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Abstract: We consider the problem of characterizing and assessing the voltage stability in
power distribution networks. Different from previous formulations, we consider the branch-flow
parametrization of the power system state, which is particularly effective for radial networks. Our
approach to the voltage stability problem is based on a local, approximate, yet highly accurate
characterization of the determinant of the power flow Jacobian. Our determinant approximation
allows us to construct a voltage stability index that can be computed in a fully scalable and
distributed fashion. We provide an upper bound on the approximation error, and we show how
the proposed index outperforms other voltage indices recently proposed in the literature.
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1. INTRODUCTION

Operators of power distribution grids are facing unprece-
dented challenges caused by higher and intermittent con-
sumers’ demand, driven, among other things, by the pen-
etration of electric mobility. Grid congestion is expected,
as the demand gets closer to the hosting capacity of the
network. One of the main phenomena that determines the
finite power transfer capacity of a distribution grid is volt-
age instability (see the recent discussion in Simpson-Porco
et al. 2016). The amount of power that can be transferred
to the loads via a distribution feeder is inherently limited
by the non-linear physics of the system. In practice, as the
grid load approaches this limit, increasingly lower voltages
in the feeder are observed, followed by voltage collapse.

From the operational point of view, it is important to be
able to identify operating conditions of the grid that are
close to voltage collapse, in order to take the appropriate
remedial actions. Many different indices have been pro-
posed to quantify the distance of the grid from voltage
collapse. Most of them are based on the observation that
the Jacobian of the power flow equations becomes singular
at the steady state voltage stability limit (see Tamura et al.
1988). For a review of indices based on this approach, we
refer to Chebbo et al. (1992) and to Gao et al. (1992).

A geometric interpretation of the phenomena has been
developed by Chiang et al. (1990), and starting from
Tamura et al. (1983) voltage collapse has been related
to the appearance of bifurcations in the solutions of the
nonlinear power flow equations.

More recently, semidefinite programming has been pro-
posed as a tool to identify the region where voltage sta-
bility is guaranteed (Dvijotham and Turitsyn, 2015). The
same region has been also characterized based on applica-
tions of fixed-point theorems (see Bolognani and Zampieri
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2016 and references therein, and the extensions proposed
in Yu et al. 2015 and Wang et al. 2016). Additionally,
convex optimization tools have been used to determine
sufficient condition for unsolvability (and thus voltage
collapse) in Molzahn et al. (2013).

All these works propose global indices, in the sense that the
knowledge of the entire system state is required at some
central location, where the computation is performed.
Such a computation typically scales poorly with respect
to the grid size, hindering the practical applicability of
these methods. Few exception include heuristic indices
such as the one proposed in Vu et al. (1999), which can be
evaluated by each load based on local measurements.

The methodology that we propose in this paper builds
on the aforementioned approach based on the singularity
of the power flow Jacobian. Differently from other works,
however, we adopt a branch flow model for the power
flow equations (Baran and Wu, 1989; Farivar and Low,
2013). This choice gives us a specific advantage, towards
three results: first, we reduce the dimensionality of the
problem via algebraic manipulation of the Jacobian of such
equations; second, we propose an approximation of the
Jacobian-based voltage stability margin that is function of
only the diagonal elements of the manipulated Jacobian,
and is therefore computationally very tractable; finally,
we show how such an index can be computed in a fully
distributed way, based on purely local measurements at
the buses.

The paper is structured in the following way. In Section 2
we recall the branch flow model, while in Section 3 we
explain how voltage stability can be assessed based on
that model. In Section 4 we propose an approximate
voltage stability index and we analyze the quality of the
approximation. Finally, in Section 5, we illustrate the
result in simulations and we discuss the applicability of
this approach to practical grid operation.
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however, we adopt a branch flow model for the power
flow equations (Baran and Wu, 1989; Farivar and Low,
2013). This choice gives us a specific advantage, towards
three results: first, we reduce the dimensionality of the
problem via algebraic manipulation of the Jacobian of such
equations; second, we propose an approximation of the
Jacobian-based voltage stability margin that is function of
only the diagonal elements of the manipulated Jacobian,
and is therefore computationally very tractable; finally,
we show how such an index can be computed in a fully
distributed way, based on purely local measurements at
the buses.

The paper is structured in the following way. In Section 2
we recall the branch flow model, while in Section 3 we
explain how voltage stability can be assessed based on
that model. In Section 4 we propose an approximate
voltage stability index and we analyze the quality of the
approximation. Finally, in Section 5, we illustrate the
result in simulations and we discuss the applicability of
this approach to practical grid operation.

