
ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 11, november 2004 1547

Guided Wave Propagation in an Elastic Hollow
Cylinder Coated with a Viscoelastic Material

James N. Barshinger, Member, IEEE, and Joseph L. Rose, Member, IEEE

Abstract—The propagation of ultrasonic guided waves
in an elastic hollow cylinder with a viscoelastic coating is
studied. The principle motivation is to provide tools for per-
forming a guided wave, nondestructive inspection of pip-
ing and tubing with viscoelastic coatings. The theoretical
boundary value problem is solved that describes the guided
wave propagation in these structures for the purpose of find-
ing the guided wave modes that propagate with little or no
attenuation. The model uses the global matrix technique to
generate the dispersion equation for the longitudinal modes
of a system of an arbitrary number of perfectly bonded hol-
low cylinders with traction-free outer surfaces. A numerical
solution of the dispersion equation produces the phase ve-
locity and attenuation dispersion curves that describe the
nature of the guided wave propagation. The attenuation
dispersion curves show some guided wave modes that prop-
agate with little or no attenuation in the coated structures
of interest. The wave structure is examined for two of the
modes to verify that the boundary conditions are satisfied
and to explain their attenuation behavior. Experimental re-
sults are produced using an array of transducers positioned
circumferentially around the pipe to evaluate the accuracy
of the numerical solution.

I. Introduction

Many researchers have been interested in the applica-
tion of ultrasonic guided waves for the nondestructive

inspection of tubes and pipes [1]–[4]. They have recognized
the possibility for rapid, accurate, and inexpensive nonde-
structive assessment of these structures that exist in the
infrastructure of many industries, such as oil, gas, and wa-
ter transport; power generation; and chemical processing.
One of the potential difficulties in inspecting these struc-
tures is the presence of viscoelastic coatings that are com-
monly used for corrosion protection. These coatings tend
to attenuate the propagating energy and can severely de-
grade the performance of a guided wave test with regard
to test sensitivity and the distance of propagation.

One of the proposed solutions to this problem has been
to perform the inspection using the lowest order longitu-
dinal or torsional modes at low excitation frequencies in
which guided waves will penetrate coated structures; of-
ten as low as 30 kHz for the longitudinal mode, and as
low as 8 kHz for the torsional mode [4]. Although this
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method produces propagating wave modes that will pen-
etrate the coated structure, the sensitivity of the test to
finding small defects can be severely compromised because
the wavelength of the guided wave mode becomes on the
order of, or significantly larger than, the size of the defects
that are typically being sought.

Alternatively, there is the possibility that, for viscoelas-
tic coated structures, there are certain higher order mode
and frequency choices that have the modal characteristics
necessary to propagate with less attenuation than others
in which defect detection is not compromised. This is due
to the abundance of mode choices, each having a unique
stress and displacement characteristic, wave structure, in
the wave guide [5]. One way to determine these modes
would be a trial-and-error method of tuning generation
parameters such as the transducer incident angle and fre-
quency to find the modes with the least attenuation. Al-
though this method can be effective, the associated time
and equipment cost can make it impractical. Therefore,
a theoretical model of the coated structure to predict at-
tenuation characteristics is a more attractive method for
finding suitable modes for a guided wave inspection [6]–[8].

II. Theory

A. Background

The initial analysis of elastic wave propagation in wave
guides was carried out in the late 19th and early 20th
centuries by researchers studying elastic wave propaga-
tion for various geometrical wave-guide shapes. Rayleigh
[9] and Lamb [10] studied the elastic wave propagation in
traction-free, isotropic plates. Pochhammer [11] and Chree
[12] studied the elastic wave propagation in infinitely long
cylindrical rods. Early efforts also were presented for the
analysis of hollow cylinders by using shell theory approx-
imations and assuming axially symmetric motion such as
Love [13] and Rayleigh [9]. Other researchers such as Lin
and Morgan [14], Cooper and Naghdi [15], and Mirsky and
Herrmann [16], [17], also used shell theories to solve for
the frequency/wave number relationships for axisymmetric
motion of hollow cylinders. In 1959, Gazis [18], [19] devel-
oped an exact elastic solution for a hollow cylinder, includ-
ing axially symmetric, nonaxially symmetric, and torsional
wave modes.

The earliest works for multilayer elastic wave guides
using matrix techniques was presented by Thomson [20],
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Haskell [21], and Knopoff [22] to model seismological ef-
fects in the layered structure of the earth. Viscoelastic
and leakage effects also have been included by various
researchers to model the attenuation behavior of guided
wave modes [23]–[25]. Lowe [26] presents an excellent sum-
mary of the use of matrix techniques to model multilayered
structures. In addition to a general overview of the formu-
lation of multilayer problems, he presents some insights on
performing the numerical solution of the dispersion equa-
tion. Particularly, he uses functional minimization to solve
the complex roots of the dispersion equation for systems,
including material damping.

Many general references for wave propagation theory
exist, such as Viktorov [27], Graff [28], Achenbach [29],
Auld [30], Rose [31] and others. Ewing et al. [32] is also a
good general reference for wave propagation in multilay-
ered media. Some additional references for the viscoelastic
model and coated shells are [33], [34].

