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In this study, obtaining stress intensity factors (SIFs) for functionally graded cylinders with two internal
radial cracks using the weight function method has been discussed. For this purpose, reference SIFs are
calculated from the results of finite element analysis, using a modified domain of the J integral.
Subsequently, SIFs have been calculated for different combinations of cylinder geometry, crack depth,
and material gradation by implementing the weight function method and it is shown that the results
are consistent with corresponding results obtained from finite element analysis. Moreover, the effects
of variation in the elastic modulus ratio on SIFs have been investigated.

� 2016 Published by Elsevier Ltd.
1. Introduction

Functionally graded materials (FGMs) are compound materials
in which mechanical properties vary continuously from one point
to another or from surface to surface. Due to their desirable ther-
mal and mechanical properties, FGMs can have various applica-
tions in industry, thus, they have received much attention from
scientists and engineers of different fields [1].

The volume fraction of constituents in the FGMs changes con-
tinuously based on a specific function, and therefore, there will
be no discontinuity in the mechanical properties. These materials
can be used as a binder of two different layers to improve bond
strength [2] and also eliminate delamination [3] and stress concen-
tration [4,5]. Due to the advantages of FG materials compared to
composites and homogenous materials, they are implemented in
various areas such as space-type applications, electronics and mag-
netics [6].

Great efforts have been made to investigate fracture mechanics
parameters in FGMs. Wei and Shih [7] studied several important
concepts of interface fracture mechanics. Jin and Batra [8] pre-
sented the basic concepts of classical fracture mechanics in FGMs.
Erdogan [4] investigated the singularity of stresses near the crack
tip in nonhomogeneous materials. Kim and Paulino [6] studied SIFs
in FG materials using the modified crack closure integral (MCCI)
method. Walters et al. [9] explored SIFs in FG plates under
mode-I thermomechanical loading. Yildirim et al. [10] investigated
fracture analysis of semi-elliptical surface cracks in FGM coatings
subjected to thermomechanical loading. Zhang et al. [11] obtained
properties of 3-dimensional cracks in FGMs. First, they calculated
crack tip displacement using the boundary element method after
which they calculated SIFs according to the relevant relations.
Afsar and Anisuzzaman [1] studied thick-walled FG cylinders with
two internal axial cracks and calculated SIFs using numerical
methods. They considered the FG cylinder as some cylindrical lay-
ers of limited thickness in a way that properties are constant in
each layer.

The weight function method was first introduced in [12,13].
This method has been used extensively for calculating SIFs in
cracked structures and for arbitrary loading conditions. The weight
function is independent of loading conditions but depends on crack
geometry. If the weight function of a certain geometry is specified,
integrating the multiplication of the weight function and stress
along the crack length will yield the SIF [14]. Fett and Munz
[15,16] extended weight function method for FG crack problems
based on the theory of Bueckner [12] and superposition principle.
Eshraghi and Soltani [17,18] have demonstrated the precision of
the weight function method based on the theory of Bueckner in
calculating the SIF of circumferential cracks in FG cylinders sub-
jected to mechanical and thermal loads. Shi et al. [19] derived
the basic weight function equations for two-dimensional FG
s using
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Nomenclature

a crack depth
Ai (i = 0, 1, 2) characteristic stresses (constants)
B plate width
E1, E2 elastic modules at the left and right side of a plate
Ei, Eo elastic modules at the inner and outer radius of a hollow

cylinder
Etip elastic modulus of the material at the crack tip location
E�tip modified plane stress/strain elastic modulus
J energy release rate
K stress intensity factor
KI mode-I stress intensity factor
KN
I normalized mode-I stress intensity factor

Kr reference stress intensity factor
L plate length
m(x, a) weight function
Mi (i = 1, 2, 3) weight function coefficients
q vector representing a smooth function
ri, ro inner and outer radius of a hollow cylinder