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 13782

A distributed voltage stability margin for
power distribution networks

Liviu Aolaritei ∗, Saverio Bolognani ∗, Florian Dörfler ∗

∗ Automatic Control Laboratory, ETH Zürich, Switzerland.
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1. INTRODUCTION

Operators of power distribution grids are facing unprece-
dented challenges caused by higher and intermittent con-
sumers’ demand, driven, among other things, by the pen-
etration of electric mobility. Grid congestion is expected,
as the demand gets closer to the hosting capacity of the
network. One of the main phenomena that determines the
finite power transfer capacity of a distribution grid is volt-
age instability (see the recent discussion in Simpson-Porco
et al. 2016). The amount of power that can be transferred
to the loads via a distribution feeder is inherently limited
by the non-linear physics of the system. In practice, as the
grid load approaches this limit, increasingly lower voltages
in the feeder are observed, followed by voltage collapse.

From the operational point of view, it is important to be
able to identify operating conditions of the grid that are
close to voltage collapse, in order to take the appropriate
remedial actions. Many different indices have been pro-
posed to quantify the distance of the grid from voltage
collapse. Most of them are based on the observation that
the Jacobian of the power flow equations becomes singular
at the steady state voltage stability limit (see Tamura et al.
1988). For a review of indices based on this approach, we
refer to Chebbo et al. (1992) and to Gao et al. (1992).

A geometric interpretation of the phenomena has been
developed by Chiang et al. (1990), and starting from
Tamura et al. (1983) voltage collapse has been related
to the appearance of bifurcations in the solutions of the
nonlinear power flow equations.

More recently, semidefinite programming has been pro-
posed as a tool to identify the region where voltage sta-
bility is guaranteed (Dvijotham and Turitsyn, 2015). The
same region has been also characterized based on applica-
tions of fixed-point theorems (see Bolognani and Zampieri
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2016 and references therein, and the extensions proposed
in Yu et al. 2015 and Wang et al. 2016). Additionally,
convex optimization tools have been used to determine
sufficient condition for unsolvability (and thus voltage
collapse) in Molzahn et al. (2013).

All these works propose global indices, in the sense that the
knowledge of the entire system state is required at some
central location, where the computation is performed.
Such a computation typically scales poorly with respect
to the grid size, hindering the practical applicability of
these methods. Few exception include heuristic indices
such as the one proposed in Vu et al. (1999), which can be
evaluated by each load based on local measurements.

The methodology that we propose in this paper builds
on the aforementioned approach based on the singularity
of the power flow Jacobian. Differently from other works,
however, we adopt a branch flow model for the power
flow equations (Baran and Wu, 1989; Farivar and Low,
2013). This choice gives us a specific advantage, towards
three results: first, we reduce the dimensionality of the
problem via algebraic manipulation of the Jacobian of such
equations; second, we propose an approximation of the
Jacobian-based voltage stability margin that is function of
only the diagonal elements of the manipulated Jacobian,
and is therefore computationally very tractable; finally,
we show how such an index can be computed in a fully
distributed way, based on purely local measurements at
the buses.

The paper is structured in the following way. In Section 2
we recall the branch flow model, while in Section 3 we
explain how voltage stability can be assessed based on
that model. In Section 4 we propose an approximate
voltage stability index and we analyze the quality of the
approximation. Finally, in Section 5, we illustrate the
result in simulations and we discuss the applicability of
this approach to practical grid operation.
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2. POWER DISTRIBUTION NETWORK MODEL

Let G = (N,E) be a directed tree representing a symmet-
ric and balanced radial distribution grid, where each node
in N = {0, 1, ..., n} represents a bus, and each edge in E
represents a line. Note that |E| = n. A directed edge in E
is denoted by (i, j) and means that i is the parent of j. For
each node i, let δ(i) ⊆ N denote the set of all its children.
Node 0 represents the root of the tree and corresponds to
the distribution grid substation. For each i but the root 0,
let π(i) ∈ N be its unique parent.

We now define the basic variables of interest. For each
(i, j) ∈ E let �ij be the magnitude squared of the complex
current from bus i to bus j, and sij = pij + jqij be
the sending-end complex power from bus i to bus j. Let
zij = rij+jxij be the complex impedance on the line (i, j).
For each node i, let vi be the magnitude squared of the
complex voltage at bus i, and si = pi + jqi be the net
complex power demand (load minus generation) at bus i.

In the following, we make use of the compact notation
[x], where x ∈ Rn, to indicate the n × n matrix that has
the elements of x on the diagonal, and zeros everywhere
else. Finally, we use the notation 1n and 0n for the n-
dimensional vectors of all 1’s and 0’s, respectively.