B. Axially Symmetric Waves in a Cylindrical Shell

For a homogeneous, isotropic medium, the vector form
of Navier’s equation of motion is:

µ∇2u + (λ + µ)∇(∇ · u) = ρ
∂2u
∂t2

, (1)

where u is the displacement field, λ and µ are the Lamé
constants for the material, and ρ is the density. To obtain
a solution for (1), the displacement field is assumed to be
a combination of the gradient of a scalar potential field,
Φ, and the curl of a vector potential field, H, with the
additional constraint that ∇ · H = 0 [28]:

u = ∇Φ + ∇ × H. (2)

Substitution of (2) into (1) results in scalar and vector
wave equations:

∇2Φ =
1
c2
1

∂2Φ
∂t2

, c1 =
√

(λ + 2µ)/ρ, (3)

∇2H =
1
c2
2

∂2H
∂t2

, c2 =
√

µ/ρ, (4)

Eq. (3) represents the longitudinal wave motion in the
structure and (4) represents the shear wave motion, c1
and c2 are the longitudinal and shear wave velocities of
the medium. The vector potential field, H, is composed of
scalar components Hr, Hθ, and Hz.

In order to consider the complete solution for the wave
propagation in the structure, including axially symmet-
ric, nonaxially symmetric, and torsional modes, the two
wave equations must be solved entirely [18], [19]. How-
ever, to obtain the longitudinal guided-wave modes, the
axially symmetric solution can be isolated by setting the
Hr and Hz components of the vector potential to be zero.
The remaining component, Hθ, and the scalar potential,
Φ, must only be a function of coordinates r and z [28].
Considering the elimination of two components of the vec-
tor potential, and the restrictions on the other component,

the wave equation for the shear motion becomes a scalar
wave equation in Hθ:

∇2Hθ − Hθ

r2 =
1
c2
2

∂2Hθ

∂t2
. (5)

To solve the two scalar wave equations, assume har-
monic wave propagation in the positive z coordinate di-
rection such that the solutions are of the following form:

Φ = f(r)ei(kz−ωt), (6)

Hθ = h(r)ei(kz−ωt). (7)

Substituting (6) into (3) yields a form of Bessel’s equa-
tion:

r2f ′′ + rf ′ + r2α2f = 0; α2 = (ω2/c2
1 − k2). (8)

Eq. (8) has a solution that can be expressed in terms of
zeroth order Hankel functions:

f(r) = A(L+)H
1
0 (αr) + A(L−)H

2
0 (αr). (9)

Substituting (7) into (5) also yields a form of Bessel’s
equation:

r2h′′ + rh′ +
{
r2β2 − 1

}
h = 0; β2 = (ω2/c2

2 − k2).
(10)

Eq. (10) has a solution that can be expressed in terms
of first order Hankel functions:

h(r) = A(S+)H
1
1 (βr) + A(S−)H

2
1 (βr). (11)

Substituting (9) and (11) into (6) and (7), the solutions
for the scalar and vector fields are:

Φ =
{
A(L+)H

1
0 (αr) + A(L−)H

2
0 (αr)

}
ei(kz−ωt),

(12)

H =
{
A(S+)H

1
1 (βr) + A(S−)H

2
1 (βr)

}
ei(kz−ωt)eθ.

(13)

The choice of Hankel functions as opposed to Bessel
functions is important in obtaining a numerically stable
solution in regions in which the argument of the functions
becomes imaginary. These solution regions occur for values
of wave number in which the longitudinal or shear wave
components in the individual layers become nonpropagat-
ing (i.e., when a critical angle is exceeded).

Physically, the Hankel functions individually represent
the propagating longitudinal and shear waves in the layer
[28], such that the unknown amplitude constants for each
term are described with the subscripts (L) and (S) to de-
note longitudinal and shear waves, and (+) and (−) to in-
dicate propagation in the outward and inward directions,
respectively.

When substituted into (2), (12) and (13) yield a so-
lution to the displacement equation of motion in terms
of the unknown amplitude constants for longitudinal and
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shear waves propagating in the structure. The individual,
nonzero displacement components are:

ur =
{
A(L+)

[
−αH1

1 (αr)
]
+A(L−)

[
−αH2

1 (αr)
]

+A(S+)
[
kH1

1 (βr)
]
+A(S−)

[
kH2

1 (βr)
]

}
ei(kz−ωt),

(14)

uz =
{

A(L+)
[
−kH1

0 (αr)
]
+A(L−)

[
−kH2

0 (αr)
]

+A(S+)
[
−βH1

0 (βr)
]
+A(S−)

[
−βH2

0 (βr)
]
}

ei(kz−ωt).
(15)

The stresses in the layer can be derived with respect to
the unknown amplitude constants by first using the strain-
displacement constitutive equations, then the stress-strain
constitutive equations from linear elastic theory.

