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Abstract. Many medical applications require a registration of different
images of the same organ. In many cases, such a registration is accom-
plished by manually placing landmarks in the images. In this paper we
propose a method which is able to find reasonable landmarks automat-
ically. To achieve this, nodes of the vessel systems, which have been
extracted from the images by a segmentation algorithm, will be assigned
by the so-called association graph method and the coordinates of these
matched nodes can be used as landmarks for a non-rigid registration
algorithm.

1 Introduction

Medical imaging methods like computed tomography (CT) and magnetic reso-
nance imaging (MRI) are able to provide three-dimensional, digital images of
organs like liver or lung. In many medical applications, it is desirable to provide
the user different images of the same organ. For instance, this might be reason-
able if a lung shall be examined both in the inhaled and exhaled state or if there
are CT as well as MRI images of the same organ. Another possible application
is the monitoring of an organ over a long time period by regularly scanning the
organ.

Because of respiration, heartbeat etc. it is possible that the position and
shape of an organ might considerably differ between two scannings. That makes
it difficult to detect regions in the images which depict the same part of the
organ. Such a mapping between different images of an organ is called registration.
Following Hill [1], registration is the process of transforming different image data
sets into one coordinate system.

In order to allow an automatic registration of image data sets it is necessary
to use properties of the organs which are invariant against respiration, heartbeat
etc. The vessel system of the organs is one possibility for such an invariant fea-
ture. The position and extension of these vessel systems might change but their
structure remains (nearly) constant. The identification of corresponding areas



in these structures provides structural information, which eases the registration
of the image data sets. The vessel systems of liver and lung (e.g. portal vein
of the liver and bronchi respectively) are trees and it is therefore possible to
apply structural pattern recognition methods to this problem of matching tree
structures.

2 State of the Art

There are different approaches for matching of tree structures. We briefly sketch
four of them:

Pelillo et al. [2, 3] used the so-called association graph for detecting maximal
subtree isomorphism of rooted and free trees. Possible assignments of tree nodes
are represented as nodes of the association graph. Two nodes of the association
graph are connected via an edge if the corresponding assignments are consistent.
Two assignments are considered to be consistent if the topological relationship
between the two involved nodes in both trees is equal. The definition of this
topological relationship differs for matching of rooted and free trees; for free
trees it is exactly the topological distance! of two nodes while for rooted trees the
difference of node levels? additionally has to be equal. In the derived association
graph a maximal clique is detected by applying pay-off monotonic dynamics from
evolutionary game theory on a continuous formulation of the problem obtained
by the Motzkin-Straus theorem [4].

Bartoli et al. [5] and Pelillo et al. [6] proposed an extension of the associ-
ation graph approach to achieve many-to-one and many-to-many matchings of
attributed trees. Many-to-many matching means that a group of nodes can be
assigned (contracted) to a single node in the other tree while many-to-one match-
ing means that this relationship holds only in one direction. The latter might be
adequate when matching a tree to a model. For the purpose of many-to-many
matching, each node is rated with a value r € RT which depends only on its
attributes. A group of nodes can be contracted if the ratings of all but one node
fall below a certain threshold.

Tschirren et al. [7] proposed a method for matching of human airway trees.
They first perform a pruning step on the trees in order to improve their compa-
rability and subsequently a rigid registration in order to map the trees into the
same coordinate system. Thereafter, a hierarchical approach using an associa-
tion graph is applied to the data to accomplish a matching. While this approach
performs well for some input trees, there are two major drawbacks: The method
needs robust ways of detecting major branchpoints in the trees and relies on
the invariance of the topological distance. The former may be possible in airway
trees but proved to be difficult in liver vessel systems. The latter is susceptible
to erroneous segmentation due to noise (see Figure 1).

! The topological distance is defined as the number of edges, which have to be traversed
on the unique path from one node to another.

2 The level of a tree node is defined as the number of edges, which have to be traversed
on the unique path from a node to the root of the tree.