2.1 Relaxed branch flow model

To model the power distribution network we use the
relaxed branch flow equations proposed in Baran and Wu
(1989); Farivar and Low (2013) 1

pj = pπ(j)j − rπ(j)j�π(j)j −
∑

k∈δ(j)

pjk, ∀j ∈ N

qj = qπ(j)j − xπ(j)j�π(j)j −
∑

k∈δ(j)

qjk, ∀j ∈ N

vj = vi − 2(rijpij + xijqij) + (r2ij + x2
ij)�ij , ∀(i, j) ∈ E

vi�ij = p2ij + q2ij , ∀(i, j) ∈ E

To write these equations in vector form, we first define the
vectors p, q, and v, obtained by stacking the scalars pi, qi,
and vi, respectively, for i ∈ N . Similarly we define p, q, �,
r, and x, as the vectors obtained by stacking the scalars
pij , qij , �ij , rij , and xij , respectively, for (i, j) ∈ E.

We define two (0, 1)-matrices Ai and Ao, where Ai ∈
Rn+1×n is the matrix which selects for each row j the
branch (i, j), where i = π(j), and Ao ∈ Rn+1×n is the
matrix which selects for each row i the branches (i, j),
where j ∈ δ(i). Notice that A := Ao − Ai is the incidence
matrix of the graph.

The relaxed branch flow equations in vector form are:

p = Ai
(
p− [r]�

)
−Aop

q = Ai
(
q − [x]�

)
−Aoq

AiT v = AoT v − 2
(
[r]p+ [x]q

)
+
(
[r]2 + [x]2

)
�[

AoT v
]
� = [p] p+ [q] q

(1)

We model node 0 as a slack bus, in which v0 is imposed
(v0 = 1 p.u.) and all the other nodes as PQ buses, in

1 To make the model equations more compact, we adopted the
convention pπ(0)0 = qπ(0)0 = �π(0)0 = rπ(0)0 = xπ(0)0 = 0.

which the complex power demand (active and reactive
powers) is imposed and does not depend on the bus
voltage. Therefore, the quantities (v0, p1...n, q1...n) are to
be interpreted as state parameters, and the relaxed branch
flow model specifies 4n + 2 equations in 4n + 2 state
variables, (p, q, �, v1...n, p0, q0).

3. CHARACTERIZATION OF VOLTAGE STABILITY

A loadability limit of the power system is a critical oper-
ating point (as determined by the nodal power injections)
of the grid, where the power transfer reaches a maximum
value, after which the relaxed branch flow equations have
no solution. There are infinitely many loadability limits,
corresponding to different demand configurations. Ideally,
the power system will operate far away from these points,
with a sufficient safety margin. On the other hand, the
flat voltage solution (of the power flow equations) is the
operating point of the grid where v = 1n+1, p = q = 0n+1,
and p = q = � = 0n. This point is voltage stable and the
power system typically operates relatively close to it.

In the following, we recall and formalize the standard
reasoning that allows to characterize loadability limits via
conditions on the Jacobian of the power flow equations,
and we specialize those results for the branch flow model
that we have adopted.

3.1 Jacobian of the power flow equations

Based on the discussion at the end of Section 2, consider
the two vectors

u =




p
q
�

v1...n
p0
q0



∈ R4n+2 and ξ =

[
v0

p1...n
q1...n

]
∈ R2n+1

corresponding to the state variables and the state parame-
ters, respectively. Then, the relaxed branch flow model (1)
can be expressed in an implicit form as

ϕ(u, ξ) = 0

From a mathematical point of view, a loadability limit
corresponds to the maximum of a scalar function γ(ξ) (to
be interpreted as a measure of the total power transferred
to the loads), constrained to the set ϕ(u, ξ) = 0 (the
physical grid constraints).

max
u,ξ

γ(ξ)

subject to ϕ(u, ξ) = 0

From direct application of the KKT optimality conditions,
it results that in a loadability limit the power flow Jacobian
ϕu = ∂ϕ

∂u becomes singular, i.e., det(ϕu) = 0 (for details,
see Cutsem and Vournas 1998, Chapter 7). Based on
this, we adopt the following standard characterization for
voltage stability of the grid.

