
IET Generation, Transmission & Distribution

Research Article

Fault location based on travelling wave
identification using an adaptive extended
Kalman filter

ISSN 1751-8687
Received on 11th June 2017
Revised 12th September 2017
Accepted on 18th October 2017
E-First on 9th February 2018
doi: 10.1049/iet-gtd.2017.0897
www.ietdl.org

Yanhui Xi1 , Zewen Li1, Xiangjun Zeng1, Xin Tang1, Xiaodong Zhang1, Hui Xiao1

1Hunan Province Higher Education Key Laboratory of Power System Safety Operation and Control, Changsha University of Science and
Technology, Changsha 410114, Hunan Province, People's Republic of China

 E-mail: xiyanhui@126.com

Abstract: The fault location in transmission systems remains a challenging problem, primarily due to the fault location near the
substation ends or the weak fault signals. In this study, an adaptive extended Kalman filter (EKF) based on the maximum
likelihood (ML) is proposed to estimate the instantaneous amplitudes of the travelling waves. In this method, the EKF algorithm
is used to estimate the optimal states (the clean travelling waves) with additive white noise while ML is used to adaptively
optimise the error covariance matrices and the initial conditions of the EKF algorithm. Using the proposed method, the
singularity points of travelling waves can be detected, and the exact arrival time of the initial wave head at the substations M
and N can be easily yielded. Thus the fault distance can be calculated precisely. The effectiveness of exacting mutation feature
using the proposed method has been demonstrated by a simulated instantaneous pulse. Also, the proposed method has been
tested with different types of faults, such as different fault locations, different fault resistances and different fault inception angles
using ATP simulation. The accuracy of fault location using the proposed method has been compared with conventional wavelet
transformation scheme.

1 Introduction
Travelling wave-based fault location is the most important scheme
used to accurately pinpoint faults on transmission lines. It has the
advantage of high accuracy, immunity to power swings, and
insensitivity to various fault conditions such as fault type, fault
inception angle and fault resistance. Therefore, it attracts the
increasing interests of researchers and engineers within the field
[1–4].

As travelling wave-based fault location methods, single-ended
fault location method and double-ended method are the main
methods. Compared with single-ended fault location method, the
double-ended method is usually more reliable and more accurate
because it merely needs the initial surge but not the subsequence
travelling waves. Furthermore, the double-ended travelling wave
method has the potential to locate many forms of disturbances
besides the usual lightning strike occurrence.

For the double-ended travelling wave method, the key factor is
to determine the exact arrival time of the initial travelling wave.
Transient travelling wave signal has an obvious singularity after
the fault occurred. Wavelet transform (WT), as an analysis tool for
signals in time-domain and frequency-domain, can detect the
transient signal singularity effectively, which is suitable for
identifying transient travelling waves. In [5], wavelet analysis is
presented to provide time resolution for high resistive zero-
crossing fault detection based on transient signals. Likewise,
discrete wavelet transformation is applied to the DC voltage and
current signals in segmented HVDC transmission line in [6]. In [7],
a general method based on phase-mode transformation and wavelet
transformation is proposed for fault-location in the complex power
grid. Although the WT method shows good results in determining
the fault type and location, it exhibits some disadvantages, such as
complicated computation, sensitivity to the noise level, and the
dependency of its accuracy on the selection of mother wavelet. The
most important limitation of the existing methods based on the
wavelet transformation is not time shift invariant, which means that
there is no correlation between the original signal and WT
coefficients. Recently, some hybrid techniques using combined
wavelet, support vector machines [8, 9], artificial neural network
[10–12] and fuzzy logic [13] have been applied for travelling

wave-based fault location of transmission lines. Although these
combinations may perform better than the single WT, they have
more computational complexity. Moreover, they still suffer from
the limitations of the WT.