σrr =µ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(L+)

[
(k2 −β2)H1

0 (αr)+2
α

r
H1

1 (αr)
]

+A(L−)

[
(k2−β2)H2

0 (αr)+2
α

r
H2

1 (αr)
]

+A(S+)

[
2kβH1

0 (βr)−2
k

r
H1

1 (βr)
]

+A(S−)

[
2kβH2

0 (βr)−2
k

r
H2

1 (βr)
]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

ei(kz−ωt),
(16)

σrz =µ

⎧⎪⎪⎨
⎪⎪⎩

A(L+)
[
−2kαH1

1 (αr)
]

+A(L−)
[
−2kαH2

1 (αr)
]

+A(S+)
[
(k2 −β2)H1

1 (βr)
]

+A(S−)
[
(k2 −β2)H2

1 (βr)
]

⎫⎪⎪⎬
⎪⎪⎭

ei(kz−ωt). (17)

C. The Global Matrix Method

The next step in obtaining the dispersion equation for
the multilayer structure is to develop the expressions for
the boundary conditions of the layer system. Matrix meth-
ods have been recognized as being an excellent tool for
assembling these expressions [20]–[22], [26]. The general
methodology is to formulate a matrix/vector represen-
tation of the stress and displacement variables that are
needed for the boundary conditions. A global matrix then
can be derived from the individual matrix equations for
each interface or boundary condition. This global matrix
developed through the assembly of the entire set of bound-
ary conditions for the multilayer system. Because it is just
as easy to develop the equations for an arbitrary number
of layers as it is to generate the equations for a two-layer
system, the more general case is developed here.

Fig. 1 shows a wave guide consisting of n cylindrical
layers perfectly bonded together with traction-free surfaces
at the inner and outer interfaces of the entire system. Each
layer is homogeneous and isotropic so that each is governed
by the equations that have been developed thus far. The
boundary conditions at the traction-free surfaces are the
vanishing of normal and shear stresses and are given by:

{
σrr

σrz

}
Free

Surface
= 0. (18)

The interfacial continuity condition at the joining be-
tween two perfectly bonded layers is the continuity of dis-
placement components and the normal and shear compo-

nents of stress. For instance, the boundary condition be-
tween arbitrary layers i and (i + 1) is:

⎧⎪⎪⎨
⎪⎪⎩

uz

ur

σrr

σrz

⎫⎪⎪⎬
⎪⎪⎭ Layer=i

Interface=i+1

=

⎧⎪⎪⎨
⎪⎪⎩

uz

ur

σrr

σrz

⎫⎪⎪⎬
⎪⎪⎭ Layer=i+1

Interface=i+1

.
(19)

A matrix/vector expression for the displacements and
stresses of interest at an arbitrary position in a cylindrical
layer can be written from (14)–(17) as:

⎧⎪⎪⎨
⎪⎪⎩

uz

ur

σrr

σrz

⎫⎪⎪⎬
⎪⎪⎭

= [Λ]

⎧⎪⎪⎨
⎪⎪⎩

A(L+)
A(L−)
A(S+)
A(S−)

⎫⎪⎪⎬
⎪⎪⎭

ei(kz−ωt), (20)

where the terms of the layer matrix, [Λ], are:

Λ11 = −kH1
0 (αr)

Λ12 = −kH2
0 (αr)

Λ13 = −βH1
0 (βr)

Λ14 = −βH2
0 (βr)

Λ21 = −αH1
1 (αr)

Λ22 = −αH2
1 (αr)

Λ23 = kH1
1 (βr)

Λ24 = kH2
1 (βr)

Λ31 = µ((k2 − β2)H1
0 (αr) + 2αH1

1 (αr)/r)

Λ32 = µ((k2 − β2)H2
0 (αr) + 2αH2

1 (αr)/r)

Λ33 = µ(2kβH1
0 (βr) − 2kH1

1 (βr)/r)

Λ34 = µ(2kβH2
0 (βr) − 2kH2

1 (βr)/r)

Λ41 = −2µkαH1
1 (αr)

Λ42 = −2µkαH2
1 (αr)

Λ43 = µ(k2 − β2)H1
1 (βr)

Λ44 = µ(k2 − β2)H2
1 (βr).

(21)

In order to apply (20) to the boundary conditions for
the system, the layer matrix must be evaluated at the in-
side and outside interfaces for each layer. This is done by
inserting the density, and material velocities, for the layer
and the radius for the interface of interest into the expres-
sion for the layer matrix. The notation prescribed to these
new matrices is [Λij ] for the layer matrix evaluated for the
ith layer at the jth interface. Furthermore, it is possible
to define a new matrix [Γ] that is simply a 2 × 4 matrix
consisting of the lower two rows of [Λ]. This new matrix
is necessary because the boundary condition equations at
a free surface only involve the stress quantities. Now, the
boundary condition for the two free surfaces of the system
can be written as:

[Γ11] {A1} = {0} , (22)[
Γn(n+1)

]
{An} = {0} . (23)
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Fig. 1. Schematic representation of a system of n cylindrical layers.
The cylinders are assumed to be isotropic and perfectly bonded. The
internal surface of the innermost layer and the external surface of
the outermost layer are assumed to be traction free. The size and
material composition of the individual cylindrical layers are assumed
to be arbitrary at this point.