R integration domain radius
ui (i = 1, 2) displacement component
W strain energy density
x distance measured from the inner radius of the cylinder
x1, x2 crack tip coordinates
Yi (i = 1, 2, 3) normalized reference stress intensity factors
a inner to outer radius ratio
b crack depth to thickness ratio
c ratio of the elastic moduli at the outer surface to the in-

ner surface of the cylinder
Ce is a curve around the crack tip starting on the lower

crack surface and terminating on the upper one
k material gradation index
mtip Poisson’s ratio of the material at the crack tip location
r0 reference uniform stress applied on the crack faces
r(x) applied stress on the crack faces
rr(x) reference stress applied on the crack faces
X area of domain integral evaluation
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cracked system based on the Betti’s reciprocal theorem. Compared
with the methods proposed by Fett and Munz [15,16], it is not nec-
essary to repeatedly extract the stress distribution along the
prospective crack line of the un-cracked model for different load-
ing conditions in the approach presented by Shi et al. [19]. Wu
et al. [20], recently proposed a 3D thermal weight function method
(TWF) based on Betti’s reciprocal theorem to analyze elliptical
interface crack problems of bimaterial structures under transient
thermal loadings.

Due to the adverse effects of cracks on safe operation of thick-
walled pressure vessels and tubes, many research studies have
been made about the analysis of circumferential and radial cracks
in these structures over the past years. Some of the results of these
analyses have been presented in literature and codes of standard
[21–23]; most of which are related to homogenous cylinders.
One of the most prevalent phenomenon in FG cylinders is edge
crack, cracks that are parallel to the direction of properties’ change
in the cylinder. Therefore, crack analysis is of essential importance
for these types of cylinders [1].

There are few articles available about use of the weight function
method in calculating SIFs in FG cylinders, and according to
authors’ knowledge, nothing has yet been done to calculate SIF in
FG cylinders with two radial cracks using weight function. There-
fore, this study will use the weight function proposed by Glinka
and Shen [24] for cylinders with two internal radial cracks to
obtain SIF for different values of external to internal radius ratios
and crack depth to wall thickness ratios. The elastic modulus of
the cylinder simulated in the present research varies exponentially
along its radius. A modified form of energy release rate is used for
nonhomogeneous materials in the post-processing step of the
finite element analysis to obtain reference SIFs. These SIFs are then
used to determine unknown coefficients of the weight function.
Using the obtained weight function for two other different load
cases, SIFs are calculated and compared with the results obtained
directly from finite element analysis.
2. Weight function method

There are two main ways to determine weight functions based
on the theory of Bueckner for a cracked body: ‘‘extended Petroski
and Achenbach method” [25] and ‘‘direct adjustment procedure
Please cite this article in press as: H. Mirahmadi et al., Calculation of stress inte
the weight function method, Theor. Appl. Fract. Mech. (2016), http://dx.doi.org
(DAM)” [26], and it has been shown that both of these methods
are applicable for FGMs [16,27]. Few known SIFs are required as
reference in calculating the unknown factors of weight function
in DAM [16], therefore, this method is applied to calculate SIFs of
FG cylinder with two internal radial cracks in the present work.

The two internal radial cracks of the cylinder with depth of a are
shown in Fig. 1b. Using the weight function method, the SIF for an
arbitrary load case can be obtained from Eq. (1) [14]:

K ¼
Z a

0
rðxÞmðx; aÞdx ð0 6 x 6 aÞ ð1Þ

where r(x) is the stress distribution function along the prospective
crack line of the un-cracked body and m(x, a) is the corresponding
weight function. Based on DAM, the weight function is defined by
Eq. (2) [24]:

mðx;aÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða� xÞp 1þM1 1� x

a

� �1
2 þM2 1� x

a

� �
þM3 1� x

a

� �3
2

� �

ð2Þ
where Mi (i = 1, 2, 3) are the unknown coefficients calculated from
reference SIFs, which are resulted from applying the reference load
cases. These SIFs are denoted by Kr and are defined by Eq. (3):

