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Abstract: This work explores the application of Adaptive Model Predictive Control (AMPC)
to quadrotor altitude control. Model Predictive Control (MPC) is a very powerful method of
Advanced Control, utilizing an implicit model to make output predictions which are in turn used
in computing control action. Dynamic Matrix Control (DMC) was the first MPC technique to be
implemented, and is still very common in process control especially for Chemical plants. Due to
changes in operating points, the implicit model in MPC typically becomes insufficient, costing
the quality of the controller. This work proposes Adaptation (based on the Recursive Least
Squares (RLS) algorithm), for online system identification to take changes in operating points
into account when computing the DMC control action. Overall, Adaptive DMC is investigated
as to whether Adaptive DMC is capable of improved quadrotor control or tracking.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Model Predictive Control, Dynamic Matrix Control, Adaptive Control, Recursive

Least Squares, Forgetting Factor.

1. INTRODUCTION

This research proposes Adaptive Model Predictive Con-
trol (AMPC) for altitude control of a quadrotor. Many
different controllers have been tested for the control of
quadrotors. Whether or not a controller works desirably for
quadrotor control normally depends on the system model
of the quadrotor (Schreier, 2012) and the environment the
quadrotor will operate in.

Some of the aspects that make quadrotor control demand-
ing are that the quadrotor is subject to unknown wind
disturbances and possibly, uncertain dynamics influenced
by misalignment of motors, weight imbalance etc, and
physical limitations in velocity, attitude angles, rotor an-
gular velocity etc. A controller designed for one operation
condition of the quadrotor is prone to performance degra-
dation as the environment and/or vehicle dynamics change
(Wang et al., 2016).

On the other hand, Adaptive control allows adjustment
of control of the quadrotor by automatically updating
the system model (through parameter estimation), online
or offline, according to the prevailing process dynamics.
Work such as that of Landau and team (Landau et al.,
2011 and Osa et al., 2001) shows that adaptive control
has gained much ground in flight control systems and has
become a topic of interest in cases where plant dynamics
or disturbances are unknown or varying. Model predictive
control (MPC) is an optimal control technique employing
an internal model to predict system behaviour in some
finite time horizon (Abdolhosseini et al., 2012 and Kim
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et al., 2012). Two common types of MPC are Dynamic
Matrix Control (DMC) and Generalised Predictive Con-
trol (GPC). The differences between the two are rather
subtle, but important to note is that DMC, which was
developed and introduced by Charles Cutler in the 1970s.
(Cutler et al., Guiamba, 2001), uses a step response model,
and puts relatively more emphasis on past input data to
make predictions, than GPC does (Rossiter, 2003). DMC
also, because it is non-parametric (utilising a step response
model with 60 data points for example) is less sensitive to
noise, although a little more computationally expensive
compared to the parametric GPC. For the advantage of
noise sensitivity, the type of MPC investigated in this work
is DMC, leading to Adaptive Dynamic Matrix Control
(ADMC). It should be note though that, methods do
exist, to make GPC less sensitive to noise (for example
implementing filters). MPC has been successful for quadro-
tor control (Alexis et al., 2014 and Kunz et al., 2013)
achieving high quality performance and on the other hand,
adaptive control (Li et al., 2014 and Monte et al., 2013).
AMPC, in the form of GPC, has also been found to meet
high performance indices for quadrotor trajectory tracking
(Bouffard et al., 2012).

A common form of ADMC is one in which adaptation
is used to calculate parameters of the DMC controller
such as the prediction or control horizon, depending on
the estimated real-time system dynamics. In the work of
Klopot, this is achieved by using linear spline interpola-
tion, for some nonlinear hydraulic plant (Klopot et al.,
2015). High quality system performance is archieved for
process control by updating the parameters; suppression
and scaling factor, of the DMC (Posada et al., 2008).
Another realisation of ADMC is to update the DMC model
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as the system moves from one operating point to another.
This has been investigated for a distillation column (Maiti
et al., 1995) and also for a turbine system (Lee et al, 2003).
Another realisation is to have several models of the system,
for different points, then, based on system measurements,
use interpolation to find the best model for a particular
operating point. This has been successfully implemented
for process control, (Chen et al., 2009 and Demircan et al.,
1999). Other forms of ADMC have been implemented and
are in most ways, extensions of the above stated. Extra
caution must however be taken with ADMC because a
variable prediction model typically results in poor system
performance, especially for low order systems, (Demircan
et al., 1999) due to the switching. It is therefore common
practice to set up ADMC such that all models continue to
calculate the dynamic matrix although only the activated
model is considered for calculating control action at each
sample time. This in turn, however, raises computational
cost.

