrid PV /Battery system
790
791
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792

793 Fig. 12 LCE for different electrical loads
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