Definition. (Voltage stability region). The voltage stability
region of a power distribution network with one slack bus
and n PQ buses, described by the relaxed branch flow
model, is the open region surrounding the flat voltage
solution where the set of power flow solutions satisfy:

det(ϕu) �= 0 (2)
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When the branch flow model is adopted, ϕu takes the form

ϕu =




−A 0n+1×n −Ai[r] 0n+1×n −e1 0n+1

0n+1×n −A −Ai[x] 0n+1×n 0n+1 −e1
−2[r] −2[x] [r]2 + [x]2 AT

2 0n 0n

2 [p] 2 [q] −
[
AoT v

]
− [�]AoT

2 0n 0n




(3)
where Ao

2 and A2 are the matrices obtained by removing
the first row from Ao and A, respectively, and where e1 is
the first canonical base vector.

3.2 Reduced power flow Jacobian

We define the following n × n matrix, that we denote as
the reduced power flow Jacobian.

ϕ
′

u =
[
AoT v

]
+ 2 [p]A−1

2 [r] + 2 [q]A−1
2 [x]

− [�]AoT
2 (AT

2 )
−1

(
[r]2 + 2[r]A−1

2 [r] + [x]2 + 2[x]A−1
2 [x]

)
(4)

In the following, we provide a key theorem that shows the
merits of the reduced power flow Jacobian. The proof is
omitted in this paper due to space constraints. 2

Theorem 1. Consider the power flow Jacobian (3) and the
reduced power flow Jacobian (4) of a power distribution
network with one slack bus and n PQ buses, described by
the relaxed branch flow model. We have:

i) det(ϕu) = det(ϕ′
u).

ii) det(ϕ′
u) > 0 in the voltage stability region.

iii) det(ϕ′
u) = 0 ⇔ ∃ i ∈ δ(0) : det(ϕ′

u,i) = 0, where
ϕ′
u,i is the reduced power flow Jacobian of the tree

composed by only node 0 and the subtree rooted by
child i of node 0.

Theorem 1 shows that the reduced power flow Jacobian
ϕ′
u is an effective tool for the voltage stability analysis.

In particular, i) shows that studying the reduced power
flow Jacobian is completely equivalent to studying the
original power flow Jacobian, when we are interested in
its singularity. ii) provides a more precise characterization
of the region where the grid voltages are stable. Finally,
iii) explains how the dimensionality of the problem of
computing the determinant of the power flow Jacobian can
be further reduced, if the root has more than one child.

4. VOLTAGE STABILITY ANALYSIS

In this section we first propose an approximation of the
determinant of the reduced power flow Jacobian that is
amenable to scalable and distributed computation, when
measurements of the grid variables are available. Then,
based on this approximation, we propose a voltage sta-
bility index to quantify the distance of the power system
from voltage collapse.

4.1 Mathematical preliminaries on matrix theory

Given A ∈ Rn×n, we denote by Adiag and Aoff the matrices
that contain only the diagonal and off-diagonal elements of
A, respectively. We denote by ρ = ρ(A) its spectral radius,
i.e. the maximum norm of its eigenvalues.
2 The proof can be found in an extended version of the current paper
at https://arxiv.org/pdf/1612.00207.pdf

Definition. A matrix A ∈ Rn×n is a Z-matrix if A = αI −
B, where α is a real number and B is a nonnegative matrix.
The set of all n× n Z-matrices is denoted by Z<n>.

Definition. A matrix A ∈ Rn×n is an ω-matrix if:

(1) Each principal submatrix of A has at least one real
eigenvalue.

(2) If S1 is a principal submatrix of A and S11 a principal
submatrix of S1 then λmin(S1) ≤ λmin(S11), where
λmin denotes the smallest real eigenvalue.

The set of all n × n ω-matrices is denoted by ω<n>.
Definition. A matrix A ∈ Rn×n is a τ -matrix if it is an
ω-matrix and λmin(A) ≥ 0.

The following technical results will be used.

Theorem 2. (Mehrmann 1984). Z<n> ⊆ ω<n>.

Theorem 3. (Engel and Schneider 1975). If A ∈ Rn×n is a
τ -matrix then:

det(A) ≤ det(Adiag)

Theorem 4. (Ipsen and Lee 2011). Given A ∈ Rn×n, if
Adiag is nonsingular and ρ = ρ(A−1

diagAoff) < 1, then:

|ln(det(A))− ln(det(Adiag))| ≤ −ρn ln(1− ρ) (5)

4.2 Determinant approximation

Direct inspection of the reduced power flow Jacobian ϕ
′

u
shows that, for realistic parameter values and operating
conditions, its off-diagonal elements (and in particular its
lower-diagonal elements) are significantly smaller than the
diagonal elements. The approximation proposed in this
paper consists in ignoring them, and requires the following
assumption.