On the other hand, Hilbert–Huang transform (HHT), which is
considered the most adaptive technique for analysing the non-
linear and non-stationary signals, is developed to analyse power
system fault signal and has a better effect in fault location (see, e.g.
[14–18]). HHT is composed of empirical mode decomposition
(EMD) and the Hilbert transform (HT). The fault (travelling wave)
signal is firstly decomposed into intrinsic mode function (IMF) by
the EMD method. Then instantaneous frequency and instantaneous
amplitude are obtained by HT to compose Hilbert spectrum. Thus
the transient caused by fault can be analysed and further detected
accurately through the instantaneous frequency and the time–
frequency–amplitude spectra analysis. HHT can overcome the
shortcomings of WT and has been proved to be one of the best
methods for instantaneous frequency feature extraction in power
fault detection applications. However, EMD as the main step in
HHT still has defects, such as the overshoot or undershoot
phenomenon in theory. A different stopping condition for the EMD
calculation loop may produce a different set of IMFs, and the
resulting IMF may not accurately reflect the true physical nature of
the analysed data because the EMD tends to miss some riding
waves on the steep edge of the IMF. At the same time, HT may
result in a negative frequency at times, which is extremely hard to
interpret and is of debatable physical significance.

Although the aforementioned algorithms are reliable, they may
suffer from inaccuracies in some cases. First, in order to determine
the arrival time of the wave head, it often requires a higher
sampling rate of the protective device. However, the high sampling
rate is easy to be interfered by all kinds of noises. Besides, the
travelling wave signal itself contains a lot of noise because
travelling wave recorders are usually set with a low threshold to
capture as many fault travelling waves as possible for an event
analysis, which reduces the chance of missing true fault events, but
also increases the amount of unwanted noise-triggered data to be
recorded. Second, travelling wave signals, which are generated by
a single phase-to-ground fault with 0° inception angle or high fault
resistances, may be very weak, and the indistinct wave front will be
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hardly identified for the detection purpose. Therefore, to improve
the reliability of travelling wave detection, as well as maintains the
capability of fast fault detection, it is necessary to explore the
effective double-ended travelling wave data identification and
correlation matching method.

To extract the wave head of the travelling wave signal, some
digital filtering approaches based on time-domain, such as the least
error square method and the least square method, have been
developed to determine the fault type and location. However, most
of these algorithms have several limitations in terms of
inaccuracies due to the presence of noise. On the contrary, the
Kalman filtering (KF) method is completely based on time-domain,
instead of converting the signal to the frequency domain space, so
there is no problem of phase shift or amplitude attenuation in the
KF. It has been proved to be one of the best methods for estimating
amplitude, phase, and frequency of the fundamental and harmonic
components of a signal disturbed by white noise in power quality
problem [19–21]. However, still few literature have been found in
power fault detection applications.

In this paper, a more robust and adaptive extended Kalman
filter (EKF) algorithm based on maximum likelihood (ML) is
proposed to analyse travelling wave signals and to determine the
fault location. In the proposed EKF-ML method, the ML method is
used to adaptively optimise the error covariance matrices R, Q and
the initial conditions, and the EKF is used to estimate the
amplitude (states) and can directly extract the signal of the wave
head, not need to filter collected waveform. In this way, the
damage of the wave head information in the filtering process can
be avoided. Hence, the EKF-ML algorithm makes the observed
results the most probable given the model and can obtain better
performance relative to the conventional EKF (the conventional
EKF assumed parameter values of the error covariance matrices as
specified values). Another advantage of this algorithm is that it
almost has the same computational complexity as the conventional
EKF. Thus, the EKF-ML algorithm is simpler and less complex
than other adaptive algorithms, such as the adaptive unscented
Kalman filter algorithm [22], adaptive particle swarm optimisation
(APSO) of unscented Kalman filter [23, 24], the unscented Kalman
smoother algorithm [25] and genetic algorithm APSO aided
unscented Kalman filter [26]. All in all, the EKF-ML algorithm can
quickly and accurately detect the wave head for fault location
without damaging the wave head in the time domain at different
fault locations, different fault inception angles, and different fault
resistances. Also, the proposed adaptive EKF algorithm is capable
of accurately estimating the noise parameters and is robust against
various noise levels.