The boundary condition at the interface between arbi-
trary layers, i, and (i + 1) is:

[
Λi(i+1)

]
{An} =

[
Λ(i+1)(i+1)

] {
A(i+1)

}
. (24)

This equation can be rewritten by bringing all nonzero
terms to the left-hand side of the equation.

[
Λi(i+1)

] [
−Λ(i+1)(i+1)

] {
{Ai}{
A(i+1)

}}
= 0. (25)

The expressions in (22), (23), and (25) can be used to
assemble all of the boundary conditions for a system of n
cylindrical layers. The boundary condition set then must
be assembled into the form of:

[∆]{A} = 0, (26)

where [∆] is the global matrix and {A} is a vector con-
taining all of the unknown amplitude constants for each of
the layers. As an example, for a system of four layers, the
global matrix is:

∆ =

⎡
⎢⎢⎢⎢⎣

[Γ11] 0 0 0
[Λ12] [−Λ22] 0 0

0 [Λ23] [−Λ33] 0
0 0 [Λ34] [−Λ44]
0 0 0 [Γ45]

⎤
⎥⎥⎥⎥⎦ . (27)

It is easy to see how this method allows the assembly of
an arbitrary system of layers. Liquid layers, as well as bulk
media on the inside or outside of surfaces of the layer sys-
tem, also can be handled with slight modifications of the
layer matrices and the global matrix. See [31] for instance.

To obtain the modal solution for the multilayer struc-
ture, the determinant of the global matrix is set to zero,
solving for the frequency and wave number values that are
roots of the system of equations.

D. Viscoelastic Layers

Assuming linear viscoelasticity, and referring to Chris-
tensen [35] for the time harmonic case, elastic and vis-
coelastic solutions are identical, with the exception that
the viscoelastic material constants are complex and fre-
quency dependent. Thus, Navier’s equation of motion for
the viscoelastic case can be expressed as:

µ(iω)∇2u + (λ(iω) + µ(iω))∇(∇ · u) = ρ
∂2u
∂t2

,
(28)

where the Lamé constants are complex and frequency de-
pendent. The solution to this equation for axially sym-
metric motion in a cylindrical shell is identical to the so-
lution derived previously for elastic materials, except that
the material constants that are introduced as wave veloc-
ities are now complex and frequency dependent (because
the wave velocities are functions of the complex and fre-
quency dependent Lamé constants). Thus, in terms of the
dispersion equation, the treatment of elastic and viscoelas-
tic layers is identical, except for the real or complex valued
material constants that are input to the layer matrices.

Unlike elastic properties, there are no extensive sources
for viscoelastic properties. Furthermore, the properties
that can be found are typically for the frequency ranges
associated with static and dynamic problems, not wave
propagation problems. Therefore, it is necessary to make
some sort of measurement of the viscoelastic constants at
ultrasonic frequencies [36].

First, consider the equation for one-dimensional wave
propagation in x, for the displacement, u, where C is the
velocity of propagation as defined by (3) and (4), depend-
ing on whether longitudinal or shear wave measurements
are being made. Note that the velocity is specified to be
complex and frequency dependent due to the viscoelastic
material properties:

d2u

dx2 =
1

c(iω)2
d2u

dt2
. (29)

Two quantities, c(ω) and α(ω) can be defined from the
wave velocity as follows:

c(ω) =
(

Re
(

1
c(iω)

))−1

, (30)

α(ω) = ω Im
(

1
c(iω)

)
. (31)

Such that the complex velocity can be expressed in terms
of these constants as:

c(iω) =
[

1
c(ω)

+ i
α(ω)

ω

]−1

. (32)
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The quantity α(ω) is the attenuation constant and c(ω)
is the phase velocity. The solution to (29) in terms of the
attenuation and phase velocity is:

u(x, t) = De−α(ω)xe
iω

(
x

c(ω) −t
)
. (33)

It is readily apparent that, for wave propagation in a
viscoelastic medium, the solution involves not only a har-
monic wave propagation term, but also a decaying expo-
nential term that will cause attenuation of the propagating
waves. The attenuation term is the fundamental difference
between wave propagation in elastic and viscoelastic me-
dia. Losses in purely elastic media are due to geometrical
spreading of the wave front and scattering, and losses in
a viscoelastic material are due to those same factors with
the addition of material attenuation. This is essentially a
phenomenon of converting the mechanical energy of the
propagating wave into heat.