Assumption 5. All PQ buses in the network have positive
active and reactive power demand.

This assumption ensures that pij , qij ≥ 0 ∀(i, j) ∈ E,
although it is not a necessary condition for that to hold.
In practical terms, having positive power demands every-
where corresponds to the most unfavorable case for voltage
stability, and there is little loss of generality in assuming
that in this analysis. Based on this assumption, in the
remaining of this paper we will refer to the nodes 1, ..., n
as PQ loads.

In Fig. 1 we represent the numerical value of ϕ
′

u for two
levels of loadability of a 56-bus distribution grid (described
in detail in Section 5). In the left panel, the operating point
of the system is close to the flat voltage solution, while in
the right panel, the grid is operated close to a loadability
limit. The diagonal elements of ϕ

′

u are equal to

ϕ′
u,jj = vi − 2pijrij − 2qijxij − 2�ij(rijr0i + xijx0i) (6)

where i = π(j) and r0i is the sum of the resistances of the
lines connecting node 0 to node i (and similarly for x0i).

By ignoring the off-diagonal elements, an approximation
of det(ϕ

′

u) is obtained as the product of the elements on
the diagonal defined in (6):

detapprox =
∏

(i,j)∈E

ϕ′
u,jj (7)
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where Ao

2 and A2 are the matrices obtained by removing
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3.2 Reduced power flow Jacobian

We define the following n × n matrix, that we denote as
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′
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based on this approximation, we propose a voltage sta-
bility index to quantify the distance of the power system
from voltage collapse.
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Direct inspection of the reduced power flow Jacobian ϕ
′

u
shows that, for realistic parameter values and operating
conditions, its off-diagonal elements (and in particular its
lower-diagonal elements) are significantly smaller than the
diagonal elements. The approximation proposed in this
paper consists in ignoring them, and requires the following
assumption.

Assumption 5. All PQ buses in the network have positive
active and reactive power demand.

This assumption ensures that pij , qij ≥ 0 ∀(i, j) ∈ E,
although it is not a necessary condition for that to hold.
In practical terms, having positive power demands every-
where corresponds to the most unfavorable case for voltage
stability, and there is little loss of generality in assuming
that in this analysis. Based on this assumption, in the
remaining of this paper we will refer to the nodes 1, ..., n
as PQ loads.

In Fig. 1 we represent the numerical value of ϕ
′

u for two
levels of loadability of a 56-bus distribution grid (described
in detail in Section 5). In the left panel, the operating point
of the system is close to the flat voltage solution, while in
the right panel, the grid is operated close to a loadability
limit. The diagonal elements of ϕ

′

u are equal to

ϕ′
u,jj = vi − 2pijrij − 2qijxij − 2�ij(rijr0i + xijx0i) (6)

where i = π(j) and r0i is the sum of the resistances of the
lines connecting node 0 to node i (and similarly for x0i).

By ignoring the off-diagonal elements, an approximation
of det(ϕ
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u) is obtained as the product of the elements on
the diagonal defined in (6):
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Fig. 1. Data in the reduced power flow Jacobian

In the next Lemma, we prove that the approximation is
an upper bound for the true determinant.

Lemma 6. For a power distribution network with one slack
bus and n PQ loads described by the relaxed branch flow
model, in the voltage stability region the determinant of
the reduced power flow Jacobian satisfies

0 < det(ϕ
′

u) ≤ detapprox

Proof. Having pij , qij ≥ 0 ∀(i, j) ∈ E ensures that the

off-diagonal elements of ϕ
′

u are nonpositive. Thus, ϕ
′

u is a

Z-matrix and, from Theorem 2, ϕ
′

u is also an ω-matrix.
Recall that an ω-matrix is a nonsingular τ -matrix if and
only if its smallest real eigenvalue is positive. But this is
exactly what we require for voltage stability. To see this,
notice that in the flat voltage solution all the eigenvalues of
ϕ

′

u are real and equal to 1. Thus the determinant becomes
zero for the first time when the smallest real eigenvalue
becomes zero. Notice that there is always at least one
real eigenvalue, since ϕ

′

u is an ω-matrix. Therefore, in the

voltage stability region, ϕ
′

u is a τ -matrix. The result follows
from Theorem 3. �

4.3 Voltage stability index

Based on Theorem 1, the voltage stability region is defined
as the region where det(ϕ

′

u) > 0. In practical terms,
the grid operator has to identify a threshold β > 0 and
impose that det(ϕ

′

u) ≥ β as a practical voltage stability
measure. In order to make full use of the capacity of
the grid, the value β has to be chosen such that, when
det(ϕ

′

u) = β, the operating point of the grid is very close to
a loadability limit. From numerical experiments, it is clear
that a proper choice of β intrinsically depends on the size of
the network. To gain some intuition about this, recall that
the determinant of a matrix is equal to the product of its
eigenvalues. In the flat voltage solution, all the eigenvalues
of ϕ

′

u are equal to 1. When the power demands increase,
the eigenvalues start moving towards the origin. Since the
number of eigenvalues is equal to the size of ϕ

′

u, and thus
to the size of the grid, it is clear that bigger networks are
associated to exponentially smaller determinants.