Kr ¼
Z a

0
rrðxÞmðx; aÞ dx ð3Þ

Based on [24], the following three reference load cases are used
to calculate three unknown coefficients in Eq. (2):

Kr0 ¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpaÞY0

p
for rroðxÞ ¼ A0 ð4aÞ

Kr1 ¼ A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpaÞY1

p
for rr1ðxÞ ¼ A1

x
ro � ri

� �
ð4bÞ

Kr2 ¼ A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpaÞY2

p
for rr2ðxÞ ¼ A2

x
ro � ri

� �2

ð4cÞ

Thus unknown coefficients Mi are obtained by Eq. (5) [24]:

M1 ¼ �48
5

þ pffiffiffi
2

p 12Y0 � 78
Y1

a
ro�ri

� �þ 84
Y2

a
ro�ri

� �2

2
64

3
75 ð5aÞ
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Fig. 1. A cylinder with two internal radial cracks.
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M2 ¼ 21þ pffiffiffi
2

p �105
2

Y0 þ 315
Y1

a
ro�ri

� �� 315
Y2

a
ro�ri
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M3 ¼ �64
5

þ pffiffiffi
2

p 48Y0 � 264
Y1

a
ro�ri

� �þ 252
Y2

a
ro�ri

� �2

2
64

3
75 ð5cÞ

in which Yi ¼ Ki= Ai
ffiffiffiffiffiffi
pa

p	 
 ði ¼ 1;2;3Þ are dimensionless reference
SIFs.

3. Modified J integral calculation

The energy release rate in FG materials under the conditions of
mode I, similar to Fig. 2, is calculated by Eq. (6) [14]:

J ¼ lim
Ce!0

Z
Ce

Wn1 � rijnjui;1
� �

ds

 �

ði; j ¼ 1;2Þ ð6Þ

where Ce implies curve around the crack tip which is elongated
from lower crack surface to the upper one. Moreover, x1 and x2
imply the principal directions, S denotes the curve length, W is
Fig. 2. A crack in a functionally graded material.
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the energy density function of mechanical strain, ni (i = 1, 2) is the
unit outward normal vector, rij and ui (i, j = 1, 2) denote the stress
and displacement components respectively, and ð:Þj � @ð:Þ

@xj
.

Based on Eq. (6), Dag [28] represented the energy release rate in
the form of domain integral by Eq. (7):

J ¼ lim
Ce!0

Z
Ce

fWn1 � rijnjui;1gds

 �

¼
ZZ

X
frijui;1 �W d1jgq;jdX�

ZZ
X
� ðW ;1ÞexplqdX ði; j ¼ 1;2Þ

ð7Þ
in which dij ði; j ¼ 1;2Þ is the Kronecker delta function, q is the vec-
tor representing a smooth function that changes from unity at the
crack front to zero at the boundary of the domain of integration,
(W,1)expl is the explicit derivative of the strain energy which is
defined as:

ðW ;1Þexp l ¼
@W
@E

@E
@x1

ð8Þ

and X is domain of integration.
Dag [28] also recommended the following function for q:

qðx1; x2Þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
R

ð9Þ

where R is the radius of the domain of integration (centered at the
crack tip) and x1 and x2 are the crack tip in-plane coordinates, as
shown in Fig. 3.
Fig. 3. Domain of integration for energy release rate calculation.
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Table 1
Normalized stress intensity factors for edge cracked plate under tension.