The main contribution of this paper is twofold. First, the use of
the ML method to adaptively optimise the error covariance
matrices R, Q and the initial conditions, which can make sure that
the EKF has better accuracy and faster convergence. Second, the
proposed EKF-ML algorithm is applied to the fault location based
on travelling wave.

The remaining of this paper is organised as follows. In Section
2, we propose the state-space model of the power signal. Section 3
describes the EKF-ML method. Section 4 presents simulation
studies of the EKF-ML and the WT. Some concluding remarks are
contained in Section 5.

2 State-space model of the travelling wave
The transient travelling wave initiated by faults is considered as a
kind of abrupt signal, theoretically which is the linear combination
of fundamental component, some harmonic components and all
kinds of noise in steady state and a sharp rise in a very short time.

Therefore, the observed transient travelling wave signal can be
expressed as

yk = A1, kcos(ωkTs + φ1) + ∑
r = 2

M
Ar, kcos(rωkTs + φr) + uk + vk (1)

where yk (k represents the sampling point number) is the observed
transient travelling wave signal, and A1, k, ω φ1 denote the
amplitude, angular frequency, and initial phase angle of the
fundamental component, respectively, and Ar, k(r = 2, …, M), φr
denote the amplitude and initial phase angle of the rth harmonic
component, respectively. uk is the travelling wave head, which is
very similar to the mutation characteristic of the pulse signal. vk
represents a zero-mean white noise with unknown covariance
E vkvk

T = Rk. M is the highest order of the harmonic component,
and Ts is the sampling interval, which can be obtained as 1/ f s ( f s is
the sampling frequency).

The travelling wave head can be distinguished through
detecting the variation of the travelling wave amplitude using the
EKF. Thus, unknown states variables
Xk = x1, k, x2, k, …, x2r − 1, k, x2r, k, …, x2M − 1, k, x2M, k

T are assumed (see
(2)) . By considering state variables above, model (1) can be
rewritten in the form of state space as follows:

Xk = FXk − 1 + ηk

=

F1 0 ⋯ 0 0
0 ⋱ 0 ⋯ 0
0 ⋯ Fr 0 0
0 ⋯ 0 ⋱ 0
0 ⋯ ⋯ 0 FM

x1, k − 1

x2, k − 1

⋮
x2r − 1, k − 1

x2r, k − 1

⋮
x2M − 1, k − 1

x2M, k − 1

+ ηk ηk ∼ N(0, Qk)

yk = HXk + vk vk ∼ N(0, Rk)

(3)

Here, F, H denote the system matrix and the observation matrix,
respectively. ηk and vk are the process noise and the observation
noise, which are zero-mean Gaussian random variables with
covariance Qk and Rk, respectively. And the matrices Fr, H, Qk, Rk
are defined as

Fr =
cos(rωTs) −sin(rωTs)
sin(rωTs) cos(rωTs)

(r = 1, …, M)

H = 1 0 ⋯ 1 0 ⋯ 1 0
Qk = diag γ1

2, γ2
2, …, γ2r − 1

2 , γ2r
2 , …, γ2M − 1

2 , γ2M
2

Rk = ε2

(4)

In (4), all the unknown constant parameters (γ1, γ2, …, γ2M − 1, γ2M, ε))
should be optimised. Thus, the amplitude of each frequency
component can be calculated as

Ar, k = x2r − 1, k
2 + x2r, k

2 (5)

where x2r − 1, k x2r, k can be obtained as estimated states from the
model (3).

x1, k = A1, kcos(ωkTs + φ1), x2, k = A1, ksin(ωkTs + φ1)
⋮

x2r − 1, k = Ar, kcos(rωkTs + φr), x2r, k = Ar, ksin(rωkTs + φr)
⋮

x2M − 1, k = AM, kcos(MωkTs + φM), x2M, k = AM, ksin(MωkTs + φM)

(2)
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3 EKF-ML method
The purpose here is to determine all the unknown constant
parameters and to estimate the state Xk from the noisy observations
using model (3). This is a type of non-linear filtering problem, for
which we use the EKF to estimate the state from the noisy
observations. However, the practical application of the EKF has
been limited by the difficulties in selecting the process noise
parameter Qk and the observation noise parameter Rk, which affects
seriously the rate of convergence and the estimation performance.
Thus, to obtain the best estimation, it is proposed in this paper to
use the ML method for the optimal choice of the noise covariance
matricesQk and Rk.