Based on this intuition, we propose

VSI :=
ln(det(ϕ

′

u))

n
as a voltage stability index. Thus, for some threshold β > 0,
the practical voltage stability measure becomes

VSI ≥ ln(β)

n
=: VSImin (8)

Following the determinant approximation proposed in (7),
we then define the voltage stability index approximation

VSIA :=
ln (detapprox)

n
In the following remark we point out an interesting and
useful property of this voltage stability index approxima-
tion.

Remark 7. (Distributed computation of the VSIA).
Notice that ϕ′

u,jj is only function of the local state vari-
ables relative to the edge (i, j), where i = π(j). More
precisely, ϕ′

u,jj can be computed in a distributed way from
measurements performed at bus i and on the power lines
that leave the same bus: vi, pij , qij and �ij . Once each node
i has computed ϕ′

u,jj for each children j ∈ δ(i), the com-
putation of the VSIA amounts to simply evaluating the
arithmetic mean of the terms ln

(
ϕ′
u,jj

)
for all (i, j) ∈ E.

The arithmetic mean of these nodal quantities can then be
computed via scalable fully distributed algorithms such as
consensus algorithms (Olfati-Saber and Murray, 2004).

4.4 Approximation error

In this section we study the approximation error between
VSI and VSIA. To do so, we need the following lemma.

Lemma 8. In a power distribution network with one slack
bus and n PQ loads described by the relaxed branch flow
model, in the voltage stability region, the reduced power
flow Jacobian satisfies the following:

i) ϕ′
u,diag is positive definite

ii) ρ(ϕ
′−1
u,diagϕ

′

u,off) < 1.

Proof. i) The two facts, ϕ′
u,diag = I in the flat voltage

solution and det(ϕ
′

u,diag) > 0 in the voltage stability region

(via Lemma 6), ensure that the elements on the diagonal
remain positive.

ii) We have det(ϕ
′

u) = det(ϕ
′

u,diag) det(I + ϕ
′−1
u,diagϕ

′

u,off).

In the flat voltage solution, ϕ
′−1
u,diagϕ

′

u,off = 0n×n and

in a loadability limit, det(I + ϕ
′−1
u,diagϕ

′

u,off) = 0. Thus,
the power grid becomes unstable when an eigenvalue of

ϕ
′−1
u,diagϕ

′

u,off arrives at −1. Now, since −ϕ
′−1
u,diagϕ

′

u,off is
non-negative, it has a positive real eigenvalue equal to the

spectral radius ρ(−ϕ
′−1
u,diagϕ

′

u,off) (Perron-Frobenius Theo-

rem). Therefore, ϕ
′−1
u,diagϕ

′

u,off has a negative real eigenvalue

with magnitude equal to ρ(ϕ
′−1
u,diagϕ

′

u,off). Hence, this is the
eigenvalue that first arrives in −1. This implies that in the

voltage stability region, ρ(ϕ
′−1
u,diagϕ

′

u,off) < 1. �

In the following Lemma we give an exact expression for
the approximation error.

Lemma 9. In a power distribution network with one slack
bus and n PQ loads described by the relaxed branch flow
model, in the voltage stability region we have:

VSIA−VSI =
Trace(

∑∞
i=2

(−ϕ
′−1
u,diag

ϕ
′
u,off)

i

i )

n
(9)

Proof. We have that ln(det(ϕ
′

u)) = ln(det(ϕ
′

u,diag)) +

ln(det(I + ϕ
′−1
u,diagϕ

′

u,off)). As ρ(ϕ
′−1
u,diagϕ

′

u,off) < 1 we
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know that ln(det(I + ϕ
′−1
u,diagϕ

′

u,off)) = Trace(ln(I +

ϕ
′−1
u,diagϕ

′

u,off)) = −Trace(
∑∞

i=1(−ϕ
′−1
u,diagϕ

′

u,off)
i/i). To

conclude, notice that Trace(ϕ
′−1
u,diagϕ

′

u,off) = 0. �

In Section 5 we show that the approximation is almost
exact in the voltage stability region. Since the terms in
the above sum are all positive, they are very small and
they decay quickly to zero.