E2/E1 a/B

0.2 0.3 0.4 0.5 0.6

Erdogan and Wu [30] 0.1 1.904 1.885 1.977 2.215 2.717
0.2 1.595 1.612 1.721 1.953 2.403
1 – – – – –
5 0.687 0.777 0.923 1.151 1.559
10 0.564 0.658 0.804 1.035 1.428

Kim and Paulino [31] 0.1 1.888 1.864 1.943 2.145 2.553
0.2 1.588 1.601 1.706 1.925 2.341
1 1.055 1.122 1.26 1.496 1.913
5 0.687 0.778 0.924 1.158 1.561
10 0.565 0.659 0.804 1.035 1.429

Present work 0.1 1.879 1.850 1.922 2.122 2.545
0.2 1.582 1.592 1.693 1.902 2.322
1 1.055 1.123 1.260 1.493 1.913
5 0.691 0.781 0.931 1.168 1.575
10 0.569 0.663 0.814 1.048 1.446

Table 2
Normalized stress intensity factors for edge cracked plate under bending.

E2/E1 a/B

0.2 0.3 0.4 0.5 0.6

Erdogan and Wu [30] 0.1 1.296 1.858 2.569 3.570 5.188
0.2 1.395 1.839 2.443 3.326 4.761
1 – – – – –
5 1.131 1.369 1.748 2.365 3.445
10 1.001 1.229 1.588 2.176 3.212

Kim and Paulino [31] 0.1 1.284 1.846 2.554 3.496 4.962
0.2 1.39 1.831 2.431 3.292 4.669
1 1.358 1.658 2.11 2.822 4.03
5 1.132 1.37 1.749 2.366 3.448
10 1.003 1.228 1.588 2.175 3.212
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When the J integral is obtained, the mode-I SIF can be derived
using the material properties at the crack tip location (Eq. (10)):

KI ¼
ffiffiffiffiffiffiffiffiffi
JE�

tip

q
ð10Þ

where E�
tip ¼ Etip for plane stress and E�

tip ¼ Etip=ð1� m2tipÞ for plane
strain conditions. Etip is the elastic modulus and mtip is Poisson’s ratio
of the material at the crack tip location [17].

4. FE modeling and validation

4.1. Validation of modified J integral calculation

Two numerical examples are presented to prove the accuracy of
proposed method. In both examples, it is assumed that young’s
modulus, varies with the variation of coordinate system, while
Poisson’s ratio is constant. Delale et al. [29] shown that the effect
of Poisson’s ratio variation in comparison with young’s modulus
is negligible. Fig. 4a shows a plane with the length of L ¼ 8 units
and width of B ¼ 1 unit with an edge crack with the length of a.
Loading conditions are r22(x1, ±4) = ±1.0 for uniform tension and
r22 = ±(�2x1 + 1) for bending (shown in Fig. 4b). Boundary condi-
tions in a 6 x1 6 1 region and on line x2 = 0 is: u2 = 0. Moreover,
for the right node of the region, u1 = 0. Young’s modulus variation
is also exponentially assumed as Eq. (11):

Eðx1Þ ¼ E1ekx1 ð0 6 x1 6 1Þ ð11Þ
In this equation, k ¼ logðE2=E1Þ and E(0) = E1 = 1.0; so E(1) = E2.

For finite element analysis, Poisson’s ratio of m = 0.3, E2/E1 =
(0.1, 0.2, 1, 5, 10), a/B = (0.2, 0.3, 0.4, 0.5, 0.6), and plane strain con-
ditions are assumed. Using the method proposed in Tables 1 and 2,
results of finite element analysis are compared to the results
reported by Erdogan and Wu [30] and Kim and Paulino [31].
Fig. 4. Configurations for edge cracked plate: (a) tension loading; (b) bending
loading.

Present work 0.1 1.284 1.830 2.518 3.456 4.950
0.2 1.386 1.819 2.413 3.253 4.635
1 1.367 1.659 2.111 2.817 4.033
5 1.138 1.375 1.764 2.387 3.479
10 1.009 1.236 1.608 2.205 3.254

Please cite this article in press as: H. Mirahmadi et al., Calculation of stress inte
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Considering the results of Erdogan and Wu [30] as the reference
shows that the result of the present study is consistent with J
integral method proposed by Kim and Paulino [31].
4.2. Validation of present FE model