Charnoz et al. [8] proposed an algorithm, which performs a parallel depth
first search on both trees. During this process, a set of matching hypotheses
is generated. All matching hypotheses contained in this set are rated and the
global optimal matching is chosen. Because of the exponential number of poten-
tial matching hypotheses it is crucial to study only the most promising hypothe-
ses. Hence, on each step of the depth first search only a certain number of those
node assignments is considered, whose node attributes are similar. This selection
based on local properties is risky since the global optimal matching may contain
assignments of nodes whose attributes differ significantly. If one correct assign-
ment of nodes close to their root is missed, the whole generated set of matching
hypotheses may be significantly flawed. The approach attained promising results
when matching one tree segmented from the Visible Mans liver with a perturbed
version of itself. Nevertheless, the applicability to trees segmented from real pa-
tient data with significant differing topology and node attributes (see Section 3)
remains open.

In this work, we will propose an enhanced version of the association graph
approach. The association graph approach proposed by Pelillo et al. [2,3] has
been applied successfully to matching of shock trees and shape-axis trees. When
applying it to matching of anatomical vessel trees, there are a few additional
issues which have to be considered:

— Due to noise and motions of the recorded organs, there will nearly always
be errors in the extracted tree structures: Noise, for example, might result
in additional branches, which do not exist in the real organ. An additional
branch can influence topological distances as well as the level of nodes (see
Figure 1) .

— Since the resolutions of CT and MRI have increased continuously in the
recent years, the tree structures might be quite big, i.e. have up to 1000
nodes.

A many-to-many matching as described by Bartoli and Pelillo [5, 6] might in
principle deal with the first issue; however, it is not clear how to obtain a rating
based on node attributes that has small values for exactly those nodes, which
were erroneously detected.

Therefore, the described approaches which use an association graph are not
well suited for the purpose of matching of anatomical vessel trees. The main
contribution of this work is to enhance the association graph approach so that the
method can deal with the issues mentioned above. Consequently, it is adequate
for the matching of anatomical vessel trees.

3 Methods

3.1 Association Graph

In this section, we will present our enhanced version of the association graph
approach. We start with the definition of the enhanced tree association graph,
and explain it in more details later on:



Definition 1 (Tree Association Graph). Let Ty = (V1, E1,w1) and To =
(Va, E2,wsa) be two rooted trees. We define the tree association graph G =
(Va, Ea) of T1 and Ty with respect to a set of unary constraints Cr and a set of
binary constraints Cq as:

1. Vy = {’Ua eV x ‘/2| Z wifi(va) > 0.5}, Zwi =1, w; € [O, 1]
fi€Cr i

2. Eq ={(vq,m) € Va xVa| > w,gi(vg,vp) > 05}, dv; =1, v; €[0,1]
g9;€Cq J

An interpretation of this definition is as follows: A node v, = (va1,v42) € Va
represents the potential assignment of the tree nodes v,1 and v,2. Consequently,
the set V4 is the set of all promising assignments of nodes in V7 to nodes in
V. An assignment is considered to be promising if it fulfills a set of unary con-
straints, formalising similarity measures for two nodes, to a certain extent. Each
unary constraint measures the similarity of two nodes and rates this similarity
with a value between 0 and 1. If the rating is close to 1, the two nodes are nearly
indistinguishable for this constraint, while two nodes with rating close to 0 pos-
sess only little similarity. Furthermore, each of these constraints has a parameter
which determines its selectivity®. Since there are different unary constraints and
not all of them might be equally decisive, each unary constraints is weighted
with a factor w; € [0,1]. The sum of all weights has to be 1. An assignment is
promising if the average weighted sum of the rating of all unary constraints for
this assignment is greater than or equal to 0.5. Hence, in contrast to the original
definition [2, 3, 5, 6] of an association graph V4 # V4 x Vo but V4 C V3 x V. The
reduction of the cardinality of V4 enables us to apply the association graph ap-
proach to trees with a great number of nodes. A collection of unary constraints
is introduced in Subsection 3.2.