3.1 State estimation by the EKF

Let X^
k |k − 1, Sk |k − 1 denote the conditional mean and conditional

covariance of Xk given y1:k − 1 = {y1, …, yk − 1}, v^k be the predicted
innovation of yk. Therefore, the prediction equations using the
recursive EKF may be given as follows:

X^
k |k − 1 = E Xk | y1:k − 1 = FX^

k − 1|k − 1

v^k = yk − HX^
k |k − 1

Sk |k − 1 = E Xk − X^
k |k − 1 Xk − X^

k |k − 1
T = FSk − 1|k − 1FT + Qk

(6)

Let X^
k |k, Sk |k denote the conditional mean and conditional

covariance of Xk given y1:k = {y1, …, yk}, Ψ^
k be the covariance of

vk, then the filtered state is given as

X^
k |k = E Xk | y1:k = X^

k |k − 1 + Kkv^k

Sk |k = E (Xk − X^
k |k)(Xk − X^

k |k)
T = I − KkH Sk |k − 1

Ψ^
k = E v^kv^k

T = HSk |k − 1HT + Rk

Kk = Sk |k − 1HTΨ^
k
−1

(7)

3.2 Parameter estimation by the ML

In (6) and (7), except for the constant parameters
γ1, γ2, …, γ2M − 1, γ2M, ε, the initial state X0 |0 and the initial conditional
variance S0 |0 = diag([s1 s2…s2M − 1 s2M]) also need to be estimated.
So the parameters to be estimated are
θ = (γ1, …, γ2M, ε, x1, 0, …, x2M, 0, s1, …, s2M). Assuming vk is a
Gaussian white noise vector with covariance Ψk, then the joint
conditional density of vk may be written as

p(vk | yk − 1, …, y1, θ) = 1
2π Ψk

1/2 exp − 1
2vk

TΨk
−1vk (8)

where | ∙ | denotes the determinant. Therefore, (−2) log-likelihood
of the model (3) may be derived as follows:

( − 2)log p yN, …, y1 |θ

= ∑
k = 1

N
( − 2)log p yk | yk − 1, …, y1, θ

= ∑
k = 1

N
( − 2)log p vk | yk − 1, …, y1, θ

= ∑
k = 1

N
log Ψk + vk

TΨk
−1vk + Nlog 2π

(9)

where N represents the sampling length.
From the estimated innovation v^k and its covariance Ψ^

k with
respect to the given parameters θ, the optimal parameters θ∗ may be
obtained by minimising the (−2) log-likelihood function (9) as
follows:

θ∗ = arg min
θ

∑
k = 1

N
log Ψ^

k(θ) + v^k(θ) T Ψ^
k(θ)

−1
v^k(θ)

+ Nlog 2π
(10)

In this paper, the function ‘FMINSEARCH’ based on the Nelder–
Mead method in the MATLAB Optimisation Toolbox is used to
carry out the parameter optimisation.

4 Simulations
In this section, two kinds of transient travelling wave signals are
given to verify the effectiveness of the proposed algorithm. One is
simulated by the model (1), and the other is generated by a
diversity of fault conditions such as different fault locations,
different fault resistances and different fault inception angles using
ATP software. Also, the WT is used to detect the travelling wave
head for comparison.

4.1 Detection of the transient travelling wave signal
simulated by model (1)

The mutation characteristic of the transient travelling wave signal
is very similar to the sudden change of the instantaneous pulse, so
the travelling wave head can be simulated by a pulse. For
simplicity, we assume that the transient travelling wave signal in
the model (1) is composed of a fundamental component, travelling
wave head and white noise, not harmonic components. Thus, this
kind of transient travelling wave signal is considered as follows:
(see (11)) . Here, the fundamental frequency f is assumed 50 Hz,
constant phase φ and sampling time Ts are 0 rad (φ = 0 rad) and
100 µs (Ts = 100 μs), respectively. Travelling wave head ut is
simulated by 5e−5t. vt represents a Gaussian white noise with
signal-to-noise ratio (SNR) values of 40, 30, and 20 dB, which
means the Gaussian white noise has 0.01, 0.0316 and 0.1 p.u.
standard deviation, respectively. Obviously, the time when
travelling wave head occurs is from 0.0840 to 0.0845 s, which is
very short.