Since the majority of the work done on ADMC does not
take computational expense and implementation (espe-
cially for such systems as multi-rotors) into account, this
work looks into ADMC from theory to implementation. As
such, with the intention to improve controller efficiency,
this work proposes the use of a single step response model
for different disturbance influence, hence limiting switch-
ing. This follows several simulations to analyse how model
parameters are affected by disturbance. This is supported
by a Supervisor which monitors system behaviour and then
decides when to switch to or from the disturbance step
response model. The expected profits of using a super-
visor over interpolation are code simplicity (hence more
efficiency) and, since a RLS estimator already exists, which
estimates model parameters in real time, the RLS output
can conveniently and readily be used by the supervisor in
decision making. The mathematical model is presented in
Section 2 while Section 3 explores the derivation and im-
plementation of ADMC and Section 4 presents simulation
results. Section 5 concludes.

2. MATHEMATICAL MODEL
2.1 Analytical Model

AMPC is based on an internal model, which is updated in
real-time according to adaptive laws and is used to predict
system output. The quadrotor is modelled analytically,
based on dynamic and kinematic equations (Newton-Euler
formalisation) as in (Balas, 2007, Ahmed et al., 2015 and
Abaunza et al., 2016). This considers the quadrotor as the
moving (body) frame (x5 —yp — zp) and the earth as the
inertial frame (zg —yg — zg) as summarised by Fig. 1 and
for this work, according to the parameters given in table 1.

Table 1. Model parameters

Parameter Unit  Symbol Value

Mass kg m 0.55

Rotor wheelbase m 1 0.23
Drag factor — d 7.5%1073
Thrust factor — b 3.13 %1073

The notation w; denotes angular velocity of the ith motor
and 7ps; denotes torque produced by the ith motor. The
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Fig. 1. Quadrotor inertial and body frames

equation (1) and equation (2) represent the resultant ana-
lytical model in terms of linear and angular accelerations
respectively:
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where u; is total thrust force, g is acceleration due to
gravity, s, ¢ and ¢ are trigonometric functions sine, cosine
and tangent respectively. ¢, 6 and ¢ are the roll, pitch
and yaw attitude angles of the quadrotor (Euler angles),
respectively and z, y and z represent 3 the dimensional
position of the quadrotor, all expressed in the reference
(stationary frame) i.e. Earth frame. The roll, pitch and
yaw rotational angular velocities are denoted as p, ¢ and
r for roll, pitch and yaw respectively and expressed in the
quadrotor frame.

2.2 System Identification

System identification is necessary for this work because
this results in a relatively reliable model, representing ac-
curate system dynamics. The identified ARX model is used
to determine the regressors for parameter estimation. This
parameter estimation, as stated earlier, is based on the Re-
cursive Least Squares (RLS) method, a method well known
for convenient implementation with the discrete-time ARX
model type (Landau et al., 2011). The analytical model
available is therefore run in MATLAB for step input and
the resultant input-output data is collected and stored.
Prior to this simulation, the model is stabilised by PID
control using Simulink PID Tuner, because DMC works
when the internal step response model is stable. Using
the System Identification tool in MATLAB, the collected
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Fig. 3. Direct adaptive control scheme

data is processed for ARX model identification and the
identified ARX model is optimised using the Response
Optimisation tool to minimise error. The discrete-time
ARX model, is of the form:

A(2)y(t) = B(2)u(t) + e(t) 3)
where A(z) and B(z) are backward shift operator (z71)
polynomials (considering zero input delay for simplifica-
tion) as follows:

AZ)=14+a1z7 +agz 2+ +a,, 2" (4)
B(z) = b1zt +byz 2 4+ 4 by, 2™ (5)

with the backward shift operator such that z7"u(k) =
u(k — n) (Bhuvaneswari et al., 2012 and Andersson et
al., 1998). The ARX model can presented by such an
illustration as Fig. 2 where e represents random zero-mean
noise.

The system identification and optimisation processes pro-
duce a second order ARX model:

A(z) =1— 1811271 +0.8147272 (6)
B(z) = 0.004427* (7)

from the recorded input-output data. This model is suc-
cessfully verified by simulating ramp reference input then
comparing the ARX response against that of the initial
analytical model.