Two nodes v, = (Vq1,Va2) and vy, = (vp1, Vp2) of an association graph are con-
nected via an edge e iff the assignments v,1 < v42 and vy < v are consistent
to each other. Two assignments are considered to be consistent if they fulfill a set
of binary constraints, which formalise consistency measures for two assignments,
to a certain extent. Analogue to unary constraints, each binary constraint gives a
rating between 0 and 1, is controlled by a selectivity parameter, and is weighted
with a factor v;. Two assignments are consistent if the average weighted sum
of the ratings of all binary constraints for the corresponding association graph
nodes is greater than or equal to 0.5. Some binary constraints are proposed in
Section 3.3.

The aim of matching of tree structures is to determine a set of node as-
signments of maximum cardinality in which each two assignments are pairwise
consistent. Such a set corresponds directly to a maximum clique? in the asso-
ciation graph. Since detecting a maximum clique of a graph is known to be

3 7Selectivity” means how similar two nodes must be to be rated with a value greater
than 0.5.

4 Given an arbitrary undirected graph G = (V, E), a subset of vertices C C V is called
a clique if all its vertices are mutually adjacent; a clique is said to be maximum if
there is no other clique with higher node cardinality in the graph.



NP-hard [9], we have to apply approximate methods. As discussed in Section 2,
Pelillo gives a promising approach for approximating the maximum clique based
on applying pay-off monotonic dynamics from evolutionary game theory on a
continuous formulation of the problem obtained by the Motzkin-Straus theorem
[4]. This approach has been successfully adopted to this problem.

3.2 Unary Constraints

Unary constraints detect promising assignments of tree nodes in an early stage
of the matching process. Obviously, two nodes which might be assigned should
be similar. In this context, similarity means that some local properties of the
nodes should differ only to a small amount. Examples of such local properties
are:

— The level of a tree node.

— The length (or diameter) of the discharging edge of a node. The discharg-
ing edge is the unique incident edge of a node, whose other endpoint is a
node with minor level. The length of an edge has been computed during the
segmentation process and is defined as the length of the anatomical vessel,
which corresponds to the edge.

— The size of the induced subtree of a node. The induced subtree of a node is
that part of the tree which is rooted in this node. The size of a subtree is
defined as the sum of the length of all edges of this subtree.

— The spatial coordinate of a node.

Unfortunately, all of these properties are perturbed by noise, movements of
the organs and resultant errors during the segmentation and extraction of the
tree structure. For example, the spatial coordinate of a node in the lung is heavily
influenced by respiration. The size of a subtree depends among other things on
the resolution of the medical imaging method. Methods with higher resolution
are able to detect more subtle parts of the tree structure, which increase the size
of a subtree. Noise might cause the erroneous detection of a node, which can
influence the level of nodes as well as the length of edges (see Figure 1).

Thus, these local properties proposed above are no good choices for unary
constraints (as shown by the results presented in Section 4) . A more reliable
property, though not local, is the spatial course of the unique path from a node
v to a reference node® r of the tree. This path traverses a set of edges, whose
spatial course is described by a sequence of skeleton points. Hence, the spatial
course of each path can be described as a polyline S = [v,vy,...,v,,7] in R?
consisting of the concatenation of the skeleton points of the edges. We will now
define a similarity measure for two of these polylines. This similarity measure
compares the curve progression but is independent of the length of the polylines.
Therefor, each polyline will be normalised first by transforming it as follows:

5 A reference node is a tree node, which can be reliably detected in both trees. Pos-
sibilities for reference nodes are the root or the first major bifurcation node of a
tree.
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Fig. 1. Erroneously detected nodes influence the level of nodes as well as the length
of edges. In this example, the erroneous node C causes an additional bifurcation node
B, which splits one edge into two parts. Thus, the level of the leftmost node A has
increased by one as well as its topological distance to all other tree nodes. Furthermore
the length of its discharging edge has decreased considerably, because this edge has
been split into two parts.

1. The polyline will be displaced by —v so that its start point is located in the
origin of the coordinate system.

2. Each skeleton point of the polyline will be scaled by m so that the start
and end point of the polyline will have the euclidean distance 1.

3. The polyline will be rotated in order that its end point will be z; = (1,0, 0)%.
For this purpose, the angle o between the vectors r — v and = = (1,0,0)!
will be computed. Thereafter, the polyline will be rotated by « around the
axis, which is orthogonal to » — v and x. This axis is uniquely determined
unless r — v = #(1,0,0)". In this case, an axis which is orthogonal to x can
be arbitrarily chosen, because « has to be 0 or 7.