In order to decrease the computational costs of simulating the
cylinder with two internal radial cracks (shown in Fig. 1), just
one fourth of the cylinder is modeled because of the symmetry
along its horizontal and vertical axes. The FE model of the cylinder
is shown in Fig. 5. Finite elements modeling is conducted by ABA-
QUS Standard software [32]. ABAQUS user subroutines USDFLD
and UFIELD are written for applying elastic modulus gradation in
FG cylinder. Moreover, an ABAQUS Python script is written for
automating the generation of finite element models with varia-
tions in their effective parameters, which are internal to external
radius, crack depth to cylinder thickness, and elastic modulus
ratios. The size of elements around the crack tip is 1% of the crack
depth in all FE models. Since a very fine mesh is used near the crack
tip (shown in Fig. 5), SIFs were not affected by the size of elements
in that region; therefore convergent finite elements results are
obtained. 8-node biquadratic plane strain quadrilateral, reduced
integration elements (CPE8R) are used for meshing the models.

In post-processing step, the nodal displacements obtained by
finite element analysis is used to calculate modified domain of
the J contour integral for six contours around the crack tip
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Fig. 5. Finite element mesh of one fourth cylinder (left), and close up of the mesh near the crack tip (right).

Table 4
FE modeling matrix for weight function determination and comparison.

Variable Range Number of
variations

Total number
of FE runs
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(discussed in Section 3). J integral value of the nearest contour to
the crack tip is ignored and the average of the remaining five is
considered as the J integral to obtain SIFs based on Eq. (10).

In order to validate the FE model, homogenous cylinders with
two internal radial cracks are simulated the two following cases:

Case (A) ri/ro = 2.0 and pressure on crack plane:

pðxÞ ¼ A½x=ðro � riÞ�2 ð0 6 x 6 aÞ.
Case (B) ri/ro = 2.5 and pressure on crack plane:

pðxÞ ¼ A½x=ðro � riÞ�4 ð0 6 x 6 aÞ.

Assuming plane strain conditions in the analysis, normalized
SIFs is calculated by Eq. (12)

KN
I ¼ KI=ðA

ffiffiffiffiffiffi
pa

p Þ ð12Þ
The results of this analysis have been compared with extracted

results from [22] presented in Table 3, and it can be seen that the
results are in good consistency.

4.3. Weight functions for FG cylinders

Using the FE model and modified form of J integral, reference
SIFs are calculated by Eq. (4). Subsequently, weight functions for
FG cylinder can be determined using Eq. (5).

Elastic modulus of FG cylinder varies along its thickness accord-
ing to the following exponential function:

EðrÞ ¼ Ei expðkðr � riÞ=ðro � riÞÞ ðri 6 r 6 roÞ ð13Þ
where Ei and r represent elastic modulus at r = ri and distance of an
arbitrary point from center of the cylinder, respectively. In the pre-
sent work, Poisson’s ratio is considered to be constant and equal to
Table 3
Comparison of normalized SIFs for cylinders with two internal radial cracks.

Case(A) Case(B)

a/(ro � ri) Ref. [22] Present FE Ref. [22] Present FE

0.2 2.203E�02 2.201E�02 6.320E�04 6.307E�04
0.4 9.990E�02 9.990E�02 1.089E�02 1.086E�02
0.6 2.633E�01 2.634E�01 6.085E�02 6.078E�02
0.8 5.806E�01 5.792E�01 2.265E�01 2.266E�01

Please cite this article in press as: H. Mirahmadi et al., Calculation of stress inte
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0.3. Parameter k can be expressed by the ratio of elasticity modulus
in internal and external surfaces denoted by Ei and Eo respectively:

k ¼ ln
Eo

Ei
¼ ln c ð14Þ

where c = Eo/Ei is the elastic modulus ratio of FG cylinder.
In present FE models, the ratios of internal to external radius

and crack depth to thickness vary from 0.1 to 0.8 with the step
value of 0.1. In addition, various values are considered for the elas-
tic modulus ration of the FG cylinder (c = 0.1, 0.2, 0.5, 1, 5, 10).