3. AMPC DERIVATION AND IMPLEMENTATION
3.1 Adaptive mechanism

Fig. 3 shows the general direct adaptive control scheme.

The signal u represents control action and ¥y represents
the system output. Using these two signals, adaptive
laws estimate parameters of the system model (within
the parameter estimator block) in real-time, the model
for which control is designed by updating the controller
parameters. In this way, the reason adaptivity is needed
is that adaptivity tracks changes in system dynamics
(resulting from wind disturbance or payload attachment)
and allows the controller to adjust for the changes. The

RLS principle is used based on the Regressor Form as
in (8) (Landau et al., 2012 and Osa et al., 2001) where
el = [p1,02 - @n]T - regressor functions - and 6 =
[01,02 - -6,] - model parameters to be estimated.

y(i) = " (1)0 (8)

The RLS parameter estimation algorithm can be summa-
rized by the equations (9), (10)and (11), (Landau et al.,
2012 and Guo et al., 1993):

O(t+1) = 0(t) + P(t + 1)p(t)e(t + 1) (9)
where
T
e o
and

et +1) =y(t+1) — 07 (t)p(t) (11)
The solution for the estimated parameters comes from
minimising a cost function, which is expressed in terms
of the Forgetting Factor (A) (Guo et al., 1993):

k
VO = 5 S - T WIE (2

The idea is that when X is close to 1, the result is good
convergence and small variances of the estimates; while
when ) is closer to zero, the result is good tracking (quick
forgetting of old data). The parameters of adaptive control
that are tuned are the Forgetting Factor and Starting
(Initial) Values. P(0) represents some estimate of the
covariance matrix of the initial parameters. Small P(0)
results in small changes of the estimated parameters. On
the other hand, large P(0) results in quick a rapid move
from initial parameters to the estimates (Soderstrom et
al., 1989). Typically, for the practical case:

4(0) = 0 (13)

and

P(0) =pI (14)
where p is a constant and I is a unitary identity matrix.
Simulations are run to determine suitable parameters
for tuning the estimator. The RLS estimator requires
persistent excitation, i.e. input signal capable of exposing
the characteristics of the system, in this case, a pulse width
Modulated signal. After several simulations, the estimator
is tuned to A = 0.97, p = 1e® and initial estimates = 1
for the poles (al and a2 parameters). This setting brings
about satisfactory convergence as shown in Fig. 4 when a
step altitude increase of 1 meter is input at hover.

To quickly demonstrate the effect of the tuning parame-
ters, the simulation with p = le* is run, which is expected
to give slower convergence, as is the case shown in Fig. 5.

The behaviour of the parameters of the model is analysed
for varying dynamics i.e. with different disturbances. It
is observed that, while the poles of the system vary
in magnitude as system dynamics change, this variation
is consistent even for low magnitude disturbance input.
One reason for this is the low order of the system. This
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Fig. 5. RLS estimation A = 0.97, p = le4

makes the use of a Supervisor for adaptation profitable as
explained in Section 4.

3.2 Model Predictive Control - DMC

DMC utilises two main components, i.e. the model and
the optimisation solver to minimise such a cost function
as (15), (k is the sampling instant).

p c—1
J=> W (k+i)—g(k+1)°+rY_ Au(k+1i)® (15)
=1 =0

y"¢l is the reference trajectory.

y°P is the set-point.

§(k) is the predicted output at instant k.

Au(k) is the control move at instant k and Au(k) =
u(k) —u(k —1).

e p is the prediction horizon, ¢ is the control horizon.
e r is a weighting factor.

Signal y"¢f, which is typically an exponential rise, is the
reference trajectory to move from measured output to the
set-point. The expression for y"¢/ can be manipulated to
tune the rate at which the output approaches the set-point,
by introducing the scaling factor a (Lopez-Guede et al.,
2013 and Rani et al., 2014):

yref(t +k)= ay’“ef(t +Ek-1)4+ 1 -a)y®(t+k) (16)

a is a value between zero and one and technically (from
the expression of y"¢f), should result in aggressive response
when closer to zero and sluggish response when closer to
one. The DMC Prediction of output can be written as (17)

gk +1) =Tf(k) +s Ad(k) + (y(k) = f(k|k))
——— ——

=prediction =past

+ GAu(k)
———

=future

=present

(17)

where G is the dynamic matrix, and is derived from a
step model of the system due to step input (s*) and (17)
is in fact summary to (19) and also, (17) simplifies to (18)
(Lopez-Guede et al., 2013 and Rani et al., 2014).

Gk +1) = yP(k + 1) + GAu(k) (18)
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The term y? where (yP(k + 1) = [yP(k + 1),yP(k +
2),-++,yP(k+p)]T) represents the past free response term
and the present feed-forward and feedback terms. Awu
denotes change in control action. The term GAwu where
G is of p x ¢ dimension represents the part due to the
future control moves. From here, the sequence of computed
control action is derived from (20)

Au = [GTG +rI7'GT (y*P — yP)

H e

(20)
= He

The control horizon c is selected and held constant early
in the controller design while tuning other controller
settings. Keeping ¢ small means fewer variables need to
be calculated at each control interval. This in turn, allows
faster computation. Typically, tuning the model predictive
controller is not standardised but rather more intuitive.

4. SIMULATION RESULTS

It was seen in Section 3.1 that the model parame-
ters change in magnitude with varying system dynamics.
ADMC is therefore realised by monitoring parameter val-
ues using the supervisor and then switching models based
on value of the parameters (poles in this case, as the system
zeros remain relatively unchanged) when disturbance acts
on the system. This is illustrated by Fig. 6

Simulations are run to investigate the quality of control
provided by ADMC (with a 0.025 seconds sampling time)
leading to a conclusion as to how much ADMC improves
quadrotor control. Two aspects are tested, reference track-
ing and disturbance rejection. The ADMC is compared
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Fig. 6. General supervisory scheme
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Fig. 8. PID and ADMC response - sinusoidal input

against the PID controller introduced earlier and a DMC
only controller. The parameters used for the initial tuning
of the predictive controller are p = 5 and ¢ = 5. Prior
simulations show that a shorter prediction horizon, in this
case, leads to better performance, which is why p is set to
a rather low value of 5. This is not entirely unusual, Lopez
and team make a solid conclusion in their work that, in
reality, a low and intermediate value of p results in a better
performance of DMC (Lopez-Guede et al., 2013).

The first investigation is with respect to reference tracking
without disturbance (therefore with deactivated adapta-
tion in ADMC) and is summarised by Fig. 7 and Fig. 8
for two different reference trajectories.

It can be concluded that ADMC archives superior refer-
ence tracking, especially even as the reference trajectory
becomes more complex. As for disturbance rejection, the
three controllers i.e. PID, DMC and ADMC are investi-
gated for step disturbance, which can be modelled as a
change in sensor output or as a force, as in this work.
While at hover, disturbance is applied to the system as
illustrated by Fig. 9.
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Fig. 9. PID, DMC and ADMC response - step disturbance
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Fig. 10. PID and ADMC noise response

The DMC controller is more rapid in disturbance compen-
sation than PID, but not as rapid as the ADMC controller.
Overall, as expected, ADMC provides more rapid and
more precise reference tracking and disturbance rejection.
Considering a more practical case, with measurement noise
in sensor data, ADMC outperforms the PID again, as
expected. Simulation shows that the PID response is af-
fected more by noise than ADMC, as shown in Fig. 10
where vibrations occur with greater amplitude for PID.
One reason for this is that the derivative action of the PID
gains high influence when the measured output fluctuates
rapidly as this translates to a steep slope. This problem
however, can be resolved by the use of a low-pass filter.
Another desirable feature of ADMC is that once set up,
ADMC is easy to tune.

Implementation of ADMC however, cannot be done with-
out considering sampling time of the controller. Effects of
sampling time depend on the capacity of the computer
used. Investigations carried out in this work (using an i5
processor and 4 Gigabytes of RAM) with 0.1 and 0.0001
seconds sampling times reveal that too large a sampling
interval prevents adequate capture of the plant dynamics
leading to instability, while too small a sampling interval
fails to allow for the full computation of the algorithm,
again leading to poor performance.

5. CONCLUSION

ADMC is capable of providing the expected improved
quadrotor control. In this context, ADMC has been vali-
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dated with respect to reference tracking and disturbance
rejection, where in both cases, ADMC surpasses the classi-
cal PID controller. Tuning the ADMC is quite an intuitive
process, one which demands extensive simulation. When
tuned well however, the ADMC controller satisfies the two
main objectives i.e. adaptation to varying plant dynamics
and optimal reference tracking. While DMC is the oldest
form of MPC, DMC remains a powerful control tool and
further research into implementing or extending DMC for
quadrotor control is worthwhile.
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