In the following theorem, we present the main result
on the quality of the proposed voltage stability index
approximation.

Theorem 10. In a power distribution network with one
slack bus and n PQ loads described by the relaxed branch
flow model, in the voltage stability region we have:

VSI ≤ VSIA ≤ VSI− ρ ln(1− ρ) (10)

where ρ = ρ(ϕ
′−1
u,diagϕ

′

u,off).

Proof. The first inequality descends from Lemma 6. The
second inequality is proved by applying Theorem 4, using
what we proved in Lemma 8. �

We conclude this section by presenting the following con-
jecture.

Conjecture 11. In Ipsen and Lee (2011), the authors il-
lustrate that the pessimistic factor in the approximation
bound of Theorem 4 is given by the factor n that appears
in (5). They found that replacing n by the number of
eigenvalues whose magnitude is close to the spectral radius
makes the bound tight. In our simulations we found that
there is generally only one eigenvalue with magnitude close
to the spectral radius. This would imply that the result
that we presented in Theorem 10 can be tightened to

VSI ≤ VSIA ≤ VSI− 1

n
ρ ln(1− ρ) (11)

This tighter bound on the approximation error has always
revealed to be true in our simulations (see Section 5).

5. NUMERICAL VALIDATION AND COMPARISON

5.1 Numerical validation of the VSI approximation

In this section we assess the quality of the proposed voltage
stability index approximation via numerical simulations
using MatPower (Zimmerman et al., 2011). We consider
a 56-bus distribution network, obtained from the three-
phase backbone of the IEEE123 test feeder. The details of
the testbed are available in Bolognani (2014).

In Fig. 2 we represent the voltage stability index (VSI) and
the voltage stability index approximation (VSIA) when the
system is operated at a series of increasing power demands.
We start from an operating point very close to the flat
voltage solution, and we increase the active and reactive
power demand at four different buses in the grid until
the Jacobian becomes singular and the Newton’s method
employed for the solution of the power flow equations
cannot proceed. Observe that the approximation is almost
exact up to very close to the loadability limit.

In Fig. 3 we represent the VSI approximation error,
together with the bounds presented in Theorem 10 and
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Fig. 3. VSI approximation error and the two error bounds

Conjecture 11. Observe that the approximation error is
quite small in either case, and it follows the conjectured
bound (11) rather than the bound (10).

5.2 Comparison of practical voltage stability indices

Recall from Section 4.3 that we propose VSI ≥ VSImin as a
voltage stability measure, where VSImin has to be decided
in order to characterize an operating condition close to the
loadability limit of the grid. It can be seen in Fig. 2 that
when VSI = −1, its negative slope is already extremely
steep, meaning that for a very small increase in power
demand the system would become unstable. Preliminary
numerical investigation has shown that this threshold for
VSI is valid for a diverse range of grid sizes and topologies.
Notice that such a limit corresponds to an exponentially
decreasing threshold for the determinant of the power flow
Jacobian, i.e., det(ϕ′

u) ≥ e−n.

In the following, we choose a slightly more conservative
limit (VSImin = −0.8) in order to present a comparison
between the proposed VSI and three other indices that
have been recently proposed in the literature. The first
two indices that we consider have been proposed in Bolog-
nani and Zampieri (2016) and in Simpson-Porco et al.
(2016), and they involve open-circuit load voltages, the
grid impedance matrix (or a specific norm of it), and nodal
power injections. The third index has been presented in
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conclude, notice that Trace(ϕ
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In Section 5 we show that the approximation is almost
exact in the voltage stability region. Since the terms in
the above sum are all positive, they are very small and
they decay quickly to zero.

In the following theorem, we present the main result
on the quality of the proposed voltage stability index
approximation.

Theorem 10. In a power distribution network with one
slack bus and n PQ loads described by the relaxed branch
flow model, in the voltage stability region we have:

VSI ≤ VSIA ≤ VSI− ρ ln(1− ρ) (10)

where ρ = ρ(ϕ
′−1
u,diagϕ

′

u,off).

Proof. The first inequality descends from Lemma 6. The
second inequality is proved by applying Theorem 4, using
what we proved in Lemma 8. �

We conclude this section by presenting the following con-
jecture.