Now, it is necessary to make a physical measurement
of the quantities α(ω) and c(ω) for both longitudinal and
shear waves, at the ultrasonic frequencies of interest, so
that the complex wave velocities can be obtained from
(30) and (31) and are available for input to the appropriate
layer matrices. The attenuation constant is measured by
comparing the amplitude of longitudinal and shear waves
propagating through material specimens of two different
thicknesses. From (33), the ratio of amplitudes of the en-
velope of the received signal is:

A1(x1, ω)
A2(x2, ω)

= e−α(ω)[x1−x2]. (34)

Taking the natural logarithm of both sides and rear-
ranging yields, an expression for the attenuation constant:

α(ω) = − 1
x1 − x2

ln
(

A1(x1, ω)
A2(x2, ω)

)
. (35)

The phase-velocity measurement is done simply with a
two point velocity measurement:

c(ω) =
x1 − x2

t1(x1, ω) − t2(x2, ω)
, (36)

where t1 and t2 are the propagation times for thickness
x1 and x2, respectively. It should be noted that (35) and
(36) as written must be used in time domain with narrow
band signals, and that the frequency must be incremented
across the range of interest. Alternatively, broadband ul-
trasonic signals can be used to make the measurements of
the constants by performing a Fourier transform on the sig-
nal and using (35) to obtain the attenuation constant with
the amplitude information. In general, the phase informa-
tion is not useful for a velocity measurement because the
difference in thickness between specimens is usually many
wavelengths. For the materials measured for this work, the
velocity was not found to vary measurably with frequency,
so broadband pulses could be used with (36) to measure
the velocity.

TABLE I
Elastic and Viscoelastic Material Constants.

c1 α1/ω c2 α2/ω ρ
Material (km/s) (s/km) (km/s) (s/km) (gm/cm3)

Aluminum 6.33 3.13 2.70
Steel 5.90 3.19 7.80
Rexalite 2.33 0.0010 1.16 201E-8 1.05
E&C 2057

2.96 0.0047 1.45 0.0069 1.60
Epoxy
Mereco

2.39 0.0070 0.99 0.0201 1.08
303 Epoxy
Bitumastic

1.86 0.0230 0.75 0.2400 1.50
50 Coating

In order to obtain stable measurements of the attenu-
ation constant, a through transmission water immersion
fixture using Krautkramer broadband longitudinal wave
transducers was used to make the measurements. Measure-
ments were taken with 1 MHz, 2.25 MHz, and 5.0 MHz
transducers, separated at a distance of 20 mm. In order
to make the shear wave measurement, the specimen was
placed at an incident angle to the beams to create a 45 de-
gree refracted shear wave in the part. Note that, because
the transducers in the immersion fixture were held at a
constant distance, (36) was modified to be:

c(ω) =
x1 − x2

t1 − t2 + (x1 − x2)/cw
, (37)

to account for the varying amount of water path.
Material constants were measured for two elastic and

four viscoelastic materials as shown in Table I. Because
bituminous pipe coatings are the primary interest for the
industrial application of guided-wave inspection, a com-
mercial pipe coating was obtained and measured. Table I
shows the material constants for the steel pipe (elastic)
and the bitumen (viscoelastic).

E. Numerical Solution

Aside from the material constants that are input to the
layer matrices to form the dispersion equation, there are
two unknown variables: frequency, ω, and wave number, k.
Thus, to obtain a solution to the dispersion equation, one
of the quantities must be held constant while solving for
the other. Because analytical solutions are not available for
the dispersion equation, numerical routines must be used
to obtain these roots.

The plot of the wave number roots versus frequency
is called the dispersion curve for the wave guide. It also
is useful to convert the wave number roots to phase and
group velocities and plot these quantities versus frequency
resulting in phase and group velocity dispersion curves.

In general, the roots of the dispersion equations can be
real, imaginary, or complex [24]. A purely real result de-
scribes a wave mode propagating with no attenuation, and
it is the result typically sought for single or multilayered
wave guides consisting only of elastic materials. A purely
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imaginary result describes a nonpropagating, or evanes-
cent wave mode [37], [38]. This is essentially a mode that
is critically damped and thus does not propagate. This re-
sult can be important for describing stress fields very close
to the wave source, but it is unimportant in the far field.
Complex roots describe a propagating wave mode that is
attenuating with distance from the source. This is the type
of result that is of interest for viscoelastic or combination
elastic/viscoelastic wave guides, and it describes the at-
tenuation that is found for guided-wave modes propagat-
ing in such structures. This attenuation becomes readily
apparent by substituting a complex wave number into the
expressions for displacement or stress, that will thus have
the form of (38), having both a time harmonic term in the
solution and a damped exponential term that describes the
attenuation of the propagating wave:

u, σ = A(L,S)f(r, k, c1(iω), c2(iω))ei(Re(k)z−ωt)e−Im(k)z.
(38)

The calculation of the roots of the dispersion equation
often can be quite difficult because the function is multi-
valued and in general quite volatile, especially in the region
of wave numbers in which layers become nonpropagating,
i.e., when the angle of waves striking an interface exceeds
the critical angle of the adjacent layer. When considering
purely elastic wave guides, a bisection routine often is used
in conjunction with incremental starting values to obtain
the dispersion curve roots for systems with elastic layers
only. Although this method is slower in obtaining the roots
than slope-following routines such as Newton’s method, it
is more reliable given the fact that slope-following rou-
tines often extrapolate wildly making it almost impossi-
ble to find all of the wave number roots for a given fre-
quency. Without obtaining the complete set of roots, at
many frequencies, it is difficult to plot a meaningful dis-
persion curve.