Fig. 1 shows the observed transient travelling wave signals with
changes in noise and the clean transient travelling wave signal
without noise. Fig. 2 shows comparisons of the estimated signals
and amplitudes versus the actual signals and amplitudes between
the conventional EKF and the proposed EKF-ML under different
noise level conditions. In order to show more subtle differences,
the parts of the abrupt changes (the instantaneous pulse) in Fig. 2
are locally magnified. The estimated parameter ε by the EKF-ML
is given in Table 1. 

In Fig. 2, the estimated signals by the EKF-ML can track the
actual signals accurately except that there are small deviations of
the estimated value from the actual value in the case of 20 dB
SNR. Compared with the EKF, the EKF-ML has better tracking
performance and shorter rise time especially on the rising edge of
the instantaneous pulse in the locally magnified parts of Fig. 2 (the
upper). As shown in Fig. 2, the proposed EKF-ML algorithm can
accurately capture the pulse, and the estimated amplitudes roughly
match the actual amplitudes in all conditions. Obviously, in the
locally magnified parts of Fig. 2 (the lower) where a pulse occurs
at different noise levels, the EKF-ML algorithm can quickly and
accurately track the rising edge, although the estimated peak is
higher than the actual peak in the condition of 20 dB SNR. The
response speed of the EKF-ML is quicker than that of the EKF

yt =
cos(2π f t + φ) + vt 0 s ≤ t < 0.0840 s and 0.0845 s < t ≤ 0.15 s
cos(2π f t + φ) + 5e−5t + vt 0.0840 s ≤ t ≤ 0.0845 s

(11)
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when they track the rising edge of the instantaneous pulse. The fast
response to the instantaneous pulse can provide more precise fault
location based on the quick and effective wave head detection. In
Table 1, it can be seen that the values of the estimated parameter ε
by the EKF-ML are very close to the actual values in all
conditions, while the conventional EKF needs a given noise
parameter value. Thus, the accurate estimation of the observation
noise covariance matrix can further ensure that the EKF has better
accuracy and faster convergence. This also verifies the
effectiveness and the accuracy of the proposed algorithm.

4.2 Fault location based on the detection of the travelling
wave head

In order to explore the effectiveness of the detection of the
travelling wave head, fault location is performed through the EKF-
ML based on the double-ended travelling wave method. The
transient current signals from single phase-to-ground faults are
simulated at different fault conditions such as different fault
locations, different fault resistances and different fault inception
angles using the ATP software. The data is captured by travelling
wave recorders at substations M and N on a 220 kV power grid.
The sampling rate is 5 MHz in this simulation, and L (L = 150 km)
is the total length of the fault transmission line from substation M
to substation N. According to the double-ended method [15], the
fault distance d1 from the fault point to the substation M can be
computed as

d1 = L + v(t1 − t2)
2 (12)

Here, v is the travelling wave velocity, which may be taken as
2.96912 × 108 m/s. t1 and t2 represent the time when a fault
travelling wave arrives at the substations M and N, respectively.
Obviously, only if the time t1 and t2 are determined, it is easy to
calculate the fault distance.

The effectiveness of the proposed fault location method is
evaluated using the absolute error Δd and the relative error Δd%
which are calculated as follows:

Δd = d − d1 , Δd% = d − d1

L × 100% (13)

Fig. 1  Observed sinusoidal signals and the clean sinusoidal signal
(yt, y1, t, y2, t, y3, t denote the clean signal without noise and the observed
signals disturbed with SNR values of 40, 30, and 20 dB, respectively)

 

Fig. 2  Estimated signal and amplitude using the EKF-ML and the EKF at different noise levels
(a) SNR = 40 dB, (b) SNR = 30 dB, (c) SNR = 20 dB

 

Table 1 Estimated parameter ε by the EKF-ML
Noise, dB Estimation Actual
40 0.00970 0.0100
30 0.0297 0.0316
20 0.101 0.100
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where d, d1, L denote the actual fault distance, the calculated fault
distance and the total length of the transmission line, respectively.