In all generated models, radius and the elastic modulus at the
internal surface are considered to be constant and equal to
50 mm and 100 Gpa respectively.

In addition to three reference load cases (Eq. (4)), FE solution is
performed for cubic and periodic loadings (similar to the procedure
followed in [17]). The SIFs related to these two load cases are used
for investigating the weight function method accuracy in stress
intensity estimation and are not involved in calculation of weight
function. Thus, five load cases are applied on surfaces of two radial
cracks that are defined as:

Load Case no: 1 : uniform distribution rðxÞ¼r0 ð15aÞ

Load Case no: 2 : linear distribution rðxÞ¼r0
x

ro� ri

� �
ð15bÞ

Load Case no: 3 : quadratic distribution rðxÞ¼r0
x

ro� ri

� �2

ð15cÞ
Cylinder geometry
(a = ri/ro)

0.1–0.8
(increment = 0.1)

8 –

Crack geometry
(b = a/t)

0.1–0.8
(increment = 0.1)

8 –

Elastic modulus ratio
(c = Eo/Ei)

0.1, 0.2, 0.5, 1, 5, 10 7 –

Reference load cases
(15a, 15b, 15c)

Uniform, linear,
quadratic

3 1344 (for weight
function
development)

Additional load cases
(15d, 15e)

Cubic, periodic 2 896 (for result
comparison)

nsity factor for functionally graded cylinders with two radial cracks using
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Table 5
Normalized SIFs for various FG cylinder geometries with c = 10 obtained by the weight function method and direct FE analysis.

a Load case Method b = 0.1 b = 0.2 b = 0.3 b = 0.4 b = 0.5 b = 0.6 b = 0.7 b = 0.8

0.2 1 FE 0.9358 0.9256 0.9756 1.0772 1.2409 1.4902 1.8670 2.4552
1 WE 0.9358 0.9256 0.9755 1.0772 1.2408 1.4901 1.8667 2.4546
2 FE 0.0610 0.1214 0.1881 0.2670 0.3665 0.5004 0.6926 0.9916
2 WE 0.0610 0.1214 0.1881 0.2670 0.3665 0.5004 0.6924 0.9913
3 FE 0.0048 0.0193 0.0445 0.0828 0.1388 0.2208 0.3447 0.5447
3 WE 0.0048 0.0193 0.0445 0.0829 0.1388 0.2208 0.3446 0.5445
4 FE 0.9354 0.9223 0.9642 1.0493 1.1833 1.3823 1.6748 2.1169
4 WE 0.9354 0.9223 0.9642 1.0492 1.1831 1.3820 1.6743 2.1162
5 FE 0.4266 0.4168 0.4539 0.5297 0.6515 0.8360 1.1123 1.5361
5 WE 0.4263 0.4165 0.4535 0.5293 0.6511 0.8356 1.1119 1.5357

0.4 1 FE 1.0136 1.0270 1.1055 1.2470 1.4674 1.7975 2.2850 3.0048
1 WE 1.0135 1.0270 1.1055 1.2469 1.4673 1.7973 2.2847 3.0042
2 FE 0.0640 0.1294 0.2033 0.2930 0.4087 0.5669 0.7947 1.1403
2 WE 0.0640 0.1294 0.2034 0.2930 0.4087 0.5669 0.7945 1.1400
3 FE 0.0050 0.0202 0.0471 0.0886 0.1504 0.2422 0.3821 0.6056
3 WE 0.0050 0.0202 0.0471 0.0886 0.1504 0.2422 0.3821 0.6054
4 FE 1.0131 1.0236 1.0937 1.2176 1.4060 1.6813 2.0763 2.6365
4 WE 1.0130 1.0236 1.0936 1.2175 1.4058 1.6810 2.0758 2.6357
5 FE 0.4854 0.4932 0.5520 0.6590 0.8262 1.0765 1.4441 1.9780
5 WE 0.4850 0.4928 0.5516 0.6586 0.8258 1.0760 1.4436 1.9776