When considering wave guides that contain at least one
viscoelastic layer, it is necessary to solve the dispersion
equation for complex roots. One of the ways for finding
these complex phase velocity and attenuation roots is to
use a root-solving routine such as Muller’s method. Unfor-
tunately, this type of method is also a slope-following type
of routing and, therefore, has the same problem as using
Newton’s method for finding the roots for an elastic wave
guide, often extrapolating wildly and making it difficult to
obtain the entire set of roots. Unfortunately, no method
for complex roots is comparable to the bisection routine
for real roots. An alternative method for solving the roots
of the viscoelastic dispersion equation is to consider the
absolute value of the function. This reduces the problem
to three dimensions in which the minima represent the
complex roots of the dispersion equation [26].

In order to make successful use of a minimization rou-
tine for finding the complex roots of the dispersion equa-
tion, it is necessary to have starting values that are suffi-
ciently close to the root. Appropriate starting values for a
minimization routine can be found by making the assump-
tion that a phase-velocity root can be found on the surface

of the function that is sloping toward its root by solving
the dispersion equation for the elastic system of equations
by temporarily setting the attenuation constants of the
viscoelastic layers to zero. This real root is found with
the conventional method of bisection. The real root then
can be used as starting points for a search of the mini-
mum value of the viscoelastic dispersion equation along
the attenuation axis, choosing an attenuation value of zero
as the starting point. The final step is to initiate a two-
dimensional search in phase velocity and attenuation for
the root of the viscoelastic dispersion equation using a sim-
plex type of searching algorithm. This routine proved to be
relatively robust and was adequate for calculating enough
roots to create a dispersion equation. In the event that
the routine missed roots along a particular mode, linear
interpolation to fill for the missing values.

III. Results

A number of numerical and experimental observations
were made to explore the nature of wave propagation in
an elastic hollow cylinder coated with a viscoelastic ma-
terial. Numerically, a computer program was written in
Matlab (The MathWorks, Inc., Natick, MA) to implement
the previously described root-finding routine to calculate
the roots of the dispersion equation for a multilayered, hol-
low cylinder with viscoelastic layers. Phase velocity and
attenuation dispersion curves were calculated for a 4 in.
Schedule 40 steel pipe with viscoelastic coatings applied.
Furthermore, the wave structure was calculated for various
roots to verify that the boundary conditions were met and
to explore the attenuation characteristics of some of the
modes. To obtain experimental results, test samples were
fabricated out of 4 in. Schedule 40 (0.25 in. wall thick-
ness) steel pipes and were coated with a commercial bitu-
men pipe coating. Guided-wave tests were performed with
arrays of piezoelectric transducers and wedges positioned
circumferentially around the pipe for comparison to the
theoretical results.

A. Dispersion Curves

Fig. 2 shows the phase velocity and attenuation dis-
persion curve calculations for a 4 in. Schedule 40 steel
pipe, coated with 0.020 in. of viscoelastic Emerson and
Cumming, 2057—Cat 9 epoxy (Emerson & Cumming, Bil-
lerica, MA). Temporarily, limiting the discussion to the
phase-velocity dispersion curve, the first and most obvi-
ous comment is that it looks similar to that of the single-
layer, elastic, hollow-cylinder case, as published in many
references. At low frequency, two modes exist, L(0,1) and
L(0,2), the notation being consistent with the classical no-
tation for longitudinal guided waves in single-layer, elastic,
hollow cylinders. The L(0,2) mode has a cutoff frequency
at about 35 kHz, below which the mode does not exist.
As the frequency increases past the cutoff frequencies for
various modes, they enter the dispersion curve at high-
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Fig. 2. Phase velocity and attenuation dispersion curves for a two-
layer structure consisting of a 4 in. Schedule 40 steel pipe, coated
with a 0.020 in. layer of E&C 2057—Cat 9 epoxy, with the first
four modes labeled L(0,1)–L(0,4). Considering that the wave guide
is made up primarily of the steel pipe, it is not surprising that the
phase-velocity dispersion curve closely resembles that of the single-
layer elastic wave guide. The attenuation dispersion curve shows the
general trend of increasing attenuation with increasing frequency,
with the addition of some very interesting modal points where low
attenuation occurs.

phase velocity and most seem to approach the shear wave,
or surface wave velocity of the elastic material as the fre-
quency increases. However, the L(0,1) and L(0,4) modes
break away below the surface wave velocity of the elastic
material, which is inconsistent with the single-layer, elastic
case, in which these modes would normally approach the
surface and shear wave velocities of the elastic material.
The other subtle difference in the multilayer dispersion
curve as compared to the single-layer, elastic curves is the
positioning of the modes and the location and existence of
mode crossings. These appear to change based upon the
exact make up of the wave guide.