4.2.1 Case 1: The effect of different fault locations: In this
part, different fault locations are simulated to verify the accuracy of
the method. In this simulation, the fault resistance value selected is

200 Ω and the fault inception angle is 80°. Also, Gaussian white
noise is added to the travelling signal with the SNR of 20 dB. The
fault distance parameter d is set to 20, 45, 50, 60, 75, 90, 105, 120
and 135 km. Fig. 3 gives the travelling current signals interfered by
the Gaussian white noise of 20 dB with different fault locations
from the substations M (red) and N (blue). Fig. 4 shows the
estimated amplitudes of the travelling wave signals from the
substations M and N. The fault location results for different fault
locations are shown in Table 2. 

In Fig 4, it is clear that the instantaneous amplitudes change
dramatically when the head of travelling wave arrives, and the
sharp singularity points can be easily detected, which are marked.
Therefore, the travelling wave head arriving time is computed and
the fault distance can be calculated using relation (12) from the
first singularity points at the substations M and N. From Table 2, it
is clear that the accuracy of the proposed method is significantly
good for determining fault distance at different fault locations. The
maximum absolute error and relative error are 0.320 km and
0.213%, respectively, at fault distance of 135 km from the
substation M, while the minimum absolute error and relative error
are 0. Hence, the nearer the fault point is to the mid-point of the
line, the higher the fault location accuracy is. Instead, as the fault
point is near to the substation (M or N), the fault location error

Fig. 3  Travelling current signals interfered by white noise with different
fault locations (red: M, blue: N)

 

Fig. 4  Estimated amplitudes of the travelling wave signals from the substations M (red) and N (blue)
(a) d = 20, 45, 50 km, (b) d = 60, 75, 90 km, (c) d = 105, 120, 135 km

 

Table 2 Obtained result of different fault locations using the EKF-ML
d, km M N d1, km Δd, km Δd, %
20 22,570 24,420 20.071 0.071 0.0473
45 22,990 24,000 45.011 0.011 0.00733
50 23,070 23,910 50.059 0.059 0.0393
60 23,240 23,740 60.154 0.154 0.103
75 23,490 23,490 75 0 0
90 23,740 23,240 89.846 0.154 0.103
105 24,000 22,990 104.988 0.012 0.008
120 24,250 22,730 120.130 0.130 0.0867
135 24,490 22,480 134.680 0.320 0.213
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becomes increasing. Maybe this is because any detecting method
has delay time when it extracts the singularity points, thus, the
EKF-ML has almost the same response time for the detecting the
singularity points at the substations M and N when the fault point is
close to the mid-point of the transmission line (the distance
between the fault point and the substation M is as well as that at the
fault point and the substation N). Moreover, with the increase of
the propagation distance, the high components of the transient

travelling wave have larger attenuation. Thus, the time difference
of the initial wave front arriving at both substations becomes large
when the fault point is close to the substation, so the fault location
error becomes increasing.

4.2.2 Case 2: The effect of different fault resistances: In this
simulation, the fault resistance is varying from 50 to 1200 Ω, and
the fault inception angle is 80°and the fault distance is set a fixed
value, namely d = 50 km. Also, Gaussian white noise is added to
the travelling signal with the SNR of 20 dB. Fig. 5 gives the
travelling current signals interfered by the Gaussian white noise of
20 dB with different fault resistances at the substations M (red) and
N (blue). Fig. 6 shows the estimated amplitudes of the travelling
wave signals from the substations M and N, and the sharp
singularity points are marked in Fig. 6. Table 3 gives the fault
location results with varying fault resistances. 