Conjecture 11. In Ipsen and Lee (2011), the authors il-
lustrate that the pessimistic factor in the approximation
bound of Theorem 4 is given by the factor n that appears
in (5). They found that replacing n by the number of
eigenvalues whose magnitude is close to the spectral radius
makes the bound tight. In our simulations we found that
there is generally only one eigenvalue with magnitude close
to the spectral radius. This would imply that the result
that we presented in Theorem 10 can be tightened to

VSI ≤ VSIA ≤ VSI− 1

n
ρ ln(1− ρ) (11)

This tighter bound on the approximation error has always
revealed to be true in our simulations (see Section 5).

5. NUMERICAL VALIDATION AND COMPARISON

5.1 Numerical validation of the VSI approximation

In this section we assess the quality of the proposed voltage
stability index approximation via numerical simulations
using MatPower (Zimmerman et al., 2011). We consider
a 56-bus distribution network, obtained from the three-
phase backbone of the IEEE123 test feeder. The details of
the testbed are available in Bolognani (2014).

In Fig. 2 we represent the voltage stability index (VSI) and
the voltage stability index approximation (VSIA) when the
system is operated at a series of increasing power demands.
We start from an operating point very close to the flat
voltage solution, and we increase the active and reactive
power demand at four different buses in the grid until
the Jacobian becomes singular and the Newton’s method
employed for the solution of the power flow equations
cannot proceed. Observe that the approximation is almost
exact up to very close to the loadability limit.

In Fig. 3 we represent the VSI approximation error,
together with the bounds presented in Theorem 10 and
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Conjecture 11. Observe that the approximation error is
quite small in either case, and it follows the conjectured
bound (11) rather than the bound (10).

5.2 Comparison of practical voltage stability indices

Recall from Section 4.3 that we propose VSI ≥ VSImin as a
voltage stability measure, where VSImin has to be decided
in order to characterize an operating condition close to the
loadability limit of the grid. It can be seen in Fig. 2 that
when VSI = −1, its negative slope is already extremely
steep, meaning that for a very small increase in power
demand the system would become unstable. Preliminary
numerical investigation has shown that this threshold for
VSI is valid for a diverse range of grid sizes and topologies.
Notice that such a limit corresponds to an exponentially
decreasing threshold for the determinant of the power flow
Jacobian, i.e., det(ϕ′

u) ≥ e−n.

In the following, we choose a slightly more conservative
limit (VSImin = −0.8) in order to present a comparison
between the proposed VSI and three other indices that
have been recently proposed in the literature. The first
two indices that we consider have been proposed in Bolog-
nani and Zampieri (2016) and in Simpson-Porco et al.
(2016), and they involve open-circuit load voltages, the
grid impedance matrix (or a specific norm of it), and nodal
power injections. The third index has been presented in
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Wang et al. (to appear), and it requires the knowledge
of the impedance matrix of the grid and of phasorial
measurements of the bus voltages.

For each criterion we evaluated the proposed voltage
stability index in a low-load operating point (very close
to the flat voltage profile) and in the operating point in
which our VSIA becomes equal to −0.8 (corresponding
to what we defined as the practical voltage stability
limit). Since the method proposed in Simpson-Porco et al.
(2016) is based on the decoupled reactive power flow
equations, for the comparison with their method we used
only reactive power demands. Notice that the other indices
reach their threshold value before our index does, showing
that they are more conservative, and therefore result in a
less efficient use of the given distribution grid.

Criterion Low load VSIA = −0.8

VSIA > −0.8 -0.10 -0.80
VSIBolognani > 0 0.51 -4.58
VSISimpson < 1 0.32 1.34
VSIWang > 1 10.81 0.97

6. CONCLUSIONS

In this paper we have presented a voltage stability index
for power distribution networks, for which an accurate
approximation is available. Bounds on the quality of this
approximation have been mathematically derived, and the
accuracy has been validated in simulations. Notably, the
approximate voltage stability index can be computed in a
scalable and distributed way by agents that can measure
local variables at each bus. Based on this observation, we
envision three possible applications for which the proposed
approach can bring a significant contribution.

• As an online voltage stability monitoring tool, when
the necessary quantities are measurable at the buses,
the VSIA can be computed asynchronously via stan-
dard tools from multi-agent average consensus.

• In optimal power flow programming, whenever the
problem is expressed via the branch flow model, the
VSIA can be used as a computationally efficient bar-
rier function to maintain the solution of the problem
inside the region of voltage stability.

• In numerical algorithm for the construction of power
flow feasibility sets that are based on the nonsingu-
larity of the power flow Jacobian (as in Dvijotham
and Turitsyn 2015), the proposed approximation can
be used to avoid expensive determinant computations
and improve scalability to larger networks.
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