After this transformation, all polylines S = [so, $1, .., Sn—1, Sn] Will begin
at sg = (0,0,0)! and end at s, = (1,0,0)!. We define a partial-polyline as
Si =[50, 51, ..., 5;] and the length of a polyline S; as ||Si|| = >, |[s; — sj-1l,-
Furthermore, we define a parametrisation f of a polyline as follows: f : [0;1] —

R? with f(12H]) = s;, in particular f(0) = (0,0,0)* and f(1) = (1,0,0)". The

other values of f are linearly interpolated: For t € }l‘lé"‘l", Hﬁisﬂ” let f(t) =

: #1S11— 114 ]
1—(1 S; as; Wlthazi.
( )i+ asis IEIsIE

An obvious similarity measure for two polylines S; and S2 with parametri-
sation f1 and f3 is the integral fol [|f1(t) = f2(t)||, dt. This integral corresponds
to the area between the polylines. However, as shown in Figure 2, this similarity
measure is not appropriate since there is still one degree of freedom which affects
the value of the integral. Therefore, a better similarity measure is

1
d=,min di¢) with d() = [I1(0) = Aufa(O)ly



Fig. 2. Two normalized polylines which are to be compared. If the rotational degree of
freedom around the x-axis is not considered, even very similar polylines can be rated
as very different. In this example, if one of the polylines is rotated by 7 around the
x-axis, the polylines would be identical.

where A4 is a matrix which describes a rotation by ¢ degrees around the x-axis.
Unfortunately, this optimisation of the angle ¢ is computationally expensive.
This is critical since we have to apply each unary constraints very often®, which
requires the computation of d each time.

Instead of computing the area between two polylines, the directions of the
polylines can be compared as basis for a similarity measure, too. Since the poly-
lines are piecewise linear, the derivative f’(t) exists almost everywhere and f’
is piecewise constant. For each ¢t € [0,27], ¢;(t) = #%))” is a unit vector
which describes the direction of the polyline’s tangent for the parameter value
t. We define the similarity of two unit vectors a and b as their dot product
atb. A property of the dot product of two unit vectors is —1 < a’b < 1 with
a'b = 1 & a = b. Hence, the similarity of two polylines can be defined as
%fol(l + g1(t)tg2(t))dt € [0,1]. The greater the value of the integral, the more
similar are the two polylines. However, this similarity measure is influenced by
the rotational degree of freedom, too. Fortunately, the optimisation problem

1

1

- [ )" Apga(t))dt 1

Jmax 3 [ (4 010 Aoa(0) ()
0

with a matrix A, which describes a rotation around the x-axis can be solved
analytically [10]. Using g; = (gi1, gi2, gi3)t the solution is given by

max }(gl (t)t Apg2(t))dt = C + vV D? + E?

¢€0,27]

1
with C' = b117 D= b22 + [)337 E= 523 - b32 and bj]g = fglj(t)ggk(t)d/t.
0

6 If the two trees have n and m nodes respectively, a unary constraint has to be applied
O(nm) times.



3.3 Binary Constraints

Binary constraints determine whether two assignments v,1 <> v42 and vy < Up2
are consistent to each other, i.e. whether the corresponding nodes of the asso-
ciation graph shall be connected via an edge. First ideas for binary constraints
might be:

— The euclidean distance d. of both nodes in the two trees should be similar,
i.e. de (val, vbl) ~ de (’Ua2, UbQ)

— The topological distance d; of both nodes in the two trees should be similar,
i.e. di(va1, vp1) = di(va2, Ub2)

Unfortunately, the same disturbing factors (noise, respiration, heartbeat) which
affect the local properties in Section 3.2 influence the mentioned properties,
too. Thus, we have to develop more sophisticated similarity measures. It has
turned out that the comparison of the directions of two polylines can be easily
transferred onto the binary case and results in a robust constraint: Instead of
comparing the two polylines which connect the nodes with the reference nodes
of their trees we can simply compare the two polylines which connect v,; and
vp1, and v,o and vpe, respectively.

Since binary constraints might be applied very often” the comparison of the
directions of two polylines can be too expensive for large trees. In this case, the
comparison of the length [(v,,vp) of the connecting path® of two nodes v, and
vp 1S an option, which can be computed very fast and yields acceptable results.
Another similarity measure, which is computationally cheap, is the curvature of
the connecting path. We define the curvature ¢ of a path connecting two nodes
v and vy, as ¢(vq, vp) = 1(vVq, Vp)/de(Va, Vp)-

4 Results

The proposed method has been implemented and tested in the MeVisLab re-
search and prototyping platform (http://www.mevislab.de/). To provide a ba-
sis for the empirical evaluation of the quality of the matchings achieved by the
association graph method, we use two matchings as ground truth, which were
created manually by human experts. These datasets match a pair of bronchi
trees (in inhaleted and exhaleted state) and a pair of portal vein trees (one CT
and one MRI image). In each case, both trees have roughly 200 nodes and both
ground truths contain 34 assignments of significant nodes distributed all over
the trees.

We analyzed the quality of unary and binary constraints. In this section we
present mainly the results obtained with the portal vein dataset. Nevertheless,

7 If the two trees have n and m nodes respectively, in the worst case a binary constraint
has to be applied O(nzmz) times. The worst case occurs, if most of the possible
assignments have been rated as promising by the unary constraints.

8 The length of a path is defined as the sum of the length of its edges.



Table 1. Comparison of different unary constraints. For each constraint, the selectivity
parameter o has been chosen empirically in order to optimise the resulting matching.
Neither the comparison of the diameter of the discharging edge (EdgeDiameter) nor
the size of the induced subtree (SubtreeSize) of a node yield in promising results. Better
results are obtained by the non-local constraints. These constraints require the choice
of a reference node. For the results presented here, the root has acted as reference node.
The runtime was measured on a Pentium4 3.2GHz.

Constraint o |Correct|Error| Runtime
EdgeDiameter | 1.5 0 3 10.08 sec
SubtreeSize 1.1 4 2 12.36 sec
PathCurvature |1.08 7 3 10.16 sec
1
4

PolylineArea [1.04| 11 14.79 sec
PolylineDirection|1.15| 18 2.58 sec

the results for the bronchi tree were similar. First, we present a comparison® of
the different unary constraints proposed in Subsection 3.2. We will use the fol-
lowing names for the different types of constraints (regardless if unary or binary)
proposed in Section 3:

EdgeDiameter: Compares the diameter of the discharging edge of a node.
SubtreeSize: Compares the size of the subtree induced by a node.

PathLength: Compares the length of the (unique) path connecting two nodes.
PathCurvature: Compares the curvature of the (unique) path connecting two
nodes.

PolylineArea: Compares the area between two (normalized) polylines.
PolylineDirection: Compares the direction of two (normalized) polylines.

As can be seen in Table 1, the best results yield from the PolylineArea and
the PolylineDirection constraints. As expected, the runtime of the PolylineArea
constraint is (because of the expensive optimization of the angle ¢) significantly
larger than the runtime of the other constraints. Further improvements of the
matching can be achieved when combining several unary constraints. It has
turned out that it is optimal to combine the PathCurvature constraint with the
PolylineDirection constraint in the proportion 1 : 4 (see Table 2).

Similarly, we have analysed the quality of several binary constraints proposed
in Subsection 3.3 (in combination with the optimal set of unary constraints, see
above). The results are shown in Table 3 and Table 4.

Subsequently, the set of constraints and parameters, which was optimal for
the portal vein datasets, has been applied to the bronchi tree datasets to evaluate

% Since the proposed algorithm can only be tested with a combination of unary and
binary constraints, we show here the results of a particular unary constraint in
combination with a specific set of binary constraints. Since we used the same set of
binary constraints for all tests, we can compare the quality of the unary constraint.
Furthermore, it has turned out that the relative quality of the unary constraints
does not depend on the choice of the set of binary constraints.



Table 2. Combination of unary constraints. In parentheses, the weight of the respec-
tive constraint is shown. A combination of the PolylineArea and the PolylineDirection
does not improve the quality of the matching. It is likely that this is due to the fact
that both constraints assess similar properties and a combination comprises a lot of
redundancy. Better results are obtained when combining one of these constraints with
the PathCurvature constraint. The best result is achieved when combining this con-
straint with the PolylineDirection constraint in the proportion 1 : 4. This proportion is
grounded in the fact that the PolylineDirection constraint provides better results than
the PathCurvature constraint when applied solely.

Configuration Correct|Error
PolylineArea(0.5) : PolylineDirection(0.5) 16 4
PathCurvature(0.5) : PolylineDirection(0.5)| 13 2
PathCurvature(0.2) : PolylineDirection(0.8)| 20 2

PathCurvature(0.2) : PolylineArea(0.8) 10 4

Table 3. Comparison of binary constraints. For each constraint, the selectivity pa-
rameter ¢ has been chosen empirically in order to optimise the resulting matching.
The PathLength constraint alone does not yield in good results as it is not distinctive
enough. Better results are obtained by the PathCurvature and PolylineDirection con-
straints. The PolylineArea constraint is omitted here, since its runtime is (due to the
large number of applications of a binary constraint) very high and it does not yield in
better results than the PolylineDirection constraint.

Constraint o |Correct|Error| Runtime
PathLength 1.7 2 4 6 sec
PathCurvature | 1.3 18 2 8.9 sec
PolylineDirection|1.13| 17 2 1203.97 sec

Table 4. Combination of binary constraints. The weight of the respective constraint
is shown in parentheses. Even though the PathLength constraint alone does not seem
to be promising, it can improve the results of the PathCurvature and PolylineDirection
constraints. The best results are achieved when combining the PolylineDirection with
the PathLength constraint in the proportion 3:1.

Configuration Correct|Error
PolylineDirection(0.5) : PathCurvature(0.5)| 17 4
PathCurvature(0.75) : PathLength (0.25) 20 2
PolylineDirection(0.75) : PathLength(0.25) | 17 0




Fig. 3. Matching of two portal veins. Depicted are two portal veins as well as the
attained matching. Assigned nodes are dyed in the same colour. If a set of node as-
signments induces a subtree isomorphism, the whole subtrees are dyed with the same
colour.

if the approach performs equally well for datasets originated from other organs.
The results are summarised in Table 5, and Figure 3 depicts the matching of
the portal vein trees. The quality of both matchings is satisfying, whereas the
matching of the portal vein dataset is superior to that of the bronchi trees. Since
this discrepancy remains when differing weights and selectivity parameters, the
matching of bronchi trees is apperently intrinsically more complex than match-
ing of portal veins. One possible reason is that bronchi trees are dichotomous
structures, which means that they have many subtrees which are very similar to
each other. An example for such similar subtrees are the right and the left part
of a bronchi tree, which split in the first major branchpoint.

Table 5. Results of the matching process: In both cases, the matching algorithms
assigned approximately 80 nodes. In case of the portal vein dataset, 17 of these as-
signments were covered by the ground truth and none of them was incorrect. In case
of the bronchi tree, 25 of the assignments were covered by the ground truth and 4 of
them were incorrect. Nevertheless, these erroneous assignments match nodes, which are
topological neighbours and geometrically at close quarters and therefore, it was even
difficult for humans to determine the correct matching of these nodes.

Dataset |Portal Vein|Bronchi Tree
Correct 17 21
Error 0 4

Runtime| 207.35 sec | 369.23 sec




5 Conclusions

The results indicate that the proposed method is able to achieve good results
for typical examples of vessel trees. A significant ratio of tree nodes is assigned
in an admissible amount of time. The acquired matching covers most parts of
the trees and contains no or only few errors. In our future work, we will analyze
if the acquired landmarks are able to improve the registration of the image
datasets. Furthermore, it will be examined if the method acquires promising
results for harder datasets like images taken during the regeneration of a liver
after living liver donation. Also, it will be analyzed if a rigid registration and
a hierarchical decomposition of the trees (as described in [7]) can reduce the
required computation time.
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