From Table 3, it can be seen that the calculated fault distances
(d1) are all 50.059 km, which are very close to the actual fault
distance (50 km). This indicates that the accuracy of the fault
location is not affected by the fault resistance. The detected
singularity points at the substations M and N are 23,070 and
23,910, respectively, as the fault resistance is varying from 50 to
500 Ω. With increasing fault resistance from 800 to 1200 Ω, the

Fig. 5  Travelling current signals interfered by white noise with different
fault resistances (red: M, blue: N)

 

Fig. 6  Estimated amplitudes of the travelling wave signals from the substations M (red) and N (blue)
(a) R = 50, 100, 200 Ω, (b) R = 500, 800, 1000 Ω, (c) R = 1200 Ω

 

Table 3 Obtained result of different fault resistances using the EKF-ML
R, Ω M N d1, km Δd, km Δd, %
50 23,070 23,910 50.059 0.059 0.0393
100 23,070 23,910 50.059 0.059 0.0393
200 23,070 23,910 50.059 0.059 0.0393
500 23,070 23,910 50.059 0.059 0.0393
800 23,080 23,920 50.059 0.059 0.0393
1000 23,080 23,920 50.059 0.059 0.0393
1200 23,080 23,920 50.059 0.059 0.0393
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detected singularity points at the substations M and N are changed
to 23,080 and 23,920, respectively. By comparison, the latter has
10 sampling points delay, but the time delay is identical between
the substations M and N. Thus, the arriving time difference of the
wave head between the substations M and N remains unchanged.
From Fig. 5, we can see that travelling signals become weak with
increasing fault resistances. This result is in agreeing with that

shown in Fig. 6 where the estimated amplitudes become decreasing
with increasing fault resistances.

4.2.3 Case 3: The effect of different fault inception angles: To
consider the effect of fault inception angle on the performance of
the proposed method, the proposed method is tested for a wide
range of fault inception angle from −60° to 60°. The fault
resistance is 800 Ω and the fault distance is set a fixed value,
namely d = 50 km. Also, Gaussian white noise is added to the
travelling signal with the SNR of 20 dB. Fig. 7 gives the travelling
current signals interfered by the Gaussian white noise of 20 dB
with different fault inception angles at the substations M (red) and
N (blue). Fig. 8 shows the estimated amplitudes of the travelling
wave signals from the substations M and N, and the sharp
singularity points are marked in Fig. 8. Table 4 gives the fault
location results with varying fault inception angles. 

In Fig. 7, it is easy to see that the travelling signal at 0° fault
inception angle gets the weakest. In Fig. 8, the detected singularity
points at the substations M and N are changing with changing fault
inception angles, but singularity point difference between the
substations M and N is unchanged except in case of 0° fault
inception angle, i.e. the arriving time difference of the wave head
between the substations M and N remains unchanged. As shown in
Table 4, the calculated fault distances (d1) are all 50.059 km except

Fig. 7  Travelling current signals interfered by white noise with different
fault inception angles (red: M, blue: N)

 

Fig. 8  Estimated amplitudes of the travelling wave signals from the substations M (red) and N (blue)
(a) θ = 0°, (b) θ = 10°, 30°, 60°, (c) θ = −10°, −30°, −60°

 

Table 4 Obtained result of different fault inception angles using the EKF-ML
θ M N d1, km Δd, km Δd, %
0° 840 1676 50.178 0.178 0.119
10° 23,070 23,910 50.059 0.059 0.0393
30° 17,510 18,350 50.059 0.059 0. 0393
60° 9178 10,020 50.059 0.059 0.0393
−10° 28,630 29,470 50.059 0.059 0.0393
−30° 34,180 35,020 50.059 0.059 0.0393
−60° 42,510 43,350 50.059 0.059 0.0393
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in case of 0° fault inception angle, which is very close to the actual
fault distance (50 km). Obviously, when the travelling signal get
the weakest (at 0° fault inception angle), the absolute error and
relative error reach the maximum (0.178 and 0.119%). Moreover,
the detected singularity points at 0° fault inception angle are not so
clear as those at the other fault inception angles. However, the
absolute error at 0° fault inception angle is <500 m, and the
accuracy of fault location is still high. This demonstrates that the
proposed method is effective in distinguishing weak travelling
signals.