0.6 1 FE 1.0578 1.1014 1.2193 1.4197 1.7326 2.2116 2.9380 4.0092
1 WE 1.0577 1.1014 1.2192 1.4196 1.7324 2.2113 2.9376 4.0086
2 FE 0.0658 0.1352 0.2166 0.3195 0.4583 0.6573 0.9563 1.4167
2 WE 0.0658 0.1352 0.2167 0.3195 0.4583 0.6572 0.9561 1.4164
3 FE 0.0051 0.0209 0.0493 0.0945 0.1639 0.2714 0.4418 0.7199
3 WE 0.0051 0.0209 0.0493 0.0945 0.1640 0.2714 0.4417 0.7197
4 FE 1.0574 1.0979 1.2070 1.3887 1.6668 2.0843 2.7031 3.5842
4 WE 1.0573 1.0979 1.2069 1.3886 1.6666 2.0839 2.7025 3.5833
5 FE 0.5189 0.5492 0.6378 0.7904 1.0304 1.3995 1.9599 2.7806
5 WE 0.5185 0.5489 0.6374 0.7900 1.0299 1.3990 1.9594 2.7802

0.8 1 FE 1.1429 1.1528 1.3077 1.5725 2.0038 2.7131 3.9102 5.9522
1 WE 1.1428 1.1528 1.3076 1.5723 2.0036 2.7127 3.9097 5.9513
2 FE 0.0703 0.1392 0.2270 0.3430 0.5093 0.7675 1.1988 1.9568
2 WE 0.0703 0.1392 0.2270 0.3430 0.5093 0.7674 1.1986 1.9563
3 FE 0.0054 0.0213 0.0511 0.0997 0.1779 0.3071 0.5318 0.9444
3 WE 0.0054 0.0213 0.0511 0.0998 0.1779 0.3070 0.5317 0.9441
4 FE 1.1425 1.1493 1.2950 1.5401 1.9335 2.5720 3.6354 5.4154
4 WE 1.1424 1.1492 1.2949 1.5399 1.9332 2.5716 3.6347 5.4144
5 FE 0.5716 0.5880 0.7046 0.9066 1.2388 1.7894 2.7251 4.3272
5 WE 0.5697 0.5876 0.7042 0.9061 1.2383 1.7890 2.7246 4.3268
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Load Case no: 4 : Cubic distribution rðxÞ¼r0 1� x
ro� ri
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Load Case no: 5 : periodic distribution rðxÞ¼r0 cos
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Fig. 6. Relative difference of SIFs between the weight function method
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The FE simulations are conducted for different ranges and
values of the parameters including cylinder geometry a, crack
geometry b and, Elastic modulus ratio c (listed in Table 4).

As it is summarized in Table 4, a total of 1344 runs are car-
ried out in order to obtain unknown coefficients of weight functions.
and direct FE results for FG cylinders with c = 0.2; cubic load case.

nsity factor for functionally graded cylinders with two radial cracks using
/10.1016/j.tafmec.2016.06.004

 

http://dx.doi.org/10.1016/j.tafmec.2016.06.004


H. Mirahmadi et al. / Theoretical and Applied Fracture Mechanics xxx (2016) xxx–xxx 7 
Moreover, for the last two load cases, 896 FE runs are carried
out, and the SIFs estimated by weight function method are com-
pared with the results calculated directly from these simulations.

In addition, to investigate the accuracy of the weight functions
method, the obtained SIFs for FG cylinder with elasticity modulus
ratio c = 10 under five load cases are compared with the results
Fig. 7. Relative difference of SIFs between the weight function method a

Fig. 8. Normalized SIFs for FG cylinders with c = 0.5 predi

Fig. 9. Normalized SIFs for FG cylinders with c = 0.5 predict
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extracted from FE analysis and are shown in Table 5. This table also
shows that calculated SIFs through weight function method are
self-consistent; implying that reference SIFs can be estimated
again by the weight function derived from FE simulations.

The percentage of relative difference between the FE and weight
function results are defined as follows [17]:

 

nd direct FE results for FG cylinders with c = 0.2; periodic load case.

cted by the weight function method; cubic load case.

ed by the weight function method; periodic load case.

nsity factor for functionally graded cylinders with two radial cracks using
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Relative Difference ð%Þ ¼
KFE

I � KWF
I

��� ���
KFE

I

� 100 ð16Þ

The relative difference for elastic modulus c = 0.2 and load
cases no. 4 and 5 are presented in Figs. 6 and 7. It is observed
that the maximum errors for load case no. 4 (cubic load) and
Fig. 10. Normalized SIFs for various elastic moduli ratio with ri/ro = 0

Fig. 11. Normalized SIFs for various elastic moduli ratio with ri/ro = 0.

Fig. 12. Normalized SIFs for various elastic moduli ratio with ri/ro = 0
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5 (periodic load) are 0.02% and 0.05%, respectively. Thus, it is
found that the weight functions obtained by the first three load
cases can predict SIFs for load cases no. 4 and 5 with acceptable
accuracy.

SIFs calculated by weight functions for FG cylinder with elastic-
ity modulus ratio c = 0.5 under load cases no. 4 (cubic lead) and 5
(periodic load) are shown in Figs. 8 and 9. It can be concluded from

 

.8 obtained using the weight function method; cubic load case.

8 obtained using the weight function method; periodic load case.

.2 obtained using the weight function method; cubic load case.

nsity factor for functionally graded cylinders with two radial cracks using
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Fig. 13. Normalized SIFs for various elastic moduli ratio with ri/ro = 0.2 obtained using the weight function method; periodic load case.
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these figures that as the crack depth to thickness ratio b increases,
SIFs increase more rapidly.

The effects of variations in elastic modulus ratio c on SIFs under
load cases no. 4 (cubic load) and 5 (periodic load), for a cylinder
with a = 0.8 is presented in Figs. 10 and 11. The remarkable point
about these figures is that for b = 0.65, c has a negligible effect
on SIFs; regardless of the loading condition. Moreover, when
b < 0.65, SIF decreases with an increase in c. But, with b > 0.65 as
c increases SIF increases too. The behavior of an FG cylinder with
a = 0.2 is the same, but the point for which c has a negligible effect
on SIF is at b � 0.75 (shown in Figs. 12 and 13). Predicted SIFs from
weight functions are used for plotting these nine diagrams. It can
be concluded from these diagrams that for cylinder with two radial
cracks as crack depth to thickness ratio increases, SIF also
increases.
5. Conclusion

SIFs for mode I of FG cylinders with two internal radial cracks
have been obtained using weight function method. Gradient pro-
files of elastic modulus and Poisson’s ratio are considered to be
exponential and constant, respectively.

A modified domain form of the energy release rate is used to
calculate SIFs from FE analysis in various loading conditions of
crack surfaces. In order to determine the unknown coefficients of
weight functions, SIFs for three reference load cases are calculated.
After the determination of weight function, this method is used to
calculate SIFs for two other load cases (cubic and periodic) and the
results are compared with the values obtained directly through
applying FE analysis, and it is shown that the results from both
methods are consistent. Moreover, it is observed that an increase
in crack depth to thickness ratio will result in increasing of SIF.

The effect of elasticity modulus ratio on SIF is also investigated.
Results show that regardless of the load case on crack surfaces,
there is a certain crack depth to thickness ratio at which the effect
of gradient profile material on SIF of the cylinder is insignificant.
For values of crack depth to thickness ratio lower than this certain
point, SIF decreases with an increase in the elasticity modulus. But
as the crack depth to thickness ratio passes this point, an increase
in elastic modulus ratio will result in increasing of SIF.
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