Now, considering the attenuation dispersion curve,
some interesting mode attenuation behavior can be ob-
served. The lowest order modes, L(0,1) and L(0,2), at very
low frequency, have low attenuation, except for the cutoff
region of the modes in which a jump is seen in the attenua-
tion curve. In general this low-attenuation, low-frequency
behavior is the expected result because the attenuation
constant increases with frequency for conventional bulk
longitudinal and shear wave propagation.

As the L(0,1) mode increases in frequency, the atten-
uation increases slightly then decreases, approaching zero
attenuation. Theoretically, for a mode to have a zero at-
tenuation value, all of the energy must be propagating in
the elastic medium only. Because the phase velocity for
this mode is approaching the surface wave velocity, it is
likely that this zero attenuation mode is actually a sur-
face wave traveling on the inside diameter of the pipe.
Conversely, the L(0,1) modes appear to be approaching
very large attenuation values as frequency increases. This
should indicate that the wave mode is traveling primarily
in the viscoelastic layer as the frequency increases.

As frequency increases past the cutoff frequency of var-
ious modes, these new modes appear on the dispersion
curves. On the attenuation dispersion curve, the attenu-
ation values tend to begin at large values near the cutoff
frequency, then approach one or more local minimum at-
tenuation values and diverge toward high-attenuation val-
ues.

The attenuation dispersion curves have some interesting
implications on the mode selection for flaw detection in
coated pipes. The principle result is that all of the modes
show drastic changes in attenuation over the frequency
range of interest. Thus, the attenuation dispersion curve
is critical for performing an ultrasonic test. Knowledge of
the attenuation dispersion curve will allow the generation
of low attenuation modes by changing incident angle and
frequency.

Ultimately, a particular mode, or modes, will have to
be chosen that have an acceptable level of attenuation as
based upon the length of propagation and the available sig-
nal to noise of the test. As an example, a guided-wave test
will have some signal-to-noise ratio based upon the size of
the reflection from the flaw as compared to the electronic
and acoustic noise level of the system. Obviously, this level
varies with the size of flaw, but a realistic value for this ex-
ample is a flaw signal 40 dB above the noise. Furthermore,
it is reasonable to specify that the minimum signal to noise
of the test must be 6 dB. Thus, there is 34 dB of signal that
can be lost due to attenuation of the guided-wave mode. If
in this example the ultimate goal is to test 10 m of the pipe
with a single transducer placement, meaning that the wave
will have to travel a total of 20 m, a suitable mode must
be chosen that has less than −1.7 dB/m of attenuation at
the maximum. Possible modes for the epoxy-coated pipe
would be the L(0,1) and L(0,2) modes below 500 kHz, the
L(0,3) mode at 300–400 kHz and at 700 kHz. If more signal
to noise is available or the propagation distance is shorter,
the L(0,4) and L(0,5) modes have low attenuation points
at approximately −2 to −3 dB/m that may be useful for
inspection.

B. Wave Structure

It is desirable to make some checks on the numerical
solution of the dispersion equation to verify that the dis-
persion curves are correct. Obviously, one indication that
the curves are reasonable is simply that the phase and
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Fig. 3. Normalized displacement wave structure for the L(0,2) mode
in a 4 in. Schedule 40 steel pipe coated with 0.020 in. of E&C 2057
epoxy. Mode shapes at three frequencies are shown that correspond
to points of minimum attenuation at 50 kHz and 1.5 MHz and a point
of maximum attenuation at 650 kHz. The mode shape at 1.5 MHz
is consistent with surface wave propagation on the inside diameter
of the pipe. Note that the solid line corresponds to the in plane
displacement component, uz , and the dashed line corresponds to the
out-of-plane displacement component, ur.

group velocity dispersion curves look similar to the single-
layer, elastic curves. However, beyond this reasoning, some
numerical means should be used to verify that the roots
have been solved correctly. Because the dispersion equa-
tions are based upon a boundary value problem, the most
logical way to verify that the roots have been solved cor-
rectly is to make sure that the boundary conditions and
interfacial continuity equations have been satisfied. To ac-
complish this, the wave structure of the propagating modes
can be examined.

A plot of the wave structure for a guided-wave mode is
simply a plot of the displacement and stress components
across the thickness of the wave guide. To do this, the root
of the guided-wave mode of interest must be substituted
into the appropriate equations for the displacements and
stresses. The only additional process that must be done
before plotting the values is to generate the unknown am-
plitude constants. This is simply done by setting one of
the unknown constants equal to unity, and rearranging
the global matrix to solve for the additional constants.

From the wave structure curves, it is possible to check
the boundary conditions on the stress at the free surfaces
and the continuity of stress and displacement at the in-
terfaces. Furthermore, it is interesting to check the pro-
portionality of stress and displacement between the elastic
and viscoelastic layers. For low attenuation modes, it is ex-
pected that the elastic layer will carry a high proportion
of the stress and displacement, and for high-attenuation
modes, the viscoelastic layer should carry a high propor-
tion of the stress and displacement.

Two modes were examined because of their interest-
ing attenuation behavior. First, the wave structure for the
L(0,2) mode was calculated. The attenuation behavior is
interesting in that it starts at a very low value, less than
−1 dB/m, then increases to a maximum of approximately
−3 dB/m at 650 kHz, then decreases, approaching zero at-
tenuation at high frequency. The displacement wave struc-
ture for three frequencies is displayed in Fig. 3. The pro-
gression of wave structure changes appears consistent with
the attenuation dispersion curve for this mode. Further-
more, the displacement boundary conditions are shown

Fig. 4. Normalized displacement wave structure for the L(01) mode
in a 4 in. Schedule 40 steel pipe coated with 0.020 in. of E&C 2057
epoxy. Mode shapes at three frequencies are shown that correspond
to points of increasing attenuation from 50 kHz to 1.1 MHz. Note that
the solid line corresponds to the in plane displacement component,
uz, and the dashed line corresponds to the out-of-plane displacement
component, ur.

to be satisfied (the stress boundary conditions also were
checked but they are not displayed here). Based on the ve-
locity and attenuation of the L(0,2) mode at 1.50 MHz, it
was suggested that this mode is a surface wave propagat-
ing on the inside diameter of the pipe. The wave structure
that is plotted at 1.5 MHz in Fig. 3 is completely con-
sistent with surface wave propagation, as compared with
published sources of surface wave displacement character-
istics [28]–[31].

The second mode that was examined is the L(0,1)
mode. The attenuation of this mode begins at a low value
at low frequency and diverges rapidly toward very large
values at high frequency. The wave structure is displayed
in Fig. 4. Unlike the previous mode, as the frequency in-
creases the proportion of energy propagating in the vis-
coelastic layer increases. In fact, the wave structure ap-
pears to be displaying surface wave propagation on the
outside diameter of the viscoelastic layer.

C. Experimental Results on a Coated Pipe

An experiment was designed to obtain results that
would verify the attenuation dispersion curves for a coated
pipe. A test sample was fabricated from a length of 4 in.
Schedule 40 steel pipe by coating it with a commercial
bitumen coating material per the manufacturer’s instruc-
tions. The thickness of the coating was measured to be ap-
proximately 0.006 in. on average across the test specimen.
Guided waves were generated in the test specimen by using
the angle of incidence principle. In order to generate axially
symmetric modes, an array of 8 to 10 transducer/wedge
pairs were positioned around the circumference of the pipe.
In total, three transducer/wedge pairs were used to gener-
ate the L(0,2) mode at approximately 180 kHz, the L(0,1)
mode at approximately 600 kHz, and the L(0,3) mode at
approximately 750 kHz. Fig. 5 shows the L(0,2) and L(0,3)
arrays applied to two of the test specimens. A Matec Ex-
plorer II (Matec Instruments, Northborough, MA) tone
burst system was used to operate the transducer arrays
and perform data collection.

The phase velocity and attenuation dispersion curves
are shown in Fig. 6 for the bitumen-coated test sample.
Experimental data points that were obtained using the
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Fig. 5. Photograph of two of the transducer arrays that were used in
obtaining experimental attenuation values on the coated test speci-
mens.

Fig. 6. Phase velocity and attenuation dispersion curves for a two-
layer structure consisting of a 4 in. Schedule 40 steel pipe, coated
with a 0.006 in. layer of a commercial bitumen pipe coating, with the
modes labeled L(0,1)–L(0,6). Experimental data points that were
generated with three transducer arrays are displayed on the atten-
uation dispersion curve, showing very good agreement between the
numerical and experimental results. Experimental results are for the
L(0,1), L(0,2), and L(0,3) modes are marked with a square, triangle,
and “x” and are labeled 1, 2, and 3, respectively.

three transducer arrays are plotted along with the numer-
ical result for the attenuation dispersion curve. Single data
points are shown for the L(0,1) mode at 600 kHz (labeled
1), and for the L(0,2) mode at 180 kHz (labeled 2). A series
of data points was taken for the L(0,3) mode between 650
and 900 kHz (labeled 3). The experimental points agree
well with the attenuation dispersion curve.

IV. Conclusions

The presence of attenuative, viscoelastic coatings cause
significant problems for developing a guided-wave, nonde-
structive inspection of coated pipes. However, the multi-
mode nature of guided waves offers the potential for find-
ing modes that will perform even in the presence of these
coatings. For the purpose of finding these modes, a mul-
tilayer, hollow cylinder model that includes viscoelastic
layers was developed using the global matrix method to
describe the longitudinal modes of propagation. The nu-
merical solution of the model yields attenuation dispersion
curves which clearly show that, by changing the mode and
frequency of operation, low attenuation behavior can be
obtained, even for the higher order modes at relatively
high frequency. These modes offer an alternative to only
using the lowest order modes at very low frequencies to
perform an inspection. Wave structure and experimental
results were used to verify the accuracy of the theoreti-
cal model. The wave structure showed that the boundary
conditions had been satisfied and offered insight into the
attenuation behavior for the two lowest order modes. The
experimental results showed good agreement with the the-
oretical dispersion curve, giving confidence to the use of
the theoretical model for developing a nondestructive test.
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