To verify the superiority of the proposed algorithm, the WT is
applied for travelling wave-based fault location for comparison. In
this simulation, Daubechies discrete wavelet of order 4 (db4) is
used to distinguish the above travelling wave signals under
different fault conditions because Daubechies wavelets are the
family of orthogonal wavelets and the db4 exhibits more efficient
in feature extraction. First, the travelling wave signal is denoised
by wavelet threshold to remove random noise from the original
travelling wave signal. After denoising, the signal can be
reconstructed using inverse discrete WT. Then, four layer
Daubechies wavelet decomposition is applied to the signal that has
been denoised. Tables 5–7 give the fault location results. 

Obviously, when travelling wave signals get weak, the sharp
singularity points are submerged in the noise and could hardly be
clearly detected by the WT especially under these conditions of
1200 Ω fault resistance and 0° fault inception angle. Hence, the
performance of the WT deteriorates in case of weak travelling
signals. By comparisons between Tables 2–4 and 5–7, the accuracy
of fault location by the EKF-ML is remarkably higher than that by
the WT except for some cases.

Moreover, the fault location results show that the EKF-ML has
better robustness than does the WT, especially for different fault
inception angles. On the other hand, the two methods have the

minimum error and perform the best when the fault point is close
to the mid-point of the transmission line.

5 Conclusions
In this paper, a new adaptive method is proposed for analysing the
initial travelling waves and for online locating faults. In this
method, first, the EKF algorithm based on ML method is used to
estimate the optimal states (the clean travelling waves) with
additive white noise. Then, the amplitudes of the travelling waves
are calculated by the estimated states and the sharp singularity
points of the amplitudes are detected. The effectiveness of exacting
mutation feature using the proposed method has been demonstrated
by the travelling wave in the model (1), which is simulated by an
instantaneous pulse. Further, the performance of the proposed
method is tested with various fault scenarios including different
fault locations, different fault resistances, and different fault
inception angles. The results show that the method has high
accuracy and noise immunity even though the travelling wave is
weak because of high fault resistances or single phase faults with
inception angle close to 0°, or the fault location is very near the
substation ends. Besides, the proposed method is robust and
insensitive to fault resistance and phase angle. When compared
with other travelling wave-based methods, such as the WT, fault
location can be estimated more accurately using the EKF-ML
especially for the weak travelling waves.
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Table 5 Obtained result of different fault locations using the WT
d, km M N d1, km Δd, km Δd, %
20 22,560 24,420 19.774 0.226 0.151
45 22,980 23,980 45.309 0.309 0.206
50 23,080 23,910 50.356 0.356 0.237
60 23,230 23,730 60.154 0.154 0.103
75 23,490 23,490 75 0 0
90 23,730 23,230 89.846 0.154 0.103
105 23,980 22,980 104.691 0.309 0.206
120 24,220 22,730 119.240 0.760 0.507
135 24,480 22,480 134.382 0.618 0.412

 

Table 6 Obtained result of different fault resistances using the WT
R, Ω M N d1, km Δd, km Δd, %
50 23,080 23,910 50.356 0.356 0.0393
100 23,080 23,910 50.356 0.356 0.0393
200 23,080 23,910 50.356 0.356 0.0393
500 23,080 23,910 50.356 0.356 0.0393
800 23,080 23,910 50.356 0.356 0.0393
1000 23,080 23,910 50.356 0.356 0.0393
1200 23,080 23,940 49.466 0.534 0.356

 

Table 7 Obtained result of different fault inception angels using the WT
θ M N d1, km Δd, km Δd, %
0° 848 1680 50.297 0.297 0.198
10° 23,080 23,910 50.356 0.356 0.237
30° 17,510 18,350 50.059 0.059 0.0393
60° 9183 10,010 50.445 0.445 0.297
−10° 28,610 29,440 50.356 0.356 0.237
−30° 34,170 34,990 50.653 0.653 0.435
−60° 42,500 43,330 50.356 0.356 